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Bistable nonequilibrium systems are realized in catalytic reaction-diffusion processes, biological transport
and regulation, spatial epidemics, etc. Behavior in spatially continuous formulations, described at the mean-field
level by reaction-diffusion type equations (RDEs), often mimics that of classic equilibrium van der Waals type
systems. When accounting for noise, similarities include a discontinuous phase transition at some value, peq,
of a control parameter, p, with metastability and hysteresis around peq. For each p, there is a unique critical
droplet of the more stable phase embedded in the less stable or metastable phase which is stationary (neither
shrinking nor growing), and with size diverging as p → peq. Spatially discrete analogs of these mean-field
formulations, described by lattice differential equations (LDEs), are more appropriate for some applications,
but have received less attention. It is recognized that LDEs can exhibit richer behavior than RDEs, specifically
propagation failure for planar interphases separating distinct phases. We show that this feature, together with
an orientation dependence of planar interface propagation also deriving from spatial discreteness, results in
the occurrence of entire families of stationary droplets. The extent of these families increases approaching the
transition and can be infinite if propagation failure is realized. In addition, there can exist a regime of generic
two-phase coexistence where arbitrarily large droplets of either phase always shrink. Such rich behavior is
qualitatively distinct from that for classic nucleation in equilibrium and spatially continuous nonequilibrium
systems.

DOI: 10.1103/PhysRevE.101.022803

I. INTRODUCTION

Diverse nonequilibrium phenomena such as nonlinear
reaction-diffusion processes in catalysis, transport, and regu-
lation in cell biology; population dynamics in ecology; spatial
epidemics, etc., often exhibit bistability of steady states for a
range of some control parameter, p, as well as front propa-
gation between coexisting states [1–5]. Behavior is typically
described for spatially continuous models at the mean-field
level by reaction-diffusion equations (RDEs) of the Nagumo
or Cahn-Allen type [2]. In the presence of noise, these systems
generally exhibit a discontinuous phase transition between
steady states at some p = peq. Associated metastability, hys-
teresis, and nucleation phenomena occur for p near peq. This
behavior is similar to that in classic van der Waals type de-
scriptions of phase transitions for systems in thermodynamic
equilibrium.

Away from peq, the steady states are not equally stable,
the more stable one displacing the less stable one separated
from it by a planar interface. The propagation velocity van-
ishes as p → peq, a criterion consistent with and replacing
the Maxwell construction for equilibrium systems [2,6]. Of
particular interest is nucleation of the more stable state starting
from the less stable (metastable) state wherein fluctuations
induce droplets of the former embedded in the latter. Growth
is inhibited by curvature at the droplet interface, but these
droplets can grow indefinitely if above a critical size. An
unstable stationary critical droplet exists at this unique size,

and smaller droplets shrink. As p → peq, the more stable state
is less effective at displacing the less stable state, and the
critical size diverges [2,6]. We note that the free energy frame-
work for thermodynamic systems, which facilitates assess-
ment of equistability and nucleation phenomena, is lacking in
nonequilibrium systems, as generally is the possibility even
to construct a Lyapunov functional mimicking free energy.
However, this complication may open the possibility of more
diverse behavior.

Contrasting the above continuum formulations, a spa-
tially discrete setting is arguably more appropriate for many
nonequilibrium bistable phenomena. This applies for hetero-
geneous catalysis on crystalline surfaces at high pressure
which imposes characteristic length scales of a few lattice
constants [7,8]; signal propagation along myelinated nerve
fibers, and other biological phenomena reflecting discrete
cellular structure [9]; bistable phenomena in networks with
a random or regular topology [10,11]; spread of spatial epi-
demics through a periodic grid of urban households [12];
and also certain electromagnetic circuits [13], atomistic-level
descriptions of crystal growth [14], etc. Within a mean-field
description, the above RDEs are replaced by analogous lattice
differential equations (LDEs) [15]. It is well recognized that
LDEs exhibit richer and more subtle behavior than RDEs,
specifically propagation failure (PF) or pinning of planar in-
terfaces [14–19]. Pinning produces stationary planar interface
states which exist over a finite range of some relevant control
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FIG. 1. Schematic of the quadratic contact process (QCP) on a square grid and perturbations thereof. H (S) denotes healthy (sick). “*” can
be either H or S and does not affect the rate for the indicated process.

parameter. This type of pinning behavior has been explored in
the material science, chemical and nonlinear physics, and ap-
plied mathematics communities. In addition, LDEs exhibit an
orientation dependence of interface propagation and equista-
bility not seen in isotropic continuum models. These features
naturally impact assessment of equistability of states. In the
context of stochastic particle models, orientation-dependent
interface propagation leads to so-called generic two-phase
coexistence [20–22].

The above mean-field LDE analysis of interface propaga-
tion and failure on regular lattices has specifically focused
on planar interfaces. However, the topic on which we focus
is droplet dynamics again on regular lattices, which involves
curved interfaces. In particular, we explore phenomena related
to PF. One might anticipate that the presence of PF could
facilitate the formation of localized stationary droplet states
which are stable. We will show that this is the case. However,
since pinned fronts may only exist for selected orientations,
one cannot simply regard localized stationary states as a
combination of pinned fronts with different orientations. A
primary motivation for consideration of droplet dynamics is
that it underlies nucleation phenomena in bistable systems. In
continuum models, stationary droplet states correspond to so-
called critical droplets, which, however, are unstable [2,23].
It should be noted that localized stationary states have been
observed previously for bistable models in spatially discrete
systems, which, however, incorporated a random scale-free
and hierarchical network structure, or a treelike spatial struc-
ture [10,11]. These studies present the challenge of separating
the effect of the random or nonperiodic topological spatial
structure on localization from the intrinsic nature of the
model kinetics. In this respect, we note the generic potential
for randomization to induce localization [24]. However, our
analysis of such phenomena on regular periodic lattices allows
natural connection to nucleation phenomena, and specifically
critical droplets, addressing fundamental questions related to
the effect of curvature on interface propagation.

In this study, we will perform a mean-field LDE anal-
ysis of variations of the quadratic contact process (QCP)

on a square lattice [12,22] describing spatial epidemics in-
volving infection and spontaneous recovery of individuals
or households arranged on a periodic square grid. As dis-
cussed further below, the QCP is equivalent to a lattice
version of Schloegl’s second model for autocatalysis [25].
Our analysis will reveal PF, generic two-phase coexistence,
and an unprecedented richness in behavior for critical and
stationary droplets. Entire families of stationary droplets
emerge with some diverging in size in regimes of propagation
failure. This behavior is qualitatively distinct and far more
diverse than that found for classic nucleation in equilib-
rium systems and in continuum models for nonequilibrium
systems.

II. MODEL DESCRIPTION AND EVOLUTION EQUATIONS

A. Model description

In the QCP considered here, households or individuals
arranged at sites on a square lattice are either sick (S) or
healthy (H). If S, they can spontaneously recover, S → H,
at rate p. If H, they can be infected by transmission of
disease in the event of two or more sick neighbors, H + 2S →
3S. The infection rate, kn, depends on the number, n � 4,
of sick neighbors with k0 = k1 = 0. For n = 2, we allow
the flexibility to assign different rates for “linear” (L) and
“diagonal” (D) configurations with the two sick neighbors
on opposite sides of the H (k2L) and on diagonally adjacent
sites (k2D). See Fig. 1. Possible assignments include kn�2 = 1
(threshold choice) [26–28], kn = n(n–1)/12 (combinatorial
choice) [27,29], or k2L = 0, k2D = 1

4 , k3 = 1
2 , k4 = 1 (Durrett

choice) [12,22]. All assignments suffer from a “quirk” that
infection cannot penetrate a semi-infinite healthy region with
a vertical or horizontal boundary, for any p � 0 (i.e., even for
very slow recovery). Why? All healthy sites at the boundary
of this healthy region have at most one infected neighbor.
Thus, vertical (or horizontal) interfaces between healthy and
infected regions can only move into the infected state. Simi-
larly, infection cannot expand beyond an infected rectangular
patch or “droplet.”
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It is convenient to remove this quirk by perturbing the
model. One can introduce “mixing” allow neighboring H and
S to exchange places with small rate h [30]. Alternatively, in
addition to infection requiring at least two sick neighbors, one
can also allow spontaneous infection, or instead transmitted
infection from a single sick neighbor [31] (in the spirit of a
conventional contact process [32]), with small rate ε. We will
focus on behavior for the Durrett version of the QCP allowing
mixing with h = 0.01.

As an aside, replacing S by X, and H by ∅, this QCP
becomes equivalent to a version of Schloegl’s second model
for autocatalysis [2,25] involving spontaneous annihilation,
X → ∅, of particles, X, residing at the sites of a square lattice
at rate p, and autocatalytic creation of particles at empty
sites, ∅, induced by neighboring particle pairs, ∅ + 2X →
3X [22]. QCP model perturbation by mixing corresponds to
introducing particle hopping to neighboring empty sites at rate
h, and perturbation by spontaneous infection corresponds to
spontaneous particle creation at empty sites at rate ε.

B. Mean-field evolution equations

Returning to the QCP perturbed by mixing, our analysis
tracks the evolution of the probability, Pi, j that site (i, j) on
the square lattice is in state S, so 1–Pi, j gives the probability
that the site is in state H. Model behavior is described by the
LDE,

d/dt Pi, j = −pPi, j (recovery) + �i, j (1 − Pi, j )(infection)

+ h�Pi, j (mixing), (1)

where �Pi, j = Pi+1, j + Pi–1, j + Pi, j+1 + Pi, j–1–4Pi, j is a dis-
crete Laplacian. The recovery term is clearly exact even in
the presence of spatial correlations, but this also applies for
the mixing term [33]. A closed expression for the rate of
infection, �i, j , of a healthy site (i, j) is obtained at the
mean-field level ignoring correlations between the state of
different sites. One sums contributions from all configurations
of neighbors to the healthy site with two or more S, weight-
ing by the appropriate infection rate. For example, if sites
(i ± 1, j) are S and sites (i, j ± 1) are H, the contribution is
k2LPi+1, jPi−1, j (1–Pi, j+1)(1–Pi, j–1).

In the following, we just consider the Durrett choice of
rates which yields

�i, j = 1
4 (Pi+1, jPi, j+1 + Pi+1, jPi, j−1

+ Pi−1, jPi, j−1 + Pi−1, jPi, j+1), (2)

after some simplification using binomial summation formulas
[34,35]. Behavior of the QCP for other rate choices is qual-
itatively similar, although �i, j differs [36]. Naturally, some
simplification of (1) and (2) is achieved for planar interfaces.
For example, in the case of a vertical interface where Pi, j =
Pi is independent of j, then �Pi, j reduces to �Pi = Pi+1 +
Pi–1–2Pi, j , and �i, j reduces to �i = 1

2 (Pi+1Pi + Pi−1Pi ).
It is appropriate to note behavior for spatially homoge-

neous states with Pi, j = P (the probability that any household
is sick) where Eq. (1) reduces to [34,35]

d/dt P = R(P) where R(P) = −pP + P2(1 − P). (3)

FIG. 2. Propagation velocity, V , versus p for planar interfaces
separating the infected and all-healthy states for various orientations,
S, in the perturbed QCP with h = 0.01. For V > 0, infected invades
all-healthy. PF occurs for S = 1, but for a far narrower range of p
than for S = ∞ (or S = 0). Inset: homogeneous steady states.

yielding an all-healthy steady state with P = 0, for all p � 0,
and stable (+) and unstable (–) populated steady states with
P±(p) = 1

2 ± 1
2 (1–4p)1/2, for 0 � p � psn (the regime of

bistability) with upper spinodal or sn-bifurcation point psn =
1
4 . Figure 2 (inset) illustrates this equation of state.

It should be noted that there have been multiple previous
mean-field implementations of spatially discrete heteroge-
neous versions of Schloegl’s second model or QCP type mod-
els [10,11,15–19]. However, relative to our model above, these
typically incorporate simpler traditional spatial coupling of
the form d/dt Pi, j = R(Pi, j ) + k�Pi, j . More complex spatial
coupling should generally be expected in spatially discrete
“contact” models where infection or reaction involves interac-
tion between a site and its local neighborhood. For stochastic
models, this coupling is captured in a set of exact spatially
heterogeneous master equations [8,34,35].

Finally, we briefly comment on our numerical analysis of
the model. It is necessary to truncate this infinite coupled set
of equations for Pi, j . However, this is readily achieved since
the region in which Pi, j varies is localized, and behavior in
asymptotic regions is uniform adopting a value corresponding
to one of the two steady states. Thus, one just appropriately
sets the values of Pi, j on the boundary of a finite domain with
spatial variation confined to the central portion of that domain.
Numerical integration of Eq. (1) uses a forward difference
algorithm. To assess stationary droplets, Eq. (1) is generally
integrated up to t ≈ 5 × 105. However, integration is extended
up to t ≈ 107 for p near critical values where droplet sizes
diverge, especially near p–(S = ∞) or p+(S = 1). For near-
stationary behavior, a longer time step �t = 1 can be em-
ployed in the long-time regime. As alluded to above, in the
analysis of planar interface propagation with interface slope
S, some simplification of the evolution equations is possible.
Pi, j depend only on the combination Si − j, so Eq. (1) reduces
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TABLE I. Key p values for QCP with mixing at rate h = 0.01, and also for h = 0 and h → 0.

p–(S = ∞) peq(S → ∞) p+(S = ∞) p–(S = 1) peq(S → 1) p+(S = 1)

h = 0 (h → 0) 0 (0.196134) 0.205051 0.207107 0.211375 0.211376 0.211378
h = 0.01 0.208051 0.209034 0.209721 0.2127 2978 0.2127 3015 0.2127 3055

to an infinite coupled set of equations Pm = PSi− j labeled by a
single parameter, m.

III. PLANAR INTERFACE PROPAGATION

Results for the propagation velocity, V , of planar inter-
faces between all-healthy and infected states in the bistable
regime for 0 � p � psn are summarized in Fig. 2 for the
perturbed Durrett version of QCP with h = 0.01. V > 0
corresponds to the infected state displacing the all-healthy
state, and V < 0 to the opposite. Interface orientation is
labeled by the slope S. This analysis is a prerequisite
for our subsequent elucidation of dynamics of droplets.
For h = 0.01, PF or pinning is found for (i) vertical in-
terfaces (S = ∞) for 0.208 09 ≈ p–(S = ∞) < p < p+(S =
∞) ≈ 0.209 72 (the same applies by symmetry for hori-
zontal interfaces), and (ii) diagonal interfaces (S = 1) for
a far narrower regime of 0.212 729 78 ≈ p–(S = 1) < p <

p+(S = 1) ≈ 0.212 730 55. If �p(S) = p+(S)–p–(S), then
�p(S = 1)/�p(S = ∞) ≈ 0.000 47.

For S �= 1 or �, there is no propagation failure, and instead
there exists a unique equistable p = peq(S) with the interface
velocity V (S) ∼ p–peq(S) varying quasilinearly through zero
at p = peq(S) where the interface is stationary. It is natural to
consider behavior for near-vertical interfaces where we find
that peq(S → ∞) ≈ 0.209 03 is between p±(S = ∞) for h =
0.01. See Fig. 2. Similarly, for near-diagonal interfaces, we
find that peq(S → 1) ≈ 0.212 730 15 is between p±(S = 1)
for h = 0.01.

As an aside, we note that p±(S = 1 or ∞) and peq(S →
1 or ∞) depend weakly on small h. Values converge as h → 0
with limits close to those for h = 0.01. See Table I. This
applies for p–(S = ∞) → 0.196 13 as h → 0, even though
p–(S = ∞) = 0 for h = 0 due to the above-mentioned quirk
in the unperturbed QCP.

IV. OVERVIEW OF DROPLET BEHAVIOR

It is instructive to recall the basic features of the equi-
librium droplet or cluster shapes in Hamiltonian systems
based on the Wulff construction, and to note Frank’s descrip-
tion of growth shapes based on its kinetic analog [37,38].
For two-dimensional (2D) equilibrium lattice-gas models, a
line tension is determined for each orientation of the clus-
ter perimeter. Then, for the equilibrium shape, the distance
from the cluster center to each point on the periphery is
proportional to the line tension for the orientation at that
point. This prescription also applies for critical droplets. A
consequence is that orientations with high line tension tend
to be absent. Frank’s model for growth shapes assigns an
orientation-dependent growth velocity at each point on the
perimeter. Then, in the kinetic Wulff prescription for growing
cluster shape, line tension for equilibrated clusters is just

replaced by growth velocity. This implies that faster propa-
gating orientations tend to “grow out” leaving a cluster shape
dominated by the slowest growing orientations.

For the Durrett version of the QCP perturbed by mixing,
we consider both droplets of the infected phase embedded
in the all-healthy phase, and all-healthy droplets imbedded
in the infected phase. We first restrict attention to droplets
having the fourfold rotational symmetry of the underlying 2D
square lattice. We determine the size (i.e., area) of embedded
infected droplets from AI = ∑

i, j Pi, j/P+(p), and of embed-
ded all-healthy droplets from AH = ∑

i, j [P+(p)–Pi, j]/P+(p).
Droplet behavior for h = 0.01 is summarized in Fig. 3. It is
instructive to describe behavior separately in five distinct p
regimes:

(1a) For slow recovery 0 < p < p–(S = ∞), the macro-
scopic infected state is unambiguously more stable than the
all-healthy state, and displaces the latter separated from it by
any planar interface. However, growth of infected droplets
embedded in the all-healthy state is inhibited by curvature.
They only grow above a critical size Ac+

I (p) that diverges as
p → p–(S = ∞). Their shapes reflect the slowest growing
horizontal and vertical orientations, and are predominantly
square. Infected droplets below a critical size Ac−

I (p) shrink
due to larger curvature. Ac±

I (p) are coincident for lower p, but
one generally finds that Ac−

I (p) < Ac+
I (p) for p above about

FIG. 3. Summary of the evolution and stationarity of droplets of
effective linear size A1/2 from LDE analysis of the Durrett model
perturbed by mixing with rate h = 0.01.
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(c)                                                   (f)

FIG. 4. Dynamics of (a–c) infected droplets embedded in the all-
healthy state for p = 0.206, and (d–f) all-healthy droplets embedded
in the infected state for p = 0.214. Image size: 100 × 100 lattice
sites.

0.2060. A discrete set of stationary droplets exists within
these limits, the number of which increases and diverges for
increasing p → p–(S = ∞).

(1b) For p–(S = ∞) < p < peq(S → ∞), again small in-
fected droplets embedded in the all-healthy state shrink below
a critical size Ac−

I (p), which diverges as p → peq(S → ∞).
All larger droplets evolve to one of an infinite discrete set of
stationary infected droplets with square shape, i.e., no droplets
grow indefinitely. This behavior can be readily understood as
stationarity (PF) of vertical and horizontal interfaces in this
regime blocks unlimited growth of infected droplets.

(2a) For rapid recovery p+(S = 1) < p < psn = 1
4 , the

macroscopic all-healthy state is unambiguously more stable
than the infected state. Analogous to (1a), all-healthy droplets
embedded in the infected state only grow above a critical
size Ac+

I (p), which diverges as p → p+(S = 1). Their shapes
reflect the slowest growing diagonal orientations, and are
predominantly diamond shaped. All-healthy droplets shrink
below a critical size Ac−

H (p) which coincides with Ac+
H (p)

for higher p, but generally Ac−
H (p) < Ac+

H (p) for p below
about 0.212 77. A discrete family of stationary droplets occurs
within these limits increasing and diverging in number for
decreasing p → p+(S = 1).

(2b) For peq(S → 1) < p < p+(S = 1), again small all-
healthy droplets embedded in the infected state shrink below
a critical size Ac−

h (p) which diverges as p → peq(S → 1).
Analogous to (1b), all larger droplets evolve to one of an
infinite discrete family of stationary droplets with diamond
shape, i.e., none grows indefinitely due to PF of diagonal

interfaces. However, given the large values of Ac−
h (p), this

behavior is difficult to assess numerically.
(3) For peq(S → ∞) < p < peq(S → 1), both infected

and all-healthy droplets embedded in the other state always
shrink. The shapes of shrinking droplets are controlled by
the fastest shrinking orientations. Thus, shrinking all-healthy
droplets are effectively diamond shaped. Shrinking infected
droplets are effectively square (or at least have periphery
orientations close to vertical and horizontal). We identify this
regime as one of generic two-phase coexistence since each
state is stable against local perturbations of the other state
(where such perturbations are ultimately extinguished). This
feature does not apply for the other regimes.

V. DETAILED ANALYSIS OF DROPLET DYNAMICS
AND STATIONARITY

Again we consider exclusively the Durrett version of the
QCP perturbed by mixing with h = 0.01.

A. Breakdown of traditional critical droplet behavior

Behavior for “extremes” of p exhibits somewhat tradi-
tional behavior. For low p � 0.2060 [which is below p–(S =
∞) ≈ 0.208 09], and high p � 0.212 77 [above p+(S = 1) ≈
0.212 73], there exists a unique symmetric infected critical
droplet. For p = 0.2060, Figure 4(a) [4(c)] shows shrink-
age (growth) for infected droplets below (above) the unique
critical size of Ac

I = 735.57. Figure 4(b) shows evolution
to this stationary critical infected droplet. For p = 0.2140,
Fig. 4(d) [4(f)] shows shrinkage (growth) for all-healthy
droplets below (above) the unique critical size of Ac

H =
2442.33, and Fig. 4(e) shows evolution to the stationary criti-
cal all-healthy droplet. In all cases, we start with an octagonal
droplet.

To illustrate the breakdown of the traditional picture of a
unique unstable critical droplet, we first consider behavior for
infected droplets for various p < peq(S → ∞) ≈ 0.209 03.
Figure 5(a) shows the evolution of droplet size for a range
of initial sizes at p = 0.2060, and indicates a finite basin of
attraction (with nonzero measure) to the unique symmetric
stationary droplet. Thus, this “critical” droplet constitutes a
stable stationary solution of the LDE contrasting continuum
formulations where the critical droplets constitute unstable
stationary solutions. We attribute this stability to an en-
hanced propensity for stationary solutions in spatially discrete

(a) p = 0.206 

A
2/1

t t t t
(b) p = 0.207 (c) p = 0.2076 (d) p =   0.2085 

FIG. 5. Evolution of A1/2 for infected droplets embedded in the all-healthy state for p = 0.206, 0.207, 0.2076 < p–(S = ∞), and for
p–(S = ∞) < p = 0.2085 < peq(S → ∞). Axes range: see Supplemental Material [39].
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t=1          t=2000     t=5000            t=1         t=2000      t=5000

(a)                                            (d)

(b)                                            (e)

(c)                                             (f)

FIG. 6. Shrinking droplet dynamics for 0.209 03 ≈ peq(S →
∞) < p < peq(S → 1) ≈ 0.212 730. Infected droplet: (a) p =
0.2095; (b) p = 0.211; (c) p = 0.2125. All-healthy droplet: (d) p =
0.2095; (e) p = 0.211; (f) p = 0.2125. Image size: 100 × 100 lattice
sites.

systems. Figures 5(b) and 5(c) show that for evolution at p =
0.2070 and p = 0.2076 [still below p–(S = ∞) ≈ 0.208 09],
the basin of attraction decomposes into an increasing number
of sub-basins for distinct stable stationary droplets where
this number and the maximum droplet size diverge as p →
p–(S = ∞). A more comprehensive listing of the sizes of sta-
tionary droplets in this regime is provided in the Supplemen-
tal Material [39]. Finally, at p = 0.2085 [above p–(S = ∞)
but still below peq(S → ∞) ≈ 0.209 03], Fig. 5(d) reveals
a semi-infinite family of stationary droplets the smallest of
which has size Ac−

I = 4761.76.
An analogous breakdown of the traditional picture applies

for all-healthy droplets for p > peq(S → 1) ≈ 0.212 730 1
upon lowering p. Figures 4(d)–4(f) show that the traditional
picture still applies for p = 0.214, but one has two stationary
droplets for p = 0.212 76, three for p = 0.212 74, etc. (see the
Supplemental Material [39] for further details), and an infinite
number for p < p+(S = 1).

B. Regime of generic two-phase coexistence

For 0.209 03 ≈ peq(S → ∞) < p < peq(S → 1) ≈
0.212 730 2, we have noted that both infected and all-healthy
droplets embedded in the other state always shrink. Examples
of this behavior are shown in Fig. 6. For infected droplets
starting with an octagonal shape, diagonal portions of the
periphery expand since V (S ≈ 1) > 0. This leads to a roughly
square shape which starts to shrink since V (S ≈ 0 or ∞) < 0.
Similarly for all-healthy droplets starting with an octagonal
shape, horizontal and vertical portions of the periphery
expand since V (S ≈ 0 or ∞) < 0. This leads to a roughly
diamond shape which starts to shrink since V (S ≈ 1) > 0.
Thus, neither phase can sustain embedded isolated droplets
of the other phase, no matter how large.

C. Asymmetric droplets

While the above stationary droplet behavior is far richer
than in continuum formulations, these spatially discrete mod-
els exhibit even more diverse phenomenology as there ex-
ist families of “asymmetric” droplets with only twofold or
onefold symmetry, as well as fourfold symmetric stationary
droplets. For example, considering infected droplets at a
low p = 0.2060 supporting a unique symmetric stationary
droplet, there are two additional stationary droplets which are
elongated; i.e., they have only twofold reflection symmetry
about a single axis. Evolution to these droplets is realized

t=1         t=1000      t=10000

(a)

(b)

(c)

FIG. 7. Asymmetric stationary droplets for p = 0.2060 (middle
case recovers fourfold symmetric droplet). Image size: 100 × 100
sites.

starting with asymmetric initial droplet shapes as shown in
Fig. 7. An oblique 2 × 1 rectangle evolves to the unique
symmetric stationary droplet with area of AI = 735.57 shown
in Figs. 4(b) and 5(a) for p = 0.2060. However, elongated
vertical 2 × 1 and 3 × 1 rectangles evolve to distinct station-
ary droplets with sizes AI = 755.02 and 787.87, respectively.
Thus, behavior for p = 0.2060 is actually different from the
traditional picture with a unique stationary droplet. In this
context, it might be noted that p = 0.2060 is quite close to
the value of p = 0.2061 above which multiple symmetric
stationary droplets emerge.

If p is far enough below p–(S = ∞) ≈ 0.208 09 (e.g., for
p = 0.205), one does recover true uniqueness; i.e., stationary
infected droplets obtained from asymmetric initial shapes
match those from octagonal initial shapes. On the other
hand, for higher p < p–(S = ∞) where there are multiple
symmetric stationary droplets, we find additional asymmetric
stationary infected droplets. For example, when p = 0.207,
where there are three symmetric droplets with sizes shown
in Fig. 5(b) with sizes AI = 1210.15, 1380.09, and 1545.30,
there exists an additional asymmetric stationary droplet with
sizes AI = 1370.47 obtained by starting with a 2 × 1 or 3 × 1
vertical rectangle. In the regime p–(S = ∞) < p < peq(S →
∞) with infinite family of symmetric stationary droplets, there
is an additional infinite set of asymmetric stationary infected
droplets.

Analogous behavior is found for all-healthy droplets for
high p. If p is far enough above p+(S = 1) ≈ 0.212 73, then
there is a unique symmetric stationary droplet and no addi-
tional asymmetric stationary droplets. In fact, this is the case
for p = 0.214 shown in Figs. 4(d)–4(f) (see the Supplemental
Material [39]), noting that this p still significantly exceeds
the value of p = 0.212 77 below which multiple symmetry
stationary droplets exist. However, for lower p, asymmetric
stationary droplets emerge in addition to the symmetric ones.

VI. DISCUSSION

A. Connections to nucleation phenomena

In the Introduction, we sketched the generic picture of
nucleation phenomena associated with discontinuous phase
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transitions both in systems in thermodynamic equilibrium
with the environment at some specified temperature [23], and
also for noisy bistable nonequilibrium systems [40]. Near the
transition, the less stable (strictly, metastable) steady state is
long lived as only rare fluctuations can induce sufficiently
large supercritical droplets to trigger conversion to the more
stable state. This conversion process involves nucleation of
such droplets effectively at a constant rate and at random
locations followed by droplet growth, and thus is governed
by Kolmogorov-Avrami kinetics [41].

To assess nucleation phenomena, e.g., for our LDE-based
QCP perturbed by mixing, one would add noise to the LDE
where the noise amplitude would naturally be dependent on
the local S population according to standard prescriptions
of stochastic chemical kinetics [42]. For example, the noise
amplitude would vanish in the “absorbing” all-healthy state
(since infection cannot occur spontaneously). Consequently,
the all-healthy state cannot undergo fluctuation-mediated evo-
lution to the infected state. However, the noise amplitude
would be nonzero in the metastable infected state for p >

peq(S → 1). For p > p+(S = 1), fluctuations would lead to
the nucleation of supercritical all-healthy droplets with AH >

Ac+
H which grow producing conversion to the all-healthy

state. Notably, such conversion kinetics must differ in detail
from traditional Avrami kinetics. Now, fluctuations can create
stable stationary droplets, which persist until an additional
fluctuation results in a sufficient size increase to force their
growth. This is in contrast to behavior in continuum the-
ories where there is a unique unstable critical droplet and
droplets either grow or shrink when their size is above or
below this critical value, respectively. Behavior for peq(S →
1) < p < p+(S = 1) is fundamentally different from Avrami
kinetics. Now, fluctuations initially create one of an infinite
number of stationary all-healthy droplets, but if isolated these
cannot grow, no matter how large. Complete conversion to
the all-healthy state requires percolative overlap of individual
droplets creating diagonal interfaces which can expand.

Adding noise to the QCP perturbed by spontaneous in-
fection, now fluctuations also occur in the mostly healthy
steady state which induces conversion to the infected state for
p < peq(S → ∞). Just as above, behavior would differ from
traditional Avrami kinetics somewhat for p < p–(S = ∞) and
dramatically for p–(S = ∞) < p < peq(S → ∞).

B. Brief remarks on beyond-mean-field treatments and behavior

The QCP rules specified in Sec. II A define a stochastic
lattice-gas model, the precise behavior of which can be as-
sessed by kinetic Monte Carlo (KMC) simulation. There exist
KMC studies for the basic Durrett version model [22], and
also for versions perturbed by mixing [30] or by spontaneous
infection [43]. There also exists a KMC study for a basic
threshold version including its perturbation by spontaneous
infection [28]. For the combinatorial version of the QCP,
KMC analysis just exists for the basic model [29]. The key
qualitative features of behavior are similar to those predicted
in the mean-field treatment (with suitable interpretation), but
all features including the spinodal and equistability points are
shifted to substantially smaller p. Spinodal points are difficult
to assess (and actually cannot be precisely defined) in the

stochastic model as a result of strong fluctuations. However,
all the stochastic models with various choices of rates and
without and with small perturbation exhibit a well-defined
regime of generic two-phase coexistence [22,28,29,30,43].
This regime corresponds to that identified by our mean-field
treatment, where it is significant to note that the regime
corresponds to peq(S → ∞) < p < peq(S → 1). The values
of p±(S = ∞) and p±(S = 1) do not determine this regime.
To understand this feature, consider the vertical interface S =
∞ which has a perfectly straight featureless form. This is in
contrast to interfaces with S � ∞ which can be regarded as
straight interfaces with some “defect” kink sites. The latter
situation corresponds better to interfaces in the stochastic
model where fluctuations generate defects.

In addition to KMC simulation, beyond-mean-field analy-
sis of model behavior is possible from higher-order truncation
approximations to the appropriate homogeneous and hetero-
geneous master equations [34,35]. The mean-field treatment
corresponds to the lowest-order site approximation, and even
the next higher order pair approximation greatly improves
prediction of the spinodal and equistability point locations.

VII. CONCLUSIONS

There are multiple versions of the basic quadratic contact
process (QCP) with distinct choices of rates, kn�2. These all
suffer from the quirk that a rectangular infected droplet cannot
expand into or invade an all-healthy background state, and
that a semi-infinite infected state cannot invade an all-healthy
state separated from it by a vertical or horizontal interface.
However, various perturbations of the basic model remove
the quirk. Introducing exchange of neighboring H and S at
small rate h removes the model quirk while preserving the all-
healthy steady state. If the model perturbation involves spon-
taneous infection with small rate ε (rather than mixing), then
the all-healthy steady state is replaced by a mostly healthy
state with a small infected population. If instead infection is
induced by a single sick neighbor with small rate ε, then again
the all-healthy steady state is preserved. In all cases, the stable
and unstable infected steady states are perturbed relative to
ε = 0 [31].

For these various model perturbations, apart from remov-
ing the quirk, other basic features of the basic model behavior
such as bistability are preserved. In particular, this applies
to all aspects of healthy droplet dynamics. To illustrate this
feature, the Supplemental Material [39] provides descriptions
of behavior for the Durrett model considered above but with
spontaneous infection at rate ε = 0.001 (rather than mixing),
and also of behavior for the threshold model perturbed by
either mixing or spontaneous infection. It should, however,
be noted that in the unperturbed or the perturbed models,
the bistable region, and also the equistability points, peq(S),
depend strongly on the prescription of the kn.

Our analysis of heterogeneous behavior in spatially dis-
crete nonequilibrium systems utilizing LDE relates to a sub-
stantial body of previous LDE-based studies, which focused
on planar interface propagation in one-dimensional (1D) and
2D systems. The 1D nature of such propagation sometimes
allows significant insight from analytical (versus numerical)
investigation. It might be noted that additional 1D phenomena
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such as the existence of stationary strips of finite width of one
steady state embedded in the other could also be explored
[34], although application appears limited. However, signifi-
cantly, there has been essentially no LDE-based analysis of in-
trinsically 2D phenomena such as droplet dynamics, or more
generally the propagation of curved interfaces. Our study
advances this area of investigation where there is important
application to nucleation type phenomena in bistable systems.

Our focus has been on the QCP type model for spatial
epidemics. However, the type of phenomenology which we
find for these models should also occur in a much broader
class of diffusionless reaction models formulated on lattices
exhibiting mean-field bistability. (Introduction of significant
diffusion leads to large characteristic length scales and the dis-
appearance of such features as propagation failure, behavior
being effectively described by continuum formalisms.) Exam-
ples of such reaction models are the generic monomer-dimer
model [6,32,44,45], and also realistic models for catalytic
CO oxidation on crystalline oxide surfaces at high pressure
[8,46–48]. Mean-field treatments based on homogeneous and

heterogeneous master equations can be developed for these
models as for the QCP [8].

In conclusion, analysis of our LDE-based formulation of
spatially discrete bistable nonequilibrium systems has re-
vealed a diversity of droplet dynamics and stationarity far
richer than RDE-based descriptions of analogous continuum
systems. This diversity leads to modified and sometimes
dramatically different nucleation kinetics compared with the
traditional picture.
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