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Size-polydisperse dust in molecular gas: Energy equipartition versus nonequipartition
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We investigate numerically and analytically size-polydisperse granular mixtures immersed into a molecular
gas. We show that the equipartition of granular temperatures of particles of different sizes is established; however,
the granular temperatures significantly differ from the temperature of the molecular gas. This result is surprising
since, generally, the energy equipartition is strongly violated in driven granular mixtures. Qualitatively, the
obtained results do not depend on the collision model, being valid for a constant restitution coefficient ε, as
well as for the ε for viscoelastic particles. Our findings may be important for astrophysical applications, such as
protoplanetary disks, interstellar dust clouds, and comets.
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I. INTRODUCTION

What is common between very different objects, such as
interstellar dust, protoplanetary discs [1–3], comets [4], and
dust devils on Mars [5], Earth [6], and possibly other planets?
All these systems are made up of size and mass polydisperse
dust particles immersed in molecular gas. Interstellar molec-
ular clouds possess high-density regions, so-called clumps.
The density of matter there is large enough to trigger a
gravitational collapse, which eventually leads to the formation
of stars. In the present study, we assume that the density of
matter is below this threshold. Moreover, we assume that the
granular gas is rarefied, so that the surrounding molecular gas
may be treated as a thermostat which is not affected by the
granular gas.

The dust particles addressed here are macroscopic, but
small enough grains, so that the gravitational interactions be-
tween the grains may be neglected. Hence, we have a granular
mixture, driven by the molecular gas. Usually, in granular
mixtures, the energy equipartition between particles of dif-
ferent sizes is violated. This has been predicted theoretically
[7–11] and confirmed in experiments [12,13] and computer
simulations [11,14,15]. The same is true for such natural
systems as Saturn’s rings, which are essentially granular gas
mixtures of particles with a size ranging from 10−3 to 1 m
[16,17]. The size polydispersity of the rings’ particles stems
from the permanent aggregation and fragmentation of the
constituents, which keeps the steady-state size distribution
[17,18]. The energy equipartition for the rings’ particles does
not hold as shown theoretically [19,20] and in computer
experiments [21].

Let a granular mixture contain N different sorts of par-
ticles, of mass mk and diameter σk with k = 1, . . . , N . We
assume that the particles are uniform spheres with the mass
density of the material ρ, then mk = πσ 3

k ρ/6. Without the
loss of generality we assume that all masses are multiples of
some minimal mass m1, that is, mk = km1. Let the number

density of particles of mass mk be equal to nk . We consider a
space uniform system, so that the particles of mass mk may be
characterized by the velocity distribution function f (vk, t ). It
quantifies the number of such particles with velocity vk at time
t in a unit volume. The number density may be expressed in
terms of the distribution function as nk = ∫ dvk f (vk, t ). The
average energy of particles of mass mk is characterized by the
corresponding granular temperature, Tk , defined as [7,10]

3

2
nkTk =

∫
dvk f (vk )

mkv
2
k

2
. (1)

If all interparticle collisions were elastic, the energy equipar-
tition between all sorts of the particles would hold. The
violation of equipartition stems from the dissipative nature of
interparticle collisions, which are quantified by the restitution
coefficient ε [7],

ε =
∣∣∣∣∣
(
v ′

ki · e
)

(vki · e)

∣∣∣∣∣, (2)

where v ′
ki = v ′

k − v ′
i and vki = vk − vi are the relative veloc-

ities of two particles after and before a collision, correspond-
ingly, and e is a unit vector connecting their centers at the
collision instant. We do not consider very soft particles where
the definition of the restitution coefficient is more subtle [22].
The postcollision velocities are related to the precollision
velocities vk and vi as follows [7]:

v ′
k/i = vk/i + meff

mk/i
(1 + ε)(vki · e)e. (3)

Here meff = mkmi/(mk + mi ) is the effective mass of the col-
liding particles. To date, most studies of granular gases have
been focused on the case of a constant restitution coefficient
[23–31]. This assumption contradicts, however, experimen-
tal observations [32–34], along with basic mechanical laws
[35,36], which indicate that ε does depend on the impact
velocity [34,35,37–39]. This dependence may be obtained by
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solving the equations of motion for colliding particles with
the explicit account for the dissipative forces acting between
the grains. The simplest first-principle model of inelastic col-
lisions assumes viscoelastic properties of particles’ material,
which results in viscoelastic interparticle force [37] and finally
in the restitution coefficient [35,39,40]:

εki = 1 +
20∑
j=1

h j
(
Aκ

2/5
ki

) j/2|(vki · e)| j/10. (4)

Here hk are numerical coefficients [40]. The elastic constant

κki = κ√
2

k + i

k5/6i5/6
√

k1/3 + i1/3
, (5)

where

κ =
(

3

2

)3/2 Y

1 − ν2

(
6

πρm2
1

) 1
3

(6)

is a function of the Young’s modulus Y and Poisson ratio ν; the
constant A quantifies the viscous properties of the particles’
material [41,42]:

A = 1

Y

(1 + ν)

(1 − ν)

[
4

3
η1(1 − ν + ν2) + η2(1 − 2ν)2

]
, (7)

where η1 and η2 are the viscosity coefficients.
Recently we have shown that the distribution of granular

temperatures in polydisperse mixtures of granular particles
follows the power law Tk = T1kα , if the size distribution in
a mixture is steep enough [43]. The exponent α is universal
for all steep size distributions for force-free granular mix-
tures. For driven granular mixtures, α strongly depends on
the agitation mode, in particular on the dependence of the
driving force on the particle size. In the current study, we
investigate the distribution of temperatures in a mixture of
granular particles immersed into a molecular gas. We assume
that the particles are very small, similar to, but smaller than,
the dust particles in sand devils, tornados on Earth, interstellar
dust, comets, and protoplanetary disks. In this case, the pres-
ence of a molecular gas becomes important. Moreover, we
assume that the action of the molecular gas on the granular
mixture keeps it in a steady state.

The adhesion contact forces play an important role for
small particles, and they can aggregate at collisions, forming
clusters. When such clusters collide at high impact speeds
they can break into smaller pieces. If a steady state may be
supported, these two processes are balanced resulting in a
steady distribution of aggregates size [17]. In the present study
we limit ourselves to the range of parameters where aggrega-
tive (and respectively disruptive) collisions may be neglected.
The analysis of the conditions when the dust particles undergo
only bouncing collisions is given below.

We analyze both models of the restitution coefficient: the
simplified model of a constant ε, as well as the realistic,
first-principle model of visco-elastic particles. In each case,
we obtain qualitatively the same and somewhat unexpected
result: the energy equipartition for the different granular
species, along with the strong violation of the equipartition
between the granular mixture and molecular gas. It looks
surprising since, generally, a strong violation of the energy
equipartition in a driven granular mixture is expected [43].

Our theoretical predictions have been checked by numerical
simulations. Namely, we performed direct simulation Monte
Carlo (DSMC) and confirmed the analytical findings. Inter-
estingly, our conclusion supports a conjecture of the energy
equipartition in a granular mixture, immersed in molecular
gas, proposed in Ref. [44]. The rest of the study is organized
as follows. In the next section, Sec. II, we specify the model
and derive the granular temperatures for all species, which is
done for both models of the restitution coefficient. In Sec. III
we discuss the details of the numerical simulations and com-
pare the numerical and analytical results. Finally, in Sec. IV
we discuss the application of our theory and summarize our
findings.

II. TEMPERATURE DISTRIBUTION IN
A GRANULAR MIXTURE

We consider a granular mixture, comprising N species of
mass mk = k m1 immersed in a molecular gas with tempera-
ture Tg and molecular mass mg (see Fig. 1). Although being
small, the dust particles are still much heavier than the gas
molecules, that is, mg � m1. The collisions between the gran-
ular particles and gas molecules are elastic. Since the velocity
distribution functions are close to Maxwellian distributions
[7], we assume for simplicity that fk (vk, t ) are Maxwellian:

fk (v) = nk

π3/2
exp

(
− v2

k

v2
0,k

)
, (8)

where v0,k = (2Tk/mk )1/2 is the thermal velocity of particles
of mass mk . The distribution functions evolve according to the
Boltzmann equation [7]

∂

∂t
fk (vk, t ) = Icoll

k + Im.g.

k . (9)

In Eq. (9) Icoll
k is the Boltzmann collision integral [7]

Icoll
k =

N∑
i=1

σ 2
ki

∫
dvi

∫
de �(−vki · e )|vki · e |

× [χ fk (v ′′
k , t ) fi(v ′′

i , t ) − fk (vk, t ) fi(vi, t )], (10)

FIG. 1. The granular particles of different masses mk (depicted
with yellow circles) are immersed into a molecular gas composed of
molecules of mass mg � mk (shown as small blue circles).
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where σki = (σk + σi )/2, with σk = [6mk/(πρ)]1/3. The sum-
mation is performed over all species in the system. v ′′

k and
v ′′

i are precollision velocities in the so-called inverse colli-
sion, resulting in the postcollision velocities vk and vi. The
Heaviside step function �(−vki · e) selects the approaching
particles, and the factor χ equals the product of the Jacobian
of the transformation (v ′′

k , v ′′
i ) → (vk, vi ) and the ratio of

the lengths of the collision cylinders of the inverse and the
direct collisions [7]. In the case of a constant restitution
coefficient χ = 1/ε2. For viscoelastic particles it has a more
complicated form [7]; in what follows we do not need its
explicit expression.

The second term Im.g.

k describes the driving of the sys-
tem due to collisions with the surrounding molecular gas. It
quantifies the energy injection into the granular mixture to
compensate for its losses in dissipative collisions. Since the
mass ratio of the gas and grain particles mg/mk is very small,
the collision integral may be written using the Kramers-Moyal
expansion [7]

Im.g.

k = ∂

∂vk

(
γkvk + γ̄k

∂

∂vk

)
fk (vk, t ). (11)

We investigate the evolution of granular temperatures,
defined by Eq. (1). Multiplying the Boltzmann equation (9)
by mkv

2
k /2 for k = 1, . . . , N and performing integration over

vk , we get the following system of equations for evolution of
the granular temperatures Tk of species of different masses mk:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d
dt T1 = −T1

∑N
i=1 ξ1i + 2γ1(Tg − T1)

. . .
d
dt Tk = −Tk

∑N
i=1 ξki + 2γk (Tg − Tk )

. . .
d
dt TN = −TN

∑N
i=1 ξNi + 2γN (Tg − TN )

. (12)

Here γk = γ0k
√

Tg, γ0k = 4
3 ngσ

2
k

√
2πmg/mk , and γ̄k =

γkTg/mk [7,44]. The cooling rates ξki describe the decrease of
temperature of the species of mass mk due to collisions with
the species of mass mi. For the case of a constant restitution
coefficient these quantities read [43]

ξki(t ) = 8

3

√
2πniσ

2
ki

(
Tkmi + Timk

mimk

)1/2

(1 + ε)

×
(

mi

mi + mk

)[
1 − 1

2
(1 + ε)

Timk + Tkmi

Tk (mi + mk )

]
. (13)

We assume that the restitution coefficient ε is the same for the
collisions of particles of all sizes. In the case of viscoelastic
particles the cooling rates have the form [45]

ξki(t ) = 16

3

√
2πniσ

2
ki

(
Tkmi + Timk

mimk

)1/2( mi

mi + mk

)

×
{

1 − Tkmi + Timk

Tk (mi + mk )

+
20∑

n=2

Bn

[
hn − 1

2

Tkmi + Timk

Tk (mi + mk )
An

]}
, (14)

where An = 4hn +∑ j+k=n h jhk are pure numbers and

Bn(t )=(Aκ
2/5
ki

) n
2

(
2Tk

mk
+ 2Ti

mi

) n
20
[

(20 + n)n

800

]
�
( n

20

)
(15)

with �(x) being the � function. Driven granular systems
rapidly settle into a nonequilibrium steady state and all gran-
ular temperatures attain, after some time constant values, so
that dTk/dt = 0. The system of equations (12) turns then into
a set of algebraic equations,

Tk

N∑
i=1

ξki = 2γk (Tg − Tk ). (16)

Let us assume that the size distribution of the dust parti-
cles is steep enough and the number density of the granular
mixture scales according to the power law, nk = n1k−θ , with
θ > 2. Let the distribution of granular temperatures also scale
according to the power law: Tk = T1kα . Then the following
approximate relation holds [43]:

N∑
i=1

ξki ∼
{

k
α
2 − 5

6
∫ N

1 inidi if α � 1

k− 1
3
∫ N

1 i
α+1

2 nidi if 0 < α < 1
. (17)

Substituting Eq. (17) into Eq. (16) and taking into account that
γk = γ1k−1/3, we conclude that the system (17) is compatible
only for α = 0. This immediately implies the equality of the
granular temperatures, Tk = T1, that is, the energy equiparti-
tion, and justification of the conjecture of Ref. [44].

We present the sum over the cooling rates in the form

N∑
i=1

ξki = √
T1ξ0k, (18)

where for a constant restitution coefficient:

ξ0k =
N∑

i=1

8

3

√
2πniσ

2
ki(1 + ε)

√
mi

mk (mi + mk )

×
[

1 − 1

2
(1 + ε)

]
(19)

and for viscoelastic particles:

ξ0k =
N∑

i=1

16

3

√
2πniσ

2
ki

√
mi

mk (mi + mk )

×
20∑

n=2

Bn

⎛
⎝1

2

∑
j+k=n

h jhk − hn

⎞
⎠, (20)

where the coefficients Bn(t ) given by Eq. (15) now take the
form

Bn(t )= (Aκ
2/5
ki

) n
2 (2T1)

n
20

(
mi + mk

mimk

) n
20

×
[

(20 + n)n

800

]
�
( n

20

)
.

The granular temperature of the smallest particles
(monomers) T1 can be found from the equation

T1
√

T1 + b
√

TgT1 − b
√

TgTg = 0, (21)
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where we introduce the notation, b = 2γ01/ξ01. The quantity
b is a function of T1 for granular particles, colliding with
velocity-dependent restitution coefficient, b = b(T1), so that
Eq. (21) is a transcendental equation. However, for the case
of a constant restitution coefficient b is constant. Introducing
x = √T1/Tg, we recast Eq. (21) in a cubic equation:

x3 + bx2 − b = 0, (22)

with the solution in the form

x = 1

3

(
−b + zb2 + 1

z

)
, (23)

where z = 21/3(27b − 2b3 + 3
√

3
√

27b2 − 4b4)
−1/3

. This
yields the explicit expression for temperatures of granular
particles, colliding with constant restitution coefficient, in
terms of the molecular gas temperature Tg:

Tk = T1 = B Tg,

B = 1

9

(
−b + zb2 + 1

z

)2

. (24)

It may be shown that Tk = T1 is always smaller than Tg, which
also follows from the physical nature of these quantities.

For viscoelastic granular mixture Tk = T1 may be found
from the numerical solution of Eq. (21), where the dependence
of b on T1 is to be taken into account. In both cases of
constant ε, as well as for ε for viscoelastic particles, the
energy equipartition for all granular species is observed. At
the same time, the granular temperature significantly differs
from the temperature of the molecular gas, Tk > Tg. Physically
this implies a steady energy flux from the molecular gas
to the granular mixture, which permanently loses energy in
dissipative collisions.

III. COMPUTER SIMULATION AND
SIMULATION RESULTS

To check the prediction of our theory, we perform direct
simulation Monte Carlo (DSMC), modified for the applica-
tion to multispecies systems. The detailed description of the
DSMC may be found elsewhere; see, e.g., Ref. [46]. Here
we briefly sketch some detail of the simulation method, with
the focus on the implementation of the thermostat; see also
Refs. [47,48].

We used N1 = 3 × 108 particles of minimal mass
m1 (monomers), so that there were Nk = �N1/k3� =
�3 × 108/k3� particles of mass mk (k-mers). Initially, the
speeds of the particles are generated according to Maxwell
distribution for T = 1. Therefore, each particle i is associated
with its own mass mi and speed vi. Then the speeds change
during the collisions and interaction with the molecular gas.
The temperatures (determined by particles’ kinetic energies)
are measured after the system reaches a steady state. Numer-
ically it can be determined by the time when the calculated
temperatures stop changing monotonously.

The simulation of collisions between granular particles has
been performed according to the following scheme:

(1) Choose the sizes of colliding particles i and k.

(2) Choose the particles with speeds vi and vk with the
probability, proportional to |(vi − vk ) · e|, where e is the col-
lision direction (a random unit vector).

(3) Update the speeds of the colliding particles according
to the collision rules.

While the particles’ collisions are calculated one by one,
interaction with molecular gas is performed simultaneously
for all particles. We will describe it later in this section. For
now, let us briefly go through each step.

1. The sizes of the colliding particles can be determined
with the help of the upper bounds on the collision rates Cik

Cik = constNiNkσik (|vi|max + |vk|max),

where σik = ( σi+σk
2 )

2 ∼ (i1/3 + k1/3)2 is the collision cross
section. Sizes i and k are selected with probability

pik = Cik/

M∑
i,k=1

Cik,

where M is the maximum particle mass in the system.
2. After the sizes are determined, two particles j and l ,

corresponding to masses i and k, are selected at random. Let
us denote their speeds by v

j
i and vl

k . Then the collision is
accepted if∣∣e(v j

i − vl
k

)∣∣ > rand[0, 1)(|vi|max + |vk|max),

where e is a random unit vector. Otherwise nothing happens
and we choose the sizes again.

3. In case the collision is accepted, postcollision velocities
are calculated, like in Eq. (3), with the appropriately defined
restitution coefficient.

The action of the molecular gas is described by the term
Im.g.

k of the Boltzmann equation (9). Obviously, this term plays
the role of a thermostat. In the lack of collisions between dust
particles, the equation for the distribution function reads

∂ f (vk, t)

∂t
= Im.g.

k . (25)

This equation, with Im.g.

k given by Eq. (11) is a Fokker-Planck
equation, which corresponds to the Langevin equation (see,
e.g., Ref. [7]):

dvk

dt
= −γkvk + Fst

k , (26)

〈Fst
k 〉 = 0,

〈
Fst

k (t )Fst
k (t ′)

〉 = 2
3 Îγ̄kδ(t − t ′), (27)

where Î is the unit matrix and a direct (dyadic) product is
implied in the second part of Eq. (27). The solution of the
stochastic Langevin equation may be written as

vk (t + �t ) = vk (t )e−γk�t + ξe ·
√

3
Tg

mk
(1 − e−2γk�t ),

ξ ∼ N (0, 1), (28)

where N (0, 1) denotes the normal distribution with zero mean
and unit variance.

Numerically the thermostat is implemented by changing
the speeds according to Eq. (28). Value of ξ and random
direction e are calculated independently for each particle of
size k. The chosen time interval �t corresponds to the time
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FIG. 2. Granular temperatures Tk of granular particles of mass mk immersed into a molecular gas of temperature Tg. The granular particles
collide with (a) constant restitution coefficient and (b) viscoelastic restitution coefficient. The parameter values are σ1 = 1, m1 = 1 γ01 =
T −3/2

g /2, nk = n1k−θ with n1 = 1 and θ = 3. Colored solid lines show simulation results, dashed black lines the analytical results for T1

[Eq. (24)] for ε = const and numerical solution of Eq. (21) for viscoelastic particles. One can clearly see that the temperature distribution
in a granular mixture for both cases is close to the equipartition, Tk � T1. There is no energy equipartition between the granular mixture and
molecular gas, Tk < Tg, since a permanent energy flux from the gas to the mixture supports the steady state.

of Nh collisions, where N is the total number of particles.
h = 0.1 is a parameter, which should be sufficiently small,
to guarantee that each particle experiences several times the
action of the thermostat between collisions with other granular
particles.

The distribution of granular temperatures Tk , obtained
by DSMC for different values of temperature of a molec-
ular gas Tg and restitution coefficient ε is given in Fig. 2.
Figure 2(a) corresponds to a constant restitution coefficient,
and in Fig. 2(b) the distribution of granular temperatures in
a mixture of viscoelastic particles is shown for the steep size
distribution nk ∼ k−θ with θ > 2. The granular temperatures
rapidly tend to a steady-state value, where the equipartition
in a granular mixture is practically established: Tk ≈ T1 for
any k. The temperatures of the granular particles Tk differ,
however, from the temperature of the molecular gas, Tk <

Tg, as is predicted by the theory and expected from simple
“physical” arguments of the heat flux from the molecular gas
to the granular mixture. The smaller the value of the restitution
coefficient, the larger the difference between temperatures of
the gas and the mixture. For ε = 1 both temperatures become
equal and full equipartition is established: Tk = Tg. Strictly
speaking, the “true” equipartition should follow for k 
 1,
as Eq. (17) is valid in this case. In practice, it is observed
already for k > 10. For other size distributions, e.g., for a
flat distribution, nk = n1�(kmax − k), the DSMC also shows
constant distribution of temperature, Tk ≈ T1 (see Fig. 3).

IV. RESULTS AND DISCUSSION

We investigate numerically and theoretically a size-
polydisperse granular gas mixture immersed into a molecular
gas. We assume that the molecular gas with temperature Tg

is not affected by the granular gas and plays the role of
a thermostat. The mixture comprisesN different species of
masses mk (k = 1, . . . , N). We consider two models of dis-
sipative collisions: a simplified model of a constant restitution
coefficient, ε = const and a realistic model of viscoelastic

particles, where the restitution coefficient depends on the
relative velocities of colliding particles and their masses and
sizes. For both models, we observe qualitatively similar be-
havior:the granular mixture rapidly relaxes to a steady state
where granular temperatures of all species become equal,
Tk = T1 for all k = 1, . . . , N , that is, the energy equipartition
is observed. At the same time, the granular temperatures are
not equal to the temperature of the molecular gas, Tk < Tg.
This may be explained by the permanent energy flux from
the molecular gas to the granular mixture in the steady state,
which compensates the energy losses in dissipative collisions
of the grains.

This effect resembles in some respects the experiments of
2D granular gas on a vertically vibrating substrate [49,50].
Here the difference between the “vertical” temperature Tv and
horizontal temperature Th is observed, Tv > Tg. The energy
is injected into the vertical motion (analogy of the molecular
gas) and is converted, though collisions, into the lateral motion
(analogy of the dust motion in our system). Since the energy

FIG. 3. The temperature distribution for the granular mixture
with flat size distribution, nk = n1�(kmax − k), immersed into a
molecular gas of temperature Tg.
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of the lateral motion is dissipated more intensively that the
energy of the vertical motion, which is also pumped by the
vibrations, the energy equipartition breaks, that is, Tv > Tg.

In our study we neglect the processes of collisional ag-
gregation and fragmentation, assuming that only bouncing
collisions take place. Let us estimate the range of parameters,
where the conditions of purely bouncing collisions are ful-
filled. We assume that sticking collisions occur due to the ad-
hesive interactions of the dust particles at a contact. The criti-
cal velocity, demarcating bouncing and sticking collisions, has
been reported in a number of studies; see, e.g., Refs. [18,51–
53]. It is defined by the work against the adhesive forces Wad,
for which we use the explicit expression of Ref. [51]:

Wad = q0
(
π5χ5R4

effD
2
)1/3

, (29)

where q0 = 0.09 is a pure number, χ is the surface tension,
Reff = R1R2/(R1 + R2), and D = (3/2)(1 − ν2)/Y (as previ-
ously, ν and Y are the Poisson ratio and the Young modulus,
respectively). The condition of bouncing collisions reads

T1 = B kBTg > Wad, (30)

where kB is the Boltzmann constant (the temperature of the gas
is in conventional units) and the quantity B = B(b) is defined
in Eq. (25). From the definition of b = 2γ01/ξ01 and Eqs. (22)
and (23) follows that B ∼ 1 for b ∼ 1 and generally B ∼ b.
Moreover, b ∼ (ng/n1)

√
mg/m1.

Consider some typical quantities for a protoplanetary disk
[54] (see also Refs. [55–57]). It contains the molecular gas
CO of molecular mass 40 g/mole and dust with size (radius)
ranging from 5 × 10−3 to 10 μm [54]. We will use the fol-
lowing data for the material parameters of the dust particles
[58–60]: Y = 1–3 GP, ρ = 1–3 × 103 kg/m3, ν = 0.25, and
χ = 0.002–0.025 J/m2, which corresponds to silica particles,
including amorphous aggregates. For these parameters we
obtain that B ∼ b ∼ 1, provided the dust fraction belongs

to the interval n1/ng ∼ 0.01%–1% for the dust particles
of submicron to micron size, σ ∼ 0.01–1 μm. For the gas
with temperature of Tg = 300 K, the dust particles of size
σ ∼ 0.01–1 μm and smaller undergo pure bouncing colli-
sions. At the same time, for the gas with temperature of Tg =
1500 K the bouncing collisions experience particles of size
σ ∼ 0.1–5 μm and smaller (the lower and upper limits here
correspond to the according combination of the constants).

It is also interesting to estimate the relaxation time for the
dust temperature, that is, the time needed to attain a steady-
state temperature. Taking into account that Tg is commonly
much larger than the dust temperature, Eq. (12) for T1 may be
approximated as

Ṫ1 ≈ −2γ1(T1 − Tg), (31)

which yields (T1 − Tg) ∼ exp(−t/τ ), with the relaxation time
τ = 2γ1, where γ1 has been defined after Eq. (12). Us-
ing again the data for a protoplanetary disk [54], ng ∼
1010–1016 m−3 and Tg ∼ 50–400 K, we obtain that the relax-
ation time for particles of size σ = 1 μm ranges from 0.2 hr
to 100 yr, and for particles of size σ = 5 μm from 1.5 hr to
450 yr.

In conclusion, the observed energy equipartition in gran-
ular mixtures is surprising, since generally, the equipartition
does not hold in driven granular gases with different particle
sizes. The results of our study may be important to understand
the properties of molecular gas-dust mixtures: the systems
where small dust particles are immersed in the surrounding
molecular gas. Our results may be especially useful to under-
stand the properties of protoplanetary disks.
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