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In order to understand the dynamics of granular flows, one must have knowledge about the solid volume
fraction. However, its reliable experimental estimation is still a challenging task. Here, we present the application
of a stochastic-optical method (SOM) [L. Sarno et al., Granul. Matter 18, 80 (2016)] to an array of spheres
arranged according to faced-centered cubic lattices, where spheres’ locations are known a priori. The purpose
of this study is to test the robustness of the image binarization algorithm, introduced in the SOM for the indirect
estimation of the near-wall volume fraction through an optically measurable quantity, defined as two-dimensional
volume fraction. A comprehensive range of volume fractions and illumination conditions are numerically
and experimentally investigated. The proposed binarization algorithm is found to yield reasonably accurate
estimations of the two-dimensional volume fraction with a root-mean-square error smaller than 0.03 for all
investigated illumination conditions. A slightly worse performance is observed for samples with relatively low
volume fractions (<0.3), where the binarization algorithm occasionally cannot identify the surface elements in
the second and third layers of the regular lattice.
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I. INTRODUCTION

Granular media are ubiquitous in natural phenomena (e.g.,
debris flows and avalanches) and in industrial applications
(e.g., conveyance of pellets, silo discharge, etc.). Clearly, the
dynamics of such systems is subject to the laws of classical
mechanics, but it is still far from being completely understood
due to complex momentum exchange mechanisms [1–5]. In
recent years several efforts have been made to study the
dynamics of granular media from theoretical and experimental
viewpoints [6–13]. In addition to the increasing numerical
studies with discrete element models (DEM) [14–18], the ex-
perimental investigation, on quantities such as the velocity and
the solid volume fraction, still represents an irreplaceable tool
for understanding the granular dynamics and for validating
mathematical models.

With reference to a representative volume, the solid volume
fraction is the ratio between the volume occupied by grains
and the total volume of the mixture. At the grain scale, the
local volume fraction can be defined as the ratio between
the volume occupied by a single grain and the volume of the
polyhedron, resulting from a Voronoï 3D tessellation on the
grains’ centers [19,20]. In standard laboratories cost-effective
techniques for investigating granular flows are typically of the
optical type. With the notable exception of refractive index-
matching methods requiring transparent granular mixtures
[21–23], the measurement of the velocity and volume fraction
by optical methods is only possible at the boundaries of
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the flow domain. If the flow dynamics at the boundaries is
not representative of the whole flow field, this restraint may
become relevant. To this regard, slow dense flows in narrow
geometries are found to be approximately uniform along the
transverse direction [24], while in the granular flows governed
by gravity, significant concentration gradients were observed
near the free surface [12,25]. On the other hand, it is worth
mentioning that rapid granular flows in wide channels may
develop heterogeneous patterns due to the onset of transverse
flow instabilities, e.g., the self-supported regime with a dense
core surrounded by dilute regions at the boundaries, reported
by Brodu et al. [26].

Reasonably accurate estimations of the velocity field at
the sidewall and at the free surface of granular currents are
achievable today thanks to mature measurement techniques,
such as the particle tracking velocimetry, PTV [12,19,27]
and the particle image velocimetry, PIV [28–33]. Conversely,
the measurement of the solid volume fraction is much more
difficult. In the last decades only few optical methods have
been introduced for approximate estimations of the volume
fraction [19,20,34–38], and, to date, there is still no consensus
on the most appropriate approach. Sarno et al. [39] proposed
a stochastic-optical method (SOM) for estimating the volume
fraction in an indirect way. Namely, they found that the vol-
ume fraction, c3D, related to a finite reference volume delim-
ited by a transparent planar wall, can be estimated by means of
a measurable correlated quantity, called the two-dimensional
(2D) volume fraction c2D. This quantity is evaluable from
photographs taken under controlled illumination conditions.
Extensive numerical simulations, carried out by using the
Monte Carlo (MC) method, allowed them to identify a clear
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stochastic relationship between c2D and c3D. To provide an
averaged estimation of c3D, the SOM requires a sufficiently
large number of c2D measurements. For the utilization of the
SOM in real laboratory investigations, an automatic-vision
binarization algorithm was proposed in Ref. [39] so as to be
able to obtain c2D from gray-scale digital images. Similar to
other optical techniques, the laboratory employment of the
SOM method involves facing some uncertainties. First, the
theoretical transfer function between c2D and c3D has been
numerically obtained under ideal assumptions (e.g., perfect
spherical grains; perfectly parallel light beams etc.), which are
not rigorously fulfilled in a laboratory environment. Another
possible source of error is the binarization algorithm itself.

The SOM method was successfully validated by [39] on
randomly dispersed liquid-granular mixtures, composed of
plastic (POM) beads immersed in a water-sucrose solution,
and also on random dry granular packings. More recently,
Sarno et al. [40] further investigated the performance of the
SOM on randomly dispersed POM mixtures by employing
rectangular interrogation windows with different aspect ra-
tios. This latter study confirmed the good capabilities of the
SOM in estimating the averaged c3D. Yet, in comparison to
analogous numerical simulations, slightly larger scatter of the
estimations were found, probably due to errors introduced by
the image binarization strategy.

Motivated by these observations, in the present work we
specifically focus on the binarization algorithm, implemented
in the SOM. An experimental study on regular lattices of
monodisperse spheres immersed in air is here presented.
Such lattices were built according to the faced-centered cubic
(FCC) pattern and are composed of perfect spheres, held
together with thin nylon wires. Thanks to the regular FCC pat-
tern, the relationship between c2D and c3D is not stochastic but
totally deterministic. Consequently, this arrangement allowed
us to assess the performance of the binarization algorithm.

The paper is composed of the following parts. The prin-
ciples of the SOM method are briefly recalled in Sec. II.
Section III describes the application to regular FCC lattices.
In particular, the deterministic transfer functions, found for
FCC lattices, are reported together with a description of the
experimental setup. In Sec. IV the results are presented and
discussed. The conclusions are summarized in Sec. V.

II. THE STOCHASTIC-OPTICAL METHOD (SOM)

Here the rationale of the SOM method is briefly recalled.
For further details we refer the reader to Refs. [39–41].
Considering a transparent wall, �, delimiting the granular
domain, the SOM method requires controlled illumination
conditions, so as to be able to estimate the near-wall volume
fraction, c3D, through a correlated quantity, called the two-
dimensional volume fraction, c2D. The measurement of this
quantity requires the following experimental setup (Fig. 1):

(1) A digital camera located in front of the transparent
wall and sufficiently far from it, so that the perspective
changes of the size of grains, located at different distances
from the wall, are negligible in the imaging plane;

(2) A no-flicker planar lamp that illuminates the wall from
a constant direction with angle of incidence, ζ .

Digital camera

Lamp

 

Transparent wall, Δ

ζy
x

Viewing direction

Angle of incidence, ζ

Lighting direction

FIG. 1. Sketch of the experimental setup for the SOM method.
The viewing direction is normal to �, while ζ is the angle between
viewing and lighting directions.

With reference to Fig. 1, c2D is defined as the ratio between
the projected area on the interrogation window (IW) of all sur-
face elements, concurrently visible and directly illuminated,
and the total IW area. Since the SOM works similarly to
a triangulation method [42], it is crucial that the angle, ζ ,
between viewing and lighting directions is non-null. A numer-
ical investigation, employing the MC method for generating
random distributions of spheres, allowed Sarno et al. [39] to
identify a stochastic relationship between c2D and c3D

c3D = a(ζ ) exp(b(ζ ) c2D), (1)

where a is found to be proportional to 1/cos(ζ ) and b weakly
depends on ζ . In that investigation c3D could be exactly
calculated with reference to a finite cubic volume delimited
by �, and c2D was determined by purely geometric arguments
on an IW, corresponding to the front face of the same cubic
volume. Thanks to the randomness of the spheres’ locations,
the illumination condition could be fully characterized by the
angle of incidence ζ .

The transfer function (1) is of stochastic type: thus, for
each value of c3D, c2D exhibits some scatter around its average
(cf. Fig. 4 in Ref. [39]). This dispersion may be described by
the standard deviation of c2D, σc2D (c3D), or more synthetically
by its average, σc2D , calculated over the entire interval of
the investigated volume fractions. From the viewpoint of
the measurement accuracy, a low sensitivity of c2D on c3D,
d (c3D)/d (c2D) [i.e., the derivative of Eq. (1) with respect to
the input variable c2D], and a low c2D scatter are desirable
properties of the function (1). In a previous work Sarno
et al. [39] systematically studied the behavior of the transfer
function over a wide range of ζ (between 5° and 70°). It
emerged that an increase of ζ also causes an increase of the
scatter of c2D (particularly relevant for ζ > 60◦), while values
of ζ smaller than 10° lead to the saturation of c2D in the upper
part of the transfer curve (cf. Table 1 and Fig. 4 in Ref. [39]).
These trends at the extreme ends are clearly undesirable for
the accuracy of the method and indicate that an intermediate
range of ζ is preferable for applications.

To practically estimate c2D by using a digital camera in real
laboratory applications, it is crucial that the main light source,
coming from a controlled direction, is much brighter than the
environmental light, so as to avoid unwanted influences on
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the images’ exposure. Moreover, gray-scale digital pictures
need to be suitably binarized. A local binarization algorithm,
depending on the brightness values within a small neighbor-
hood of each pixel, was proposed in Ref. [39]. This algorithm
works locally with the aim of reducing undesired effects from
slightly uneven light intensities in the region of interest (ROI).
The binarized image, B, is defined as

Bi, j =
(

O′
i, j − O′

min,N (i, j)

O′
max,N (i, j) − O′

min,N (i, j)

> s

)
, (2)

where O′
i, j is the brightness of the pixel (i, j) in the γ -decoded

image O′ = O1/γ , O′
min,N (i, j) and O′

max,N (i, j) are the minimum
and maximum brightnesses in a circular neighborhood N of
(i, j) of diameter DN . In Eq. (2) s is a parameter to be experi-
mentally calibrated. A limitation of formula (2) consists in the
low robustness against occasional spikes of O′

max,N (i, j), due to
glare on the grains’ surface. This problem is more relevant if
the grains exhibit some direct reflectance or if the interstitial
fluid is highly transparent. An improvement of Eq. (2) consists
in the calculation of the local maximum brightness, not on
O’, but on a preprocessed image O”, obtained by a suitable
moving average filter (MAF)

O′′ = O′
avg, [px,pz]. (3)

To reduce border effects in the application of the MAF,
the brightness values outside the boundaries of the ROI are
computed by mirror-reflecting the brightness values across
the boundary. Sarno et al. [39] reported that a squared average
filter of size p = px = pz ≈ 0.2d was sufficient to get reliable
results on matte white POM plastic beads with very low direct
reflectance. Investigating random granular dispersions by us-
ing rectangular IWs with different aspect ratios, in Ref. [40]
it was observed that a larger MAF seems to be beneficial for
improving the accuracy of the binarization strategy.

Once the binarized image B is obtained from Eqs. (2) and
(3), the value of c2D can be simply calculated as

c2D =
∑

N Bi, j

N
, (4)

where N is the total number of pixels in the IW.
The experimental validation, carried out by Sarno et al.

[39,40], showed a very good performance of the modi-
fied binarization algorithm [Eqs. (2),(3)] on randomly dis-
persed POM beads. Yet, it was observed that the experimen-
tal standard deviations, σc2D (c3D) are generally higher than
the ones numerically obtained from MC simulations. These
discrepancies are probably due to the fact that the binariza-
tion algorithm occasionally fails to identify some illuminated
surface elements and, thus, add up random errors to the
natural fluctuations of c2D. On the other hand, these possible
flaws of the binarization strategy could have been obscured
by other error sources, intrinsic to the previous experimental
arrangements, e.g., a nonperfectly homogenous optical re-
sponse of the grains or their nonperfectly spherical shape.
These observations motivated us to look in more detail at the
performance of the binarization algorithm on regular lattices,
where the spheres’ locations are known a priori.

Layer 1 (foreground)

Layer 2 (intermediate)

Layer 3 (background)

Hexagonal pattern

z

x
y

FIG. 2. Centered FCC disperse lattice of equal spheres (∇-type
orientation) with λ = 1.33.

III. APPLICATION OF THE SOM TO REGULAR LATTICES

A. FCC lattices

Two regular lattices are suitable for closely packing equal
spheres: the FCC and the hexagonal close packing (HCP).
Considering a system of equal spheres, it has been con-
jectured [43] and proved more recently [44] that FCC and
HCP lattices yield the maximum possible average volume
fraction, π/

√
18 ≈ 0.74. If the same lattices are constructed

with closely packed virtual spheres of diameter D and, sub-
sequently, smaller spheres of diameter d < D are positioned
in such a way that their centers coincide with the centers
of the large spheres, one obtains dispersed deterministic dis-
tributions, where the spheres are not in direct contact with
each other. The resulting volume fraction is smaller than the
maximum packing and can be evaluated by the following
asymptotic formula, valid for an infinitely large reference
volume

c3D,asympt (D/d ) = π√
18

(
d

D

)3

= π√
18

λ−3. (5)

In Eq. (5) the diameter ratio, λ = D/d , is the so-
called linear concentration [45] and is isotropic in space.
Some deviation from Eq. (5) occurs if a reference vol-
ume of finite size is considered. An example of a disperse
FCC structure is sketched in Fig. 2, where the spheres’
diameter is d = 0.75D (c3D,asympt ≈ 0.31). Considering the
frame of reference of Fig. 2, the FCC lattice is composed
of different layers parallel to the xz plane. In all layers the
spheres are arranged in a honeycomb-like hexagonal tessel-
lation, formed of six equilateral triangles of side D. The
distance between two layers is

√
6 D/3 owing to the tetrahe-

dral arrangement of four adjacent spheres. The structure of
the FCC lattice is such that the xz patterns repeat in space
with periodicity 3. Consequently, for all λ, the first three
layers are visible by a transparent wall, parallel to the xz
plane. Conversely, in HCP lattices the layers’ periodicity is
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TABLE I. List of the investigated illumination conditions.

ID Azimuth, α [deg] Tilt, τ [deg] ζ [deg]

POS-1 25.0 0.0 25.0
POS-2 30.0 5.0 30.4
POS-3 30.0 15.0 33.2
POS-4 30.0 25.0 38.3

2. Considering that FCC lattices allow deeper visibility inside
the domain than HCP ones, the FCC structure is chosen for
the present investigation.

B. Transfer function c2D-c3D for regular FCC lattices

Before using the SOM on regular lattices, it is worth under-
lining some important distinctions from the case of randomly
distributed spheres. Owing to the regularity of the lattice, the
relationship between c2D and c3D is not stochastic but deter-
ministic. Thus, Eq. (1) ceases to be valid. Moreover, the new
relationship (c2D, c3D) crucially depends on the geometrical
structure of the lattice and also on the orientation of the lattice
tessellation in the xz plane with respect to light direction. In
fact, the locations of the foreground spheres influence the
optical penetration and, consequently, c2D. Hence, different
from random distributions, the illumination setup cannot be
characterized by the sole angle of incidence, ζ , but requires
the specification of the light direction. In Fig. 2 the subgroups,
composed of three spheres of layer 1 (gray colored) and one
sphere of layer 2 (red colored) in the middle, form triangles
with upper side parallel to the x axis. This orientation, referred
to as ∇ type, will be employed hereafter.

To identify the deterministic transfer functions, a numer-
ical investigation was performed on 20 virtual FCC samples
corresponding to c3D values from ≈0.05 to ≈0.73. Four
illumination settings, with the angle of incidence of the light
in the intermediate range 20◦ < ζ < 40◦, were investigated
(Table I). In order to fully define the direction of the light
rays with respect to the ∇-type lattice orientation, the angle
of incidence, ζ , is decomposed into two angles: azimuth, α,
and tilt, τ . The azimuth, α, is defined as the angle between
the normal to the vertical transparent wall and the projection
on the horizontal xy plane of the light direction, while τ is
the vertical inclination of the light rays with respect to the
horizontal. The positive clockwise convention is considered,
i.e., α > 0 if the light comes from the first quadrant of the
xy plane and τ > 0 if the light rays are oriented from top
downwards with respect to the FCC sample. It can be easily
verified that ζ = arccos(cos α cos τ ).

For each virtual sample, the FCC lattice was generated in a
cube of side 15d , from which a smaller cube of side 7.5d was
cropped. This smaller cube, delimited by the planar surface
� (corresponding to the transparent wall) parallel to xz and
tangent to the first layer of spheres, was considered for the
estimation of c3D. The complete list of the virtual samples
is reported in Table II, together with λ = d/D, c3D,asympt

calculated by Eq. (5), and the near-wall volume fraction c3D,
estimated by considering the effective volume of the cube of
side 7.5d . For each virtual sample, the calculations of c2D

were carried out from different squared IWs of size 5d × 5d ,

TABLE II. List of the investigated FCC virtual samples.

ID λ = D/d c3D,asympt Near-wall c3D

S-virt-1 2.100 0.080 0.073
S-virt-2 1.963 0.098 0.100
S-virt-3 1.913 0.106 0.112
S-virt-4 1.863 0.115 0.122
S-virt-5 1.750 0.138 0.140
S-virt-6 1.606 0.179 0.184
S-virt-7 1.500 0.219 0.222
S-virt-8 1.431 0.253 0.251
S-virt-9 1.375 0.285 0.282
S-virt-10 1.306 0.332 0.336
S-virt-11 1.250 0.379 0.374
S-virt-12 1.219 0.409 0.407
S-virt-13 1.188 0.442 0.435
S-virt-14 1.163 0.471 0.470
S-virt-15 1.138 0.503 0.502
S-virt-16 1.106 0.547 0.542
S-virt-17 1.075 0.596 0.590
S-virt-18 1.038 0.663 0.646
S-virt-19 1.019 0.700 0.687
S-virt-20 1.000 0.740 0.727

obtained by shifting a 5d × 5d square by steps of 0.125d in
both x and z directions.

(degrees)

FIG. 3. (a) Relationships (c2D, c3D) for FCC deterministic lattices
(5d × 5d IWs). The averages of c2D are reported together with their
minimum and maximum values, obtained by shifting the IW in
a range ±1.25d along x and z directions. (b) Standard deviations
σc2D (c3D). Inset: averaged standard deviations, σc2D .
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(a) (b)

POS-1 (ζ=25°) POS-2 (ζ=30.4°)

POS-3 (ζ=33.2°) POS-4 (ζ=38.3°)

(c) (d)

FIG. 4. Binarized images of S-virt-7 (c3D = 0.222) under dif-
ferent illumination conditions. White pixels correspond to visible
and illuminated surface elements, concurring to c2D calculation. (a)
POS-1; (b) POS-2; (c) POS-3; (d) POS-4.

The transfer functions for the four illumination conditions
(cf. Table I) are reported in Fig. 3. For each c3D, the average
values of c2D are shown together with the range of variation
of c2D, i.e., the range between minimum and maximum values
[Fig. 3(a)]. Additionally, σc2D (c3D) are reported in Fig. 3(b),
while Fig. 3(c) shows the averages σc2D calculated over the
entire range of c3D. It can be noted that the deterministic
transfer functions significantly differ from the exponential
ones of type (1), valid for random spheres’ distributions
[Fig. 3(a)]. From Fig. 3(b), it emerges that σc2D generally
decreases with increasing c3D. Although some oscillations
occur due to the regular structure of the lattice, this trend is
analogous to that observed in random dispersions of spheres
[40]. For illustration, Fig. 4 reports the numerically binarized
images of the virtual sample S-virt-7.

C. Laboratory investigation on FCC samples

The details of the laboratory investigation on FCC lattices
are here reported. The experimental samples are built up
of plastic spheres with diameter d = 8 mm. Different from
the matte white POM beads, employed in Refs. [39–41],
the spheres of this campaign are characterized by a glossy
finish with some specular direct reflectance. Thus, the optical
properties of the employed granular material represented a
challenging test bench for the binarization algorithm. A small
cylindrical hole, passing from one side to the other of each
sphere, allowed that the spheres were held together by thin
barely visible nylon wires of thickness of 0.5 mm, so as to
form dispersed FCC lattices with various volume fractions
(λ � 1). The relative locations of the spheres were precisely

TABLE III. List of the experimental samples, made up of white
spheres arranged in dispersed FCC lattices.

ID Virtual sample D [mm] λ = D/d c3D,asympt Near-wall c3D

S-1 S-virt-5 14 1.750 0.138 0.140
S-2 S-virt-7 12 1.500 0.219 0.222
S-3 S-virt-9 11 1.375 0.285 0.282
S-4 S-virt-11 10 1.250 0.379 0.374
S-5 S-virt-13 9.5 1.188 0.442 0.435
S-6 S-virt-15 9.1 1.138 0.503 0.502
S-7 S-virt-17 8.6 1.075 0.596 0.590
S-8 S-virt-20 8.0 1.000 0.740 0.727

determined by using rigid templates. In the samples’ con-
struction we progressively increased the distances, D, between
the spheres’ centers, D = λd . Eight laboratory samples with
0.14 < c3D < 0.73 were prepared (Table III). These experi-
mental samples correspond to a subset of the virtual samples
of Table II. For convenience, the corresponding codes of the
virtual samples are also recalled in Table III.

Before each investigation, the sample was placed on a
horizontal plane behind a vertical 10-mm-thick Plexiglas wall,
so that the layers of the lattice were parallel to the xz plane
with ∇-type orientation (cf. Fig. 2). The first layer of spheres
was set tangential to the anterior transparent wall. The in-
strumentation is composed of a high-speed camera (Photron
Fastcam-1024PCI model 100 K, with resolution 1024 × 1024
pixels and 8-bit depth) and a no-flicker planar LED lamp
(model Photo-Sonics MultiLED-LT) with a luminous output
of ≈7700 lumens, allowing a camera shutter time of 15 μs. In
order to correctly apply the binarization algorithm, we had to
ensure that all the spheres in the pictures were in focus [39].
Specifically, we checked that the camera’s depth of field en-
compassed the first three layers of the lattice even in the most
disperse case, i.e., the sample S-1 with D = 1.75d = 14 mm.
Hence, by adjusting the lens aperture, the depth of field

FIG. 5. Picture of the sample S-4 (c3D = 0.374) taken under the
illumination condition POS-1.
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TABLE IV. Best-fitting binarizations for the lamp position POS-
1 (α = 25◦, τ = 0◦, ζ = 25.0◦).

DN p s RMSEc2D σc2D

0.2d 0.432 0.033 0.006
0.5d 0.485 0.028 0.006

1.0d 1.0d 0.636 0.024 0.006
1.5d 0.678 0.020 0.005
2.0d 0.693 0.022 0.005

0.2d 0.418 0.038 0.008
0.5d 0.469 0.034 0.007

1.5d 1.0d 0.624 0.025 0.009
1.5d 0.676 0.018 0.006
2.0d 0.696 0.021 0.006

0.2d 0.414 0.042 0.009
0.5d 0.467 0.037 0.008

2.0d 1.0d 0.621 0.026 0.010
1.5d 0.670 0.018 0.008
2.0d 0.694 0.021 0.007

was set slightly larger than d/2 + 2(
√

6×1.75d/3) ≈ 27 mm
and, then, was kept constant in the entire experimental cam-
paign. Two tripods, equipped with adjustable geared heads
(Manfrotto Junior 410), are used for precisely positioning the
camera and the lamp. Preliminary tests on a matte gray card
were carried out to estimate the camera’s γ -encoding function
[39]. The best-fitting value is found γ ≈ 1.0 for the entire
brightness range (≈30−200), observed in the photographs of
the present study. An example picture of the sample S-4 is
reported in Fig. 5.

The same four lamp positions, listed in Table I, were
also employed in the experimental campaign. With reference
to the chosen lamp positions, it should be noted that, in
our specific experimental setup, angles of incidence smaller
than 25° could not be used, due to interferences between
the tripods of the camera and of the LED lamp. The LED
lamp was carefully placed, so that its center had a distance

TABLE V. Best-fitting binarizations for the lamp position POS-2
(α = 30◦, τ = 5◦, ζ = 30.4◦).

DN p s RMSEc2D σc2D

0.2d 0.392 0.037 0.007
0.5d 0.440 0.034 0.007

1.0d 1.0d 0.600 0.032 0.007
1.5d 0.661 0.016 0.005
2.0d 0.675 0.020 0.005

0.2d 0.372 0.047 0.008
0.5d 0.420 0.044 0.007

1.5d 1.0d 0.585 0.035 0.009
1.5d 0.657 0.016 0.007
2.0d 0.676 0.020 0.006

0.2d 0.370 0.051 0.009
0.5d 0.417 0.048 0.008

2.0d 1.0d 0.579 0.037 0.011
1.5d 0.652 0.016 0.008
2.0d 0.675 0.021 0.007

TABLE VI. Best-fitting binarizations for the lamp position POS-
3 (α = 30◦, τ = 15◦, ζ = 33.2◦).

DN p s RMSEc2D σc2D

0.2d 0.328 0.042 0.010
0.5d 0.373 0.039 0.009

1.0d 1.0d 0.543 0.032 0.008
1.5d 0.625 0.020 0.007
2.0d 0.638 0.020 0.007

0.2d 0.306 0.054 0.010
0.5d 0.346 0.052 0.010

1.5d 1.0d 0.525 0.038 0.010
1.5d 0.617 0.017 0.009
2.0d 0.638 0.020 0.008

0.2d 0.306 0.060 0.011
0.5d 0.347 0.057 0.011

2.0d 1.0d 0.515 0.042 0.011
1.5d 0.610 0.016 0.010
2.0d 0.634 0.019 0.009

of 32 cm from the center of the ROI. Its position was veri-
fied by trigonometric methods with an accuracy of ≈1 mm.
Analogous to the numerical investigation, c2D was evaluated
on squared IWs of side 5d . In order to get a sufficiently large
number of c2D estimations, each sample was photographed 50
times, by shifting it with respect to the camera ROI thanks
to a system of gears. For each lamp position, each sample
was shifted vertically and horizontally by ≈20 mm = 2.5d
with displacement steps of ≈3 mm, so that the total span,
encompassed by the photographs, was ≈7.5d , analogous to
the numerical investigation of Sec. III B.

IV. RESULTS AND DISCUSSION

A. Best settings of the binarization algorithm

The modified binarization algorithm, composed of Eqs. (2)
and (3), is employed with different settings. Specifically, we

TABLE VII. Best-fitting binarizations for the lamp position
POS-4 (α = 30◦, τ = 25◦, ζ = 38.3◦).

DN p s RMSEc2D σc2D

0.2d 0.372 0.037 0.011
0.5d 0.424 0.038 0.010

1.0d 1.0d 0.616 0.030 0.009
1.5d 0.666 0.061 0.008
2.0d 0.690 0.057 0.008

0.2d 0.355 0.025 0.011
0.5d 0.406 0.024 0.011

1.5d 1.0d 0.599 0.024 0.010
1.5d 0.662 0.058 0.009
2.0d 0.690 0.056 0.009

0.2d 0.355 0.026 0.012
0.5d 0.406 0.024 0.012

2.0d 1.0d 0.593 0.024 0.011
1.5d 0.654 0.057 0.010
2.0d 0.685 0.054 0.009
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(degrees)

FIG. 6. Comparisons between experimental and theoretical val-
ues of σc2D for various angles of incidence of light, ζ .

varied the span of the pixel neighborhood, DN , and the size
of the MAF, p. The following values of DN are investigated:
1.0d , 1.5d , 2.0d . Preliminary investigations revealed that a
neighborhood smaller than 1d causes large inaccuracies in
the binarization task. Additionally, five sizes of the MAF are
investigated: 0.2d , 0.5d , 1.0d , 1.5d , 2.0d . For each combina-
tion of DN , p, and light direction, the best-fitting threshold s in
Eq. (2) was found by minimizing the root-mean-square error
(RMSE) between the averaged experimental estimations of

c2D, c2D,exp, obtained from different photographs of the eight
samples, and the corresponding averaged values, c2D,num,
obtained numerically [cf. Fig. 3(a)]

RMSEc2D =
√∑8

i=1 (c2D,exp − c2D,num )2

8
. (6)

As we are interested in evaluating the accuracy of the
binarization algorithm, different from Ref. [39], here we
used the RMSE on c2D (RMSEc2D) as optimization criterion,
instead of the RMSE on c3D, which conversely is defined by
replacing c2D with c3D in Eq. (6). Clearly, the advantage of
using the RMSE on c2D is that it allows to evaluate the isolated
performance of the image binarization algorithm before the
application of the transfer function. The best-fitting binariza-
tions, corresponding to lamp positions POS-1, POS-2, POS-3,
and POS-4, are reported in Tables IV –VII, respectively. For
each investigated DN the best setting for p is reported in bold.

It can be noted that, while the best-fitting value of s is
less insensitive to the choice of DN , it increases with p.
Indeed, as follows from Eq. (2), s varies with the maximum
brightness, which in turn depends on the size of the MAF.
By comparing the same binarization settings for various light
directions, slightly different values of s were observed, unlike
the previous investigations on POM beads [39], where an
almost constant s was found for a comparable range of ζ .
This behavior is due to the fact that the spheres of the present

(a) (b)

(c) (d)

FIG. 7. Comparison between the experimental data (c2D, c3D), obtained by image binarization (DN = 1.5d , p = 1.0d), and the correspond-
ing numerical data: (a) POS-1; (b) POS-2; (c) POS-3; (d) POS-4.
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(a) (b)

(c) (d)

FIG. 8. Comparison between the experimental data (c2D, c3D), obtained by image binarization (DN = 1.5d , p = 1.5d), and the correspond-
ing numerical data: (a) POS-1; (b) POS-2; (c) POS-3; (d) POS-4.

investigation exhibit some direct reflectance, which variously
influences the optical response of the system at different ζ .

Conversely, by comparing the binarization tests for differ-
ent values of DN , we observed very small differences among
the binarized images and the resulting RMSE. Nonetheless,
from Tables IV–VII it emerges that slightly better results
are obtained with DN = 1.5d and DN = 2.0d . This finding
is in agreement with the previous investigations on random
granular dispersions [39,40] and confirms that also in the
case of FCC lattices the pixel neighborhood, N, has to be
sufficiently large to encompass illuminated and nonillumi-
nated surface elements. Focusing on the choice of the MAF,
the best overall results are obtained by using p ≈ 1.5d , with
the exception of POS-4, for which p ≈ 1.0d is found to be
optimal. Conversely, p < 1.0d yields systematically worse
results, probably due to the high glare of the spheres (cf.
Fig. 5).

In Tables IV–VII it can be also noted that the averaged
standard deviation of c2D, σc2D , slightly increases with DN ,
while it decreases with p. Moreover, considering the same
binarization settings, it is comforting to notice that the ex-
perimental σc2D typically increases with ζ , analogous to that
already observed numerically [cf. Fig. 3(c)]. Nevertheless, the
experimental values of σc2D are slightly larger than the theoret-
ical ones, owing to some additional variance introduced by the
binarization code. To better illustrate it, comparisons between
the experimental and theoretical values of σc2D are reported
in Fig. 6, where the overall best agreement is obtained with

DN = 1.5d and p = 1.5d . These findings clearly indicate
that a relatively large MAF (≈1d−1.5d) not only can be
safely used in SOM applications but it is also beneficial for
improving the accuracy of the binarization task, both in terms
of RMSE and of σc2D . Finally, from Fig. 6 it is interesting to
observe that the discrepancy between experimental and the-
oretical σc2D increases with decreasing ζ (with its maximum
at ζ = 25◦). This extra variance could be explained by the
fact that, as it will be discussed in more detail in Sec. IV B,
the binarization algorithm occasionally struggles to correctly
identify illuminated surface elements of the second and third
layers of the lattice, while the relative contribution of these
layers to the overall c2D estimation increases with higher
penetration depth of the light, corresponding to smaller ζ (cf.
Fig. 4).

With reference to the best settings (DN = 1.5d , p = 1.0d
and p = 1.5d), in Figs. 7 and 8 we report the experimen-
tal data (c2D, c3D), in comparison with the theoretical ones,
numerically obtained (cf. Sec. III B). Beside the averaged
values of c2D (avg) also the standard deviations bands (std)
are reported in the same plots. Fig. 7 shows that the set-
ting with p = 1.0d yields optimal results for POS-4. Yet,
some underestimations (for S-1, S-2 and S-3) and over-
estimations (for the other samples with larger c3D) occur
for light positions POS-1, POS-2, and POS-3. Conversely,
the setting with p = 1.5d (Fig. 8) delivers excellent results
for all light positions except POS-4, where c2D overesti-
mations occur for the three most dispersed samples (S-1,
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Binarized imagesGray-scale imageRef. binarization

Exp. sample S-2S-virt-7 (c3D=0.222) MAF filter p=0.5d MAF filter p=1.0d MAF filter p=1.5d

MAF filter p=0.5d MAF filter p=1.0d MAF filter p=1.5d

MAF filter p=0.5d MAF filter p=1.0d MAF filter p=1.5d

S-virt-13 (c3D=0.435) Exp. sample S-5

S-virt-17 (c3D=0.727) Exp. sample S-8

FIG. 9. POS-1: comparisons among binarized images (IW 5d × 5d), obtained with DN = 1.5d and different values of the MAF (p = 0.5d ,
1.0d , 1.5d), and the binary images, obtained numerically.

S-2) and c2D is noticeably underestimated for the densest
sample S-8.

As regards the experimental σc2D (c3D) reported in Figs. 7
and 8, it is interesting to note that these standard deviations are
of the same order of the theoretical ones. Yet, analogous to the
σc2D values already discussed (cf. Fig. 6), they are occasionally
larger than the latter ones, due to some additional variance by
the binarization algorithm.

B. Comparisons of the binarized images

Finally, we report the direct comparisons between the
experimental binarized images and the corresponding binary
images, obtained numerically. For conciseness, we chose to
show the two extreme illumination conditions (POS-1 and
POS-4) in Figs. 9 and 10, respectively, and three represen-
tative samples (S-2, S-5, and S-8). The other samples, as well
as the two intermediate illumination conditions, are found to
exhibit similar behaviors of those reported in Figs. 9 and 10.
For comparison, the binary images, numerically obtained on
virtual samples with the same c3D (i.e., S-virt-7, S-virt-13, S-
virt-17), are also shown in the same figures. The binarization
settings, used here, are DN = 1.5d and p = 0.5d , 1.0d , 1.5d .

A generally good agreement was observed for all illu-
mination conditions. Yet, a careful inspection of the images
of sample S-2 (Figs. 9 and 10) reveals that the binarization
algorithm struggles to correctly identify the illuminated sur-
face elements belonging to the second and third layers of the
lattice. Indeed, the pattern of the theoretical binary image is
not completely clear in the experimental binarized images,
especially in the case of p = 0.5d . This problem is mitigated
by a larger MAF (cf. Figs. 7 and 8). This issue is mainly due
to the fact that, for very dispersed FCC samples (c3D < 0.3),
there are several surface elements, concurrently visible and
illuminated, which are close to each other in the imaging
plane but are located at different distances from the wall.
This causes strong brightness variations that the binarization
code struggles to handle. As regards the other two samples
(S-5 and S-8), reported in Figs. 9 and 10 and corresponding
to higher c3D, the algorithm is found capable of correctly
capturing the c2D patterns. Finally, it is worth mentioning
that, for the extreme condition (POS-4) and sample S-8, some
overestimation of the shadows in the first layer spheres was
typically observed regardless of the size of the MAF [cf.
also Figs. 7(d)–8(d)]. This behavior is clearly due to the
high glare of the foreground spheres, which, combined with
the extreme light position (ζ = 38.3◦) renders the use of a
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Binarized imagesGray-scale imageRef. binarization

Exp. sample S-2S-virt-7 (c3D=0.222)

S-virt-13 (c3D=0.435) Exp. sample S-5

S-virt-17 (c3D=0.727) Exp. sample S-8

MAF filter p=0.5d MAF filter p=1.0d MAF filter p=1.5d

MAF filter p=0.5d MAF filter p=1.0d MAF filter p=1.5d

MAF filter p=0.5d MAF filter p=1.0d MAF filter p=1.5d

FIG. 10. POS-4: comparisons among binarized images (IW 5d × 5d), obtained with DN = 1.5d and different values of the MAF (p =
0.5d , 1.0d , 1.5d), and the binary images, obtained numerically.

constant threshold s in Eq. (2) insufficient to provide totally
consistent binarization results in the whole investigated c3D

interval.
From these comparisons it is confirmed that reasonably

good results are obtainable by using the proposed binarization
algorithm with DN = 1.5d and a MAF with p ≈ 1d−1.5d .
Additionally, it can be remarked that a generally better agree-
ment can be easily achieved by choosing relatively small
angles of incidence of the light (ζ < 35°), which is especially
advisable for the further applications of the SOM method in
the presence of direct reflectance of the grains.

V. CONCLUSIONS

This numerical-experimental work focused on the SOM
method, proposed by Sarno et al. [39] for the measure-
ment of the solid volume fraction in granular media. The
method indirectly estimates the near-wall volume fraction,
c3D, by means of a correlated quantity, c2D, which is ac-
cessible through a suitable image binarization. With the aim
of specifically testing the accuracy of the local binarization
algorithm, implemented in the SOM, FCC regular lattices
of monodisperse spheres were numerically and experimen-

tally investigated. The choice of this setup was motivated
by the advantages over random distributions of grains. In-
deed, in this case the relationship between c2D and c3D

is deterministic. Hence, since all other uncertainties of the
SOM method are removed, it was possible to isolate the
binarization stage. Moreover, with this setup the binarized
images could be directly compared with the numerical ones,
so as to better assess the reliability of the binarization
algorithm.

Various settings were tested over different light conditions,
where, considering the guidelines by Sarno et al. [39], an in-
termediate range for the angle of incidence of the light, 20◦ <

ζ < 40◦, was investigated. The size of the pixel neighborhood,
DN , was varied between 1.0d and 2.0d , and the MAF, p,
proposed for damping out glares, was varied between 0.2d
and 2.0d . The comparisons of the experimental data (c2D,
c3D) with the numerical ones showed that the best agreement
is achieved by using DN ≈ 1.5−2.0d . Moreover, the best
size of the MAF was p ≈ 1.5d , except for the extreme lamp
position POS-4 (ζ = 38.3◦), where p = 1d delivered a better
agreement. The comparisons of the experimental standard
deviations on c2D with the theoretical values, suggest that
some artificial variance, weakly increasing with decreasing ζ ,
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is introduced by the binarization code. This loss of precision
slightly increases with DN , which led to marginally prefer
DN ≈ 1.5d over DN ≈ 2.0d . Interestingly, a suitably large
MAF is effective to reduce these discrepancies on the c2D

standard deviations.
The direct comparisons of the experimental binarized im-

ages with the theoretical ones showed that the proposed bina-
rization algorithm generally captures the theoretical patterns
and yields sound results for c3D > 0.3. It confirms that the
method is suitable for the investigation of dense granular
systems and granular flows in the dense regime. Nevertheless,
some binarization errors arise for the case of highly dispersed
FCC samples (c3D < 0.3), which indicates that the applicabil-
ity of the proposed binarization strategy to gas-like granular
systems still remains a challenging problem. In particular, the
code sometimes fails to correctly identify illuminated surface

elements from different layers of the lattice, due to noticeable
brightness variations. This problem is partially mitigated by
an opportune choice of the MAF size.

Overall, this work proves the general suitability of the
proposed binarization algorithm with a RMSE on c2D

always smaller than 0.03. On the other hand, it highlights
the importance of opportunely choosing the binarization
parameters. The development of more sophisticated
automatic-vision binarization algorithms may further increase
the accuracy, achievable by the SOM method.
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