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Phase-field model of oxidation: Kinetics
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The kinetics of oxidation is examined using a phase-field model of electrochemistry when the oxide film is
smaller than the Debye length. As a test of the model, the phase-field approach recovers the results of classical
Wagner diffusion-controlled oxide growth when the interfacial mobility of the oxide-metal interface is large and
the films are much thicker than the Debye length. However, for small interfacial mobilities, where the growth is
reaction controlled, we find that the film increases in thickness linearly in time, and that the phase-field model
naturally leads to an electrostatic overpotential at the interface that affects the prefactor of the linear growth law.
Since the interface velocity decreases with the distance from the oxide vapor, for a fixed interfacial mobility, the
film will transition from reaction- to diffusion-controlled growth at a characteristic thickness. For thin films, we
find that in the limit of high interfacial mobility we recover a Wagner-type parabolic growth law in the limit of a
composition-independent mobility. A composition-dependent mobility leads to a nonparabolic kinetics at small
thickness, but for the materials parameters chosen, the deviation from parabolic kinetics is small. Unlike classical
oxidation models, we show that the phase-field model can be used to examine the dynamics of nonplanar oxide
interfaces that are routinely observed in experiment. As an illustration, we examine the evolution of nonplanar
interfaces when the oxide is growing only by anion diffusion and find that it is morphologically stable.

DOI: 10.1103/PhysRevE.101.022802

I. INTRODUCTION

Oxidation or corrosion occurs when most engineering
metals are exposed to air or oxidizing environments. The
corrosion process causes unwanted loss of metal from an
engineering component via chemical reactions in which a
metal atom loses one or more electrons to form an oxide.
However, once the metal surface is covered with a continuous
layer of metal oxide, molecular oxygen in the air can no
longer directly reach the base metal. Continued oxidation
must therefore occur via ionic diffusion through the oxide
layer. Thus, oxides with slow ionic diffusion kinetics, which
impede continued oxide growth, are essential for designing
corrosion resistant alloys. The oxidation process generally
involves complex coupling between chemical reactions, mass
transport, and electrostatic interactions due to the ionic nature
of the metal oxide. Mass transport normally involves migra-
tion of ionic defects (vacancies and interstitials) and electronic
defects (electrons and holes). Oxide growth mechanisms are
determined by the oxide defect structure, cation, or oxygen
transport. For example, the nickel oxide forms at the gas-oxide
interface by cation transport during outward growth with a
stationary nickel-nickel oxide interface [1]. On the contrary,
the inward oxidation by oxygen is dominant in aluminum
oxide, leading to oxide-metal interface motion in the early
stage of oxidation [2], or both cation and oxygen transport
through oxide [3]. The growth of chromium oxide is also
controlled by anionic transport via oxygen vacancies [4].

Oxidation growth kinetics has been extensively examined
both theoretically and experimentally. Long-term thermal
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oxidation is generally well described by the parabolic growth
law of Wagner [5] in the thick film limit, thickness typically
more than 1 μm. The driving force for oxidation that leads
to the parabolic growth law is a fixed chemical potential
difference at the two reaction boundaries in one dimension [6].
Wagner theory assumes that oxidation is a diffusion-limited
process, that the interface is in local equilibrium, and that
the bulk oxide is charge neutral. The assumption of charge
neutrality in the bulk oxide relies on the fact that the film
thickness L is large compared to the electronic screening
length [7] or Debye length LD [8] of the oxide, defined as
LD =

√
εOkBT/q2cd where cd is the native charged defect

density in the oxide, εO is the permittivity of the oxide,
and q is the elementary charge. kB and T are Boltzmann’s
constant and temperature, respectively. In the case when the
film thickness is extremely thin, typically less than 20 nm,
the diffusion-limited growth law and charge neutrality as-
sumption cannot generally be assumed valid. Cabrera and
Mott’s theory [9] adopts the concept of ionic drift (e.g., cation
transport) through the oxide, driven by the presence of a large
constant electric field established by an electron tunneling cur-
rent, to arrive at an inverse logarithmic growth law. In general,
the range of validity of Cabrera and Mott theory and Wagner
theory can be well defined in terms of the Debye length. The
general description of Wagner theory and Cabrera and Mott
theory has been described in greater detail by Atkinson [10].

There have been many efforts to understand the oxide
growth process in between the thick and thin film limits. For
example, there is a transition from a linear to a parabolic
growth law during the early stage of thermal oxidation of sil-
icon, consistent with a transition from reaction- to diffusion-
controlled growth, as found by Deal and Grove [11]. Also,
the same transition kinetics was observed in chromium oxide
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growth by anion diffusion under H2O-H2 gas mixtures [12].
However, the general description is still incomplete in the
intermediate length scales due to complexities of electrostatic
effects during the oxidation. For example, corrosion resistant
oxide phases, such as Cr2O3 and Al2O3, have Debye lengths
on the order of tens of nanometers due to low native defect
concentrations [10]. This means that the presence of space
charge needs to be considered until the oxide thickness is on
the order of 100 nm or greater. Since the transition in the
kinetics of oxidation with increasing oxide film thickness is
a complicated problem with chemical and electrostatic inter-
actions, we need to adopt numerical simulation or calculation
methods using computational tools.

The phase-field method has been widely used as a diffuse-
interface approach to describe the complex and nonlinear
nature of microstructure evolution with time [13,14]. In this
approach, we can avoid the mathematically difficult prob-
lems of applying boundary conditions at a moving interface
and explicitly tracking the interface motion can be avoided.
Previously, Wen et al. [15] proposed a phase-field model to
simulate corrosion kinetics under oxidation and sulfidation.
The model assumes diffusion without considering the effects
of electrostatic energy during inward oxidation in an oxide-
metal system. Cheng et al. [16] focused on that a transition
from a reaction- to diffusion-controlled growth occurs when
film thickness is on the order of the Debye length and showed
that their model reproduces a linear to parabolic growth rate
law similar to that in [11]. Cheng et al. chose Cahn-Hilliard
(C-H) evolution equations [17,18] for a phase-field variable
including an additional source term for the oxide production.
This is the so-called Cahn-Hilliard-reaction (CHR) equation
[19] for reaction-diffusion phenomena. Specifically, Cheng
et al. use a free energy description of a phase-field variable
without electrostatic potential contributions, and separately
solved diffusion equations for defects along with Poisson’s
equation. Thus, the phase-field variable is decoupled from the
electrostatic potential. The well-known Butler-Volmer kinet-
ics in electrochemistry was not considered in the source term
that is responsible for interfacial motion. Thus, an electrostatic
overpotential at the interface was not observed, which is an
important physical effect during reaction-limited growth. The
surface charging effect due to oxygen reduction was also
not considered, and the study was also limited to oxidation
kinetics in one dimension. We relax these assumptions in our
work below.

Guyer et al. [20,21] developed a “complete” phase-field
model of an electrochemical system consisting of an elec-
trode and electrolyte and determined the equilibrium state
and evolution process in one dimension. Guyer et al. added
Poisson’s equation as a constraint when taking the variational
derivatives needed to derive the evolution equations for the
phase-field method. The advantage of this approach over an
explicit solution of Poisson’s equation is that it ensures that
Poisson’s equation holds at all points in the computational do-
main. Thus, this method gives the dependence of electrostatic
potentials on defect concentrations very accurately. This is
needed since small changes in defect concentrations produce
large changes in the potential. However, it is very challenging
to implement Guyer’s method because the evolution equations
are very stiff, rendering even one-dimensional simulations

very difficut. It makes it even more difficult to follow the
evolution of nonplanar interfaces in higher-dimensional simu-
lations [22]. Thus, most oxidation simulations do not employ
the model of Guyer et al. and account for the electrostatic
double layer [15,22–25]. As a result, it is difficult to make
predictions for thin films below the Debye length where the
electrostatic potential is important. Recently, Sherman and
Voorhees [26] developed a phase-field model of a metal-oxide
interface that is coupled to the electrostatic double layer at
the interface using the approach of Guyer et al. to study the
equilibrium state for thick and thin films. This phase-field
model was validated using the Gouy-Chapman model for the
electrostatic double layer [26]. However, the study was still
limited to one dimension, and only computed the equilibrium
state of the oxide-metal system. Thus, it is not possible to
account for the effects of electrostatics on growth, or follow
the evolution of nonplanar interfaces, such as those commonly
seen experimentally. To address this challenge, we use a finite
element method implemented in the Multiphysics Object Ori-
ented Simulation Environment (MOOSE) framework. We show
that the Lagrangian method of Guyer et al. is practicable in
two dimensions with electrostatic double layers and can be
used to follow the evolution of both one-dimensional (1D) and
two-dimensional (2D) interfaces for long times. As a result, it
is now possible to both examine the effects of the double layer
on the kinetics of oxidation as well as follow the evolution of
nonplanar interfaces.

Most kinetic studies of oxidation have been performed in
one dimension and thus assume that the oxide-metal interface
is planar. Similar to the morphological changes of phase
boundaries during solidification, it is common to observe
nonplanar oxide-metal interfaces [27], thus invalidating as-
sumption of planarity. These nonplanar morphologies have
important technological implications since the amplitude of
the interfacial perturbations can increase in time leading to a
breakdown of the oxide film. Morphological instabilities can
be driven by electric, magnetic, or elastic fields and compete
with a stabilizing influence of interfacial energy [28–33]. A
linear stability analysis has often been used for understanding
morphological instability, for example, the evolution of the
oxide-metal interface was analyzed during aluminum oxide
growth by oxygen diffusion in the Ni-Al system [2]. However,
linear stability theory does not hold when amplitudes of
perturbations are comparable to film thickness especially, for
example, in the early stage of oxidation, during the inward
growth of aluminum oxide [34]. Here, we analyze the mor-
phology of the interface during oxidation in two dimensions
and the nonlinear regime where the amplitude of perturbations
is a similar order of magnitude of the Debye length and the
wavelength of the perturbation, using the phase-field model.
Our approach here can facilitate multidimensional oxidation
studies and ultimately can significantly impact understanding
oxidation kinetics in the future.

II. MODEL DESCRIPTION AND FORMULATION

A. Oxide film growth in thick film limit

We develop an analytical description of oxide growth to
compare with the result of our phase-field simulations in
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FIG. 1. Schematic of the gas-oxide-metal system used in this
work. The dotted lines represent gas-oxide interface (x = 0), oxide
metal interface (x = L), and metal edge (x = M), respectively.

the thick film limit where charge neutrality holds in bulk
oxide and the mobility of each species is independent of
concentration. Using the crystallography and charge neutrality
of the oxide, there are two diffusion fluxes Ji of charged specie
i through oxide film that control the growth of oxide,

Ji = −Mi∇μ̄O
i = −Mi∇

(
μO

i + qiFψO
)

for i = v, e, (1)

where Mi, μ̄O
i , and μO

i (ci ) are the defect mobility, electro-
chemical potential, and chemical potential of species in oxide
film. The subscript i is anion oxygen vacancy or electron.
The superscript O represents the oxide phase. qi is the charge
number of the species. F is Faraday’s constant and ψO is the
electrostatic potential. The rate of change of the concentration
field, assuming that the mobilities are not a function of con-
centration, is

∂ci

∂t
= −∇ · Ji = Mi∇2μ̄O

i for i = v, e, (2)

where ci are the defect concentrations of anion vacancy v or
electron e. Here, we assume a concentration-independent mo-
bility, which is one of the cases considered in the phase-field
model. Equation (2) can be simplified in the quasistationary
limit, in which the diffusion field is relaxed on the timescale
of the interface motion and the concentration field is given
by a solution to Laplace’s equation for the electrochemical
potentials, as is typically assumed in analytical models of
oxide growth. Thus, the diffusion flux must be constant across
the oxide in one dimension. This implies that the gradient in
the electrochemical potential is �μ̄O

i /L, where

�μ̄O
i = μ̄O

i

∣∣
x=L − μ̄O

i

∣∣
x=0 for i = v, e. (3)

Here, x = L is the location of the interface between the
oxide and metal phases, and x = 0 is at the gas-oxide interface
as shown in Fig. 1. Then, Eq. (1) becomes

Ji = −Mi�μ̄O
i /L for i = v, e. (4)

The value of the electrochemical potential, μ̄O
i |x=0 in Eq. (3),

at the oxide surface is given by the oxygen reduction reaction.
The flux of vacancies at the gas-oxide interface is

Jv = κ
∏
g/o

, (5)

where κ is the reaction rate constant at the gas-oxide interface
and

∏
g/o is the driving force for the reaction at the gas-oxide

interface, ∏
g/o

= − μ̄O
v

∣∣
x=0 − μ̄O

e

∣∣
x=0 − μg, (6)

where μg is the chemical potential of oxygen in the
gas and μ̄O

v |x=0 and μ̄O
e |x=0 are the vacancy and electron

electrochemical potentials at the gas-oxide interface, x = 0,
in Fig. 1. As κ goes to infinity (very fast reactions),

∏
g/o

becomes very small (i.e., �1). In other words, the flux is
held finite while letting the reaction rate constant go to in-
finity. Thus, in the fast-reaction rate limit, local equilibrium is
obtained,

μ̄O
v

∣∣
x=0 + μ̄O

e

∣∣
x=0 = −μg. (7)

This gives one equation in the two unknown concentra-
tions, cv and ce, the defect concentrations of vacancies and
electrons at the oxide surface, respectively. They are related
to the chemical potentials of each species, μv and μe, given
the value of the electrostatic potential at the oxide surface. In
our case, we represent the chemical potentials in a Taylor’s
series expanded to first order [26],

μO
i = ∂GO

∂ci
= μO

i, eq + BO
i

(
cO

i − cO
eq

)
for i = v, e, (8)

where cO
i are defect concentrations of vacancies and electrons

in the oxide and metal phases. The cO
eq is the equilibrium

defect concentrations (e.g., 10−3) of the pure phases. The
μO

i, eq is equilibrium chemical potential of the defects in the
oxide phase that is a function of standard state chemical
potentials and equilibrium defect concentrations [26]. The
constants BO

i are the second derivatives of the ideal solution
model for the Gibbs free energy densities of the oxide at
equilibrium [26]. Since the oxide surface is charged during
the oxidation process, this provides a second equation for the
concentrations of vacancies and electrons, cv and ce, at the
oxide surface. The charge density ρ is given by the difference
in the charged defect concentrations,

ρs = (
cO
v − cO

e

)
F. (9)

Here, F is the Faraday constant. Once ρs is fixed in Eq. (9),
using Eq. (8) in Eq. (7) we set the concentrations of vacancies
and electrons at the surface. Thus, when there is no charge at
the surface cO

v is equal to cO
e , and �μO

v and �μO
e are identical.

Oxygen reduction on the oxide surface is not considered in the
classical Wagner theory, and thus to make connection with this
treatment we set cO

v equal to cO
e .

The quasistationary approximation leads coupled currents
in the absence of a magnetic field. Since there is no net current
across the oxide layer [35,36], the local charge continuity
equation from Eq. (2) is

n∑
i=v,e

qi
∂ci

∂t
= −∇ · (Jv − Je) = 0. (10)

When the space charge does not change with time in the
quasistationary limit, the coupled currents condition, Jv = Je

in Eq. (1) holds at all the positions in bulk oxide during
oxidation, regardless of oxide film thickness. Specifically,

Jv = Je = −Mv�μ̄O
v = −Me�μ̄O

e = Mv�
(
μO

v + qvFψO
)

= Me�
(
μO

e + qeFψO
)
, (11)

where �μO
v and �μO

e are the constant chemical potential
differences between the gas-oxide and oxide-metal interfaces
during diffusion-limited growth. If Mv is not equal to Me (e.g.,
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Me = αMv) in Eq. (11), Eq. (11) becomes

(1 − α)�μO
e = (1 + α)qeF�ψO, (12)

where �μO
e is a constant between the gas-oxide and oxide-

metal interfaces during diffusion-limited growth. Thus, the
electrostatic potential difference through the oxide, �ψO,
varies depending on a ratio of Mv and Me. The local electro-
static potential is given by Gauss’s law,

∇ · [εO∇ψO] = −ρ. (13)

Here, εO is the permittivity of oxide film. In the thick film
limit where charge neutrality holds, ψO is either a constant
or is linear in one dimension. Therefore, the gradient of
the electrostatic potential through the oxide increases with
increasing the ratio of Mv to Me, α, in Eq. (12).

To determine the velocity of the oxide-metal interface in
the thick film limit, the electrochemical potential difference
between the gas-oxide and oxide-metal interfaces is constant.
Thus, from Eq. (4), the velocity v of the oxide-metal interface
is

dL

dt
= v = − 1

C
Ji · x̂ = Mi�μ̄O

i

C

1

L
for i = v, e, (14)

where C is the molar density of the oxide phase. This im-
plies that the film thickness grows as t1/2, assuming that the
electrochemical potential differences are independent of film
thickness. From Eq. (4), the parabolic rate constant kp is given
by

kp = 2Mi�μ̄O
i

C
, (15)

where �μ̄O
i is given in Eq. (3). The thickness-independent

rate constant in Eq. (15) gives a parabolic growth law.

B. Phase-field model

1. Model development

Sherman and Voorhees [26] developed a phase-field model
describing an oxide film on a metal. We employ this model to
study the evolution of oxide films in this work. The total free
energy of the oxide-metal system [26] is

F (φ, cv, ce, ψ ) =
∫ [

Gφ + Gtot + 1

2
ψρ

]
dV, (16)

where φ is a phase-field variable, cv and ce are defect con-
centrations of vacancies and electrons, ψ is the electrostatic
potential, and ρ is charge density. The phase-field variable
ranges from 0 to 1, where φ = 0 is the oxide phase and φ = 1
is the metal phase. The phase-field free energy Gφ consists
of a symmetric double well potential and a gradient energy
penalty.

Gφ = ε

2
|∇φ|2 + Aφ2[1 − φ]2. (17)

As a result of Eq. (17), the equilibrium thickness and
energy of the oxide-metal interface are ζ and γφ , given by

ζ =
√

2ε

A
and γφ =

√
εA

3
√

2
. (18)

Here, ε and A are the gradient energy coefficient and the
height of the double well, respectively. In Eq. (16), the second
term, Gtot, is an interpolation of the chemical free energy
densities of the oxide and metal phases, GO and GM , [26]
defined as

Gtot = p(φ)GM + [1 − p(φ)]GO, (19)

where p(φ) is a common interpolation function,

p(φ) = φ3(10 − 15φ + 6φ2). (20)

The free energies of oxide and metal phases, GO and GM ,
are

GO =
∑
i=v,e

[
μO

i,eq(O) + 1

2
BO

i

(
cO

i − cO
eq

)2
]
, (21)

GM =
∑
i=v,e

[
μM

i,eq

(
cM

i − cM
eq

) + 1

2
BM

i

(
cM

i − cM
eq

)2
]

+ �Go,

(22)

where cO
i , cO

eq, μO
i, eq, BO

i are defined in Eq. (8) in Sec. II A, and
cM

i , cM
eq, and μM

i, eq are the molar density of vacancy or electron,
the equilibrium concentrations of vacancy or electrons, and
the equilibrium chemical potential of the defects in the metal
phase [26]. BM

i is the second derivatives of the equilibrium
Gibbs free energy densities of vacancy or electron in the
metal, assuming an ideal solution [26]. �Go is the difference
in the equilibrium Gibbs free energy densities between the two
phases evaluated at cO

i = cO
eq and cM

i = cM
eq, again assuming

the ideal solution for the Gibbs free energy densities [26].
Since we are assuming parabolic free energy functions, the
derivative of the Gibbs free energy with respect to concentra-
tion does not diverge at zero or 1. Thus, when the driving force
for oxidation is too high the concentrations can become less
than zero or greater than 1, and the model is limited to small
driving forces. In order to express Gtot in Eq. (16) in terms
of defect concentrations (cv , ce), we use the average molar
density, ci and the interpolation function [26],

ci = p(φ)cM
i + [1 − p(φ)]cO

i . (23)

Using Eqs. (21)–(23), Eq. (19) becomes [26],

Gtot =
∑
i=v,e

[
μi,eq(ci − ceq ) + 1

2

BO
i BM

i

Bi
(ci − ceq)2

+F 2

2

p(φ)[1 − p(φ)]

Bi
(�ψo)2

]
+ p(φ)�Go, (24)

where ceq is the average equilibrium defect density of the two-
phase mixture,

ceq = p(φ)cM
eq + [1 − p(φ)]cO

eq. (25)

The interpolated equilibrium chemical potentials μi, eq and
free energy coefficients Bi are

μi, eq = p(φ)BO
i μM

i,eq + [1 − p(φ)]BM
i μO

i,eq

Bi
, (26)

Bi = p(φ)BM
i + [1 − p(φ)]BO

i . (27)

The term �ψo in Eq. (24) is the Galvani potential between
the bulk phases due to the difference in equilibrium chemical
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potentials of the charged species. The Galvani potential is

�ψo = ψM
eq − ψO

eq = μO
i,eq − μM

i,eq

qiF
for i = v, e, (28)

where the Galvani potential is ψM
eq − ψO

eq or the difference of
electrostatic potential between the oxide and metal phases at
equilibrium. In Eq. (16), the third term, 1

2ψρ, is the electro-
static energy density. The term ρ is charge density; it can
be defined in terms of the difference in the charged defect
concentrations. The potential is determined using Gauss’s law,
Eq. (13). However, εO is replaced by an interpolation of the
oxide and metal permittivities,

ε(φ) = p(φ)εM + [1 − p(φ)]εO, (29)

where εO and εM are the permittivities of the oxide and metal
phases, and the potential varies continuously from the oxide
to metal.

To ensure that Gauss’s law holds at all points, we add
Gauss’s law as a constraint and define a new energy L
[20,21,26] as

L = F −
∫

λ(∇ · [ε∇ψ] + ρ )dV, (30)

where λ is a Lagrange multiplier, which is equal to − 1
2ψ in

order to ensure that the variation of L with respect to the
nonconserved electrostatic potential is zero [26]. Using this
result, the evolution equations for the phase-field variable and
defect densities are [17,18,20,26,37,38]

∂φ

∂t
= −Mφ

δL
δφ

,

δL
δφ

=
[

2Aφ(−2φ2 + 3φ − 1) + ε∇2φ − ∂ p(φ)

∂φ

(
�Go +

∑
i=v,e

{
−μi, eq

(
cM

eq − cO
eq

)

+ BO
i BM

i

Bi

[(
BM

i − BO
i

)
2Bi

(
cM

eq − cO
eq

) − 1

Bi
qiC�ψo − (

cM
eq − cO

eq

)]
(ci − ceq)

+ C2

2

(
�ψo

)2 [1 − p(φ)]2BM
i − p(φ)2BO

i

(Bi )2

})
−1

2

∂ε

∂φ
|∇ψ |2

]
, (31)

∂ci

∂t
= ∇ ·

[
Mi(ci )∇ δL

δci

]
= ∇ · Mi(ci )∇

[
μi,eq + BO

i BM
i

Bi
(ci − ceq ) ± Cψ

]
for i = v, e, (32)

where Mv (cv ) and Me(ce) are the defect mobilities of vacan-
cies and electrons, and Mφ is the phase-field mobility. The
evolution equations are nondimensionalized as in [26]

x̃ = x

LD
, c̃ = c

C
, t̃ = tD0

LD
2 , G̃ = GLD

3

kBT
,

ε̃ = εLD

kBT
, ε̃ = εRT LDNA

F 2
, ρ̃ = ρLD

3NA

F
,

μ̃ = μCLD
3

kBT
, ψ̃ = ψF

RT
, C̃ = CLD

3NA,

M̃i = M̄ikBT

D0C2LD
3 , M̃φ = MφkBT

D0LD
, (33)

where Mi(ci ) = M̄ici. The values of dimensional parameters
in Eq. (33) are listed in Table I.

A computational challenge is the rapid change in the
defect concentration at the interface that is required to capture
the electrostatic double layers at the interface. Sherman and
Voorhees [26] relaxed the electron screening length (LS) in the
metal to make the computation feasible and showed that the
defect structure and electrostatic potential profiles in the oxide
are unaffected. Thus, we chose the relaxation factor, LS/LD,
of 0.5 in this work. The oxygen vacancy normally carries an
effective charge of +2. But we assume +1 for the oxygen
vacancy charge in a modeling perspective. This is because the
effective charge of +2 just gives a factor of 2 in the evolution
equations when we assume a charge neutrality in the bulk

phases. Previously, the phase-field equations given in Eq. (31)
and (32) were solved with an explicit Euler scheme using
second-order finite differences on a uniform grid [26]. In order
to greatly reduce the computational cost of solving these equa-
tions that stem from the rapidly changing electrostatic double
layers, we use the open source Multiphysics Object-Oriented
Simulation Environment (MOOSE) [39] developed in Idaho
National Laboratory (INL). MOOSE is a massively parallel
finite element-based system designed to solve large systems
of equations using the Jacobian-free Newton-Krylov (JFNK)
method and implicit time integration schemes. Furthermore,
MOOSE is based on the modular free energy approach with
automatic differentiation [40], which simplifies and acceler-
ates the development of new multiphase-field models. For

TABLE I. Representative parameters used in this simulation. The
values are from [26].

C 9 × 104 mol/m3 εO 70ε0

cO
eq 0.001 εM ε0

cM
eq 0.999 �Go 6.311 × 1010 J/m3

T 1000 K �ψo 0.05 V

LD 5.5485 × 10−9 m γφ 2 × 10−3 J/m2

D0 10−13 m2/s ζ 0.1 LD

M 2.2574 × 10−16 mol2/J s m
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the two-dimensional simulations, we use mesh adaptivity for
computational feasibility as shown below.

In order to solve the second-order differential equation
for the electrostatic potential given in Eq. (13) coupled with
the evolution equations in Eq. (31) and (32), we need two
boundary conditions as described in Sec. II A. First, we set
the time-independent value of electrochemical potentials, μ̄v

and μ̄e at the gas-oxide interface, to a value at the solid-
gas interface less than that in equilibrium. This is based on
the two assumptions that local equilibrium is present at the
gas-oxide interface, see Eq. (7), and that there is a constant
charge density at the gas-oxide interface; see Eq. (9). The
absolute value of the potential is arbitrary, so the value of the
electrostatic potential is chosen to be zero at the gas-oxide
interface. The other boundary condition is that a gradient of
electrochemical potentials, ∇μ̄v and ∇μ̄e, of vacancy and
electron is equal to zero at the far end of the domain in the
metal, x = M, shown in Fig. 1, which is chosen sufficiently
far from the metal-oxide interface that the width of the metal
does not affect the results.

The total change in the volume V O of the oxide is

dV O

dt
= −A

∫
∂ p(φ)

∂t
dV = −A

∫
∂ p(φ)

∂φ

∂φ

∂t
dV, (34)

where A represents a cross-sectional area. The interpola-
tion function p(φ) is also the local volume fraction of the
metal phase in the oxide-metal system. Therefore, the one-
dimensional velocity v of the oxide-metal interface is

v = ∂V O

∂t

1

A
= −

∫
∂ p(φ)

∂φ

∂φ

∂t
dx. (35)

2. Transport kinetics

The flux of species (i) in the phase-field model is

Ji = −Mi(ci )∇ δL
δci

for i = v, e, (36)

where L, M, and Ji are a Lagrangian, mobility, and diffusion
flux, respectively. The flux in the phase-field model far from
the interfaces becomes

Ji = −Mi(ci )∇ δL
δci

= −Mi(ci )∇
[
μO

i,eq + BO
i

(
ci − cO

eq

) + qiFψ
]

= −Mi(ci )
[
BO

i ∇ci + qiF∇ψ
]

= −Mi(ci )

[
RT C

cO
eq

(
C − cO

eq

)∇ci + qiF∇ψ

]
for i = v, e,

(37)

where BO
i are the second derivatives of the free energy densi-

ties at equilibrium. From the zero gradient boundary condition
of electrochemical potentials at the metal edge, the interface
motion is only driven by the flux from the gas-oxide interface.
This gives no net currents in the oxide film. In other words,
the total charge flux is zero in a system. The mole fraction of
defects in the oxide is much less than 1 in this work; then

RTC

cO
eq

(
C − cO

eq

) � RT

cO
eq/C

. (38)

FIG. 2. Oxidation velocity by Eq. (35) as a function of oxide
thickness L. The black line indicates the Wagner theory parabolic
growth law in Eq. (14).

III. RESULTS AND DISCUSSIONS

A. Thick film limit

We first verified that the phase-field model recovers the
Wagner parabolic rate law in the thick film limit with zero
surface charge density in Eq. (9) at the gas-oxide interface
to be consistent with the assumptions made by Wagner. In
addition, we also take Mi(ci ) = M̄i, a constant mobility, see
below where this assumption is relaxed. The oxide thickness
is ten times larger than the Debye length LD, which leads to a
film that is largely charge neutral, except for the double layers
at the interfaces. According to Wagner’s theory, a parabolic
rate law is obtained if the species move in one dimension due
to a fixed chemical potential difference between the two sur-
faces and the oxide-metal interface [6]. As mentioned above,
in order to induce a nonzero flux at the gas-oxide interface,
the electrochemical potentials at the gas-oxide interface are
chosen to be less than the electrochemical potentials in equi-
librium. For simplicity, mobilities of vacancy and electron,
M̄v = M̄e, are chosen to be identical in Eq. (32). If M̄v and M̄e

are not equal, this induces a gradient of electrostatic potential
through the oxide since there is no net current flowing through
the oxide, as discussed in Sec. II A. Figure 2 shows the
velocity of the oxide-metal interface that is growing into the
metal phase as a function of oxide thickness. The phase-field
approach using high mobility recovers a parabolic growth law
in Eq. (14).

In contrast to the analytical model discussed above, where
the results are compared to the Wagner model, Figs. 3(a)
and 3(b) show the case where there is a nonzero surface
charge density at the gas-oxide interface, see Eq. (9), due
to surface oxygen reduction. The shift in the electrostatic
and electrochemical potentials due to a nonzero charge den-
sity at gas-oxide interface does not influence the evolution
equations given in Eq. (31) and (32) because only a differ-
ence or gradient in these quantities between the oxide and
metal phases is important. Figures 3(a) and 3(b) show that
the electrochemical potentials μ̄i of anion vacancies v and
electrons e across the oxide-metal interface depends on the
order-parameter mobility M̃φ in the thick film limit where
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FIG. 3. The nondimensional electrochemical potential, μ̄i, profiles across the oxide-metal interface as a function of order-parameter
mobility, M̃φ = 300, 10, 1, 0.1, in Eq. (31). The charged species i are (a) vacancies v, and (b) electrons e, respectively. The oxide thickness is
chosen as ten times larger than the Debye length LD, which results in charge neutrality throughout the oxide layer. The dotted line represents
the location of the interface between the oxide and metal phases where the order parameter φ is equal to 0.5.

charge neutrality in the bulk holds. The interface is in local
equilibrium when the mobility is high (e.g., M̃φ = 300) in
Figs. 3(a) and 3(b). Local equilibrium does not hold at the
interface when the oxide-metal interface becomes reaction
limited as the mobility decreases, such as for the case when
M̃φ = 0.1. The electrochemical potentials of the vacancies or
electrons at the oxide-metal interface are not equal to their
equilibrium values since the nonzero surface charge density at
the gas-oxide interface increases electrochemical potential in
the oxide phase.

Figure 4(a) shows concentration profiles of the anion va-
cancies and electrons relative to equilibrium concentrations
ceq for two different cases, M̃φ = 300 and 0.1, where ceq is
p(φ)cM

eq + [1 − p(φ)]cO
eq. The values of cM

eq and cO
eq are shown

in Table I. Figures 4(b) and 4(c) show the charge density, ρ,
and the electrostatic potential, ψ , profiles near the oxide-metal
interface with oxide thickness L = 10LD. Since the film is
charge neutral far from the interfaces, Laplace’s equation for
electrostatic potential holds in Eq. (31), and thus there is a
constant electrostatic potential through the bulk oxide phase,
as shown in Fig. 4(c). As a result of the Gibbs free energy
densities being given by a quadratic function of concentration,
see Eqs. (22) and (23), the chemical potential gradient is linear
with respect to the concentration difference, ci − ceq, through
the oxide phase. Therefore, the concentration profiles for the
vacancies and electrons in the bulk phases are linear away
from the interface; see Fig. 4(a). The charge is positive on
the metal side of the interface due to a deficit of electrons,
and negative on the oxide side, caused by excess electrons
in Fig. 4(b). Since local equilibrium holds at the oxide-metal
interface, when the mobility is high during the diffusion-
limited growth, the electrostatic potential difference between
the bulk oxide and bulk metal is equal to the equilibrium
Galvani potential difference �ψo in Table I; see M̃φ = 300
in Fig. 4(c). The nonzero gradient in the potential at the
gas-oxide interface is due to surface charging as a result of the
oxygen reduction. When the growth of the oxide is controlled
by the reaction at the interface, an electrostatic overpotential
η develops across the interface; see Fig. 4(c). Thus, the value

of the electrochemical potential at the interface, shown in
Figs. 3(a) and 3(b), decreases since there is now a driving
force needed to move vacancies or electrons across the oxide-
metal interface. The shift in the electrochemical potential of
a vacancy through the metal in Fig. 3(a) is due to the shift
in concentrations in bulk metal shown in Fig. 4(a) and is
balanced by the electrostatic overpotential. However, most
of the shift in the electrochemical potential of electrons in
the metal seen in Fig. 3(b) is due to the change in the
electrostatic potential, not the concentrations of defects. The
oxidation velocity into the metal phase as a function of oxide
thickness is shown in Fig. 4(d). There is a clear transition
in the growth law from parabolic to linear as the interfacial
mobility decreases. Since the diffusion field is relaxed on the
timescale of interface motion, the electrochemical potentials
are well described by linear functions of position, as discussed
in Sec. II A. Since the charging that results from oxygen
reduction shifts the overall electrostatic potential profile up-
ward, the rate constant a in the parabolic growth law differs
from the rate constant found when there is no charging at
that surface. From the results in Figs. 4(a)–4(c), we find
that the oxide will grow linearly in time when the oxida-
tion reaction is controlled by the reaction at the oxide-metal
interface.

Figures 5(a) and 5(b) show the charge density and elec-
trostatic potential across the oxide-metal interface when mo-
bility of the interface is small, M̃φ = 0.1. In this limit, the
reaction rate at the metal-oxide interface is important and the
phase-field model predicts an overpotential at the interface.
Furthermore, as shown in Fig. 5(c) this overpotential varies
linearly with interfacial velocity. Thus, the phase-field model
recovers the classical Butler-Volmer result for electrode ki-
netics where the current density (flux) is linearly proportional
to the electrostatic overpotential in the low overpotential
region. Butler-Volmer kinetics therefore arises naturally from
the phase-field model since the electrostatics in the interface
region are determined self-consistently, similar to that found
by Guyer et al. [21] in their phase-field model of an electrode-
electrolyte system.

022802-7



KIM, SHERMAN, AAGESEN, AND VOORHEES PHYSICAL REVIEW E 101, 022802 (2020)

FIG. 4. (a) Concentration profiles of vacancies cv and electron ce relative to equilibrium concentrations ceq, for two different order-
parameter mobilities, M̃φ = 300, 0.1, in Eq. (31) in the thick film limit. The term ceq is equal to p(φ)cM

eq + [1 − p(φ)]cO
eq where p(φ) is

an interpolation function as described in Eq. (20). The values of cM
eq and cO

eq are shown in Table I. (b) Charge density, ρ, and (c) electrostatic
potential, ψ , profiles across the oxide-metal interface with order-parameter mobilities, M̃φ = 300, 10, 1, and 0.1, in Eq. (31). The term �ψo

represents the Galvani potential between the two bulk phases in equilibrium. The term η is the electrostatic overpotential across the interface.
The dotted lines represent the location of the interface between the oxide and metal phases where φ is equal to 0.5. (d) Oxidation velocity
given by Eq. (35) as a function of oxide thickness L divided by Debye length LD. The black line indicates a constant, a, divided by L/LD and
that is given by a classical Wagner-type rate law in Eq. (14). (e) Oxidation velocity with order-parameter mobility of 0.1 on a magnified scale
in (d). It is evident that the velocity is not constant, but changes by 15% with distance between 10 and 14LD.

B. Thin film limit

In this section, we investigate the kinetics of oxidation in
the thin film limit where charge neutrality is not satisfied.

Figures 6(a) and 6(b) show the electrochemical potential
profiles for an oxide-metal interface when the oxide thickness
L is comparable to Debye length LD. In the large mobility
limit local electrochemical potential equilibrium holds at the
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FIG. 5. (a) Charge density ρ and (b) electrostatic potential ψ across the oxide-metal interface with order-parameter mobilities, M̃φ = 0.1,
in Eq. (31). (c) Growth rate v versus electrostatic overpotential η across the interface. The overpotential is linearly proportional to growth rate
in the low overpotential region.

oxide-metal interface, similar to the thick film behavior. A
comparison of Figs. 3 and 6 demonstrates that the electro-
chemical potentials at the interface deviate from their equi-
librium values more significantly for the thin film compared
to the thick film, as M̃φ decreases from 300 to 0.1. The
electrochemical potentials vary linearly in space even for thin
films because the diffusion field is relaxed, and we have
assumed that the mobility is independent of concentration.

Figure 7(a) shows the defect concentration profiles relative
to the bulk equilibrium concentrations ci–ceq for a growing

oxide in the thin film limit. The metal is more negatively
charged than in the thick film limit due to the interaction
between the double layers at the gas-oxide and oxide-metal
interfaces [26]. The double layer becomes larger with decreas-
ing M̃φ , as shown in Fig. 7(b). Similarly to that found in the
thick film limit as the oxidation reaction rate becomes gov-
erned by the reaction at the oxide-metal interface, or mobility
of the oxide-metal interface, an overpotential develops across
the interface as shown in Fig. 7(c). Figure 7(d) shows the
oxide growth rate into the metal phase as a function of film

FIG. 6. The nondimensional electrochemical potential, μ̄i, profiles across the oxide-metal interface as a function of order-parameter
mobility, M̃φ = 300, 10, 1, 0.1, in Eq. (31). The charged species i are (a) vacancies v and (b) electrons e, respectively. The oxide thickness is
comparable to the Debye length LD in the thin film limit where charge neutrality does not hold. The dotted lines represent the location of the
interface between the oxide and metal phase where the order parameter φ is equal to 0.5.
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FIG. 7. (a) Concentration profiles of vacancies cv and electrons ce relative to ceq for two different order-parameter mobilities, M̃φ = 300
and 0.1, in the thin film limit. The term ceq is equal to p(φ)cM

eq + [1 − p(φ)]cO
eq where p(φ) is an interpolation function as described in Eq. (20).

(b) Charge density, ρ, and (c) electrostatic potential, ψ , profiles across the oxide-metal interface with order-parameter mobilities, M̃φ = 300,
10, 1, and 0.1, in Eq. (31). The term η is the electrostatic overpotential across the interface. The dotted lines represent the location of interface
between the oxide and metal phases where φ is equal to 0.5. (d) Oxidation velocity given by Eq. (35) as a function of oxide thickness L divided
by Debye length LD. The black line indicates a constant a divided by L/LD and refers to a Wagner-type rate law in Eq. (14). (e) The rescaled
figure shows the oxidation velocity with an order-parameter mobility of 0.1 and shows that velocity changes by 11% with distance between 1
and 3LD.

thickness. It is clearly seen that the growth-law transitions
from parabolic to linear as M̃φ decrease. Comparing Figs. 4(d)
and 7(d) implies that the growth-law transition occurs at
higher values of M̃φ in the thin film limit than in the thick film
limit. Therefore, growth in the thin film limit will more likely
follow a linear growth law where the interface motion is con-
trolled by the oxidation reaction at the oxide-metal interface.
This is because the growth rate is higher in the thin film limit

than in the thick film limit, leading to nonequilibrium even
when using a small interfacial mobility. Our findings here
are consistent with experimental observations of a transition
from reaction- to diffusion-controlled growth during inward
oxidation, such as during the growth of silicon oxide and
chromium oxide [11,12].

In the high mobility limit where the interface is in local
equilibrium, the growth rate of the film is diffusion controlled
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yielding a parabolic growth law as shown Fig. 7(d), despite
the fact that the film is charged. As we discussed in Sec. II A,
when the mobility is independent of composition and the
diffusion field governed by the quasistationary approximation,
the electrochemical potentials must vary linearly with posi-
tion. Thus, the spatial variations in the chemical potentials (or
concentration) and electrostatic potential fields compensate
each other to yield an electrochemical potential that varies
linearly in space. Specifically, the two terms in the bracket
in Eq. (37) compensate each other in our phase-field model.
To gain further insight into the reasons for parabolic growth
in the thin film limit, we examine the electrostatic potential
difference between oxide surface and bulk metal,

qiF�ψ = qiF (ψM − ψO)

= μO
i,eq − μM

i,eq + BO
i

(
cO

i − cO
eq

)
− BM

i

(
cM

i − cM
eq

)
for i = v, e. (39)

Here, cM
i is equal to cM

eq sine the growth rate is diffusion
limited. The concentrations of v and e at the gas-oxide inter-
face are fixed due to a constant surface charge density and
local equilibrium of electrochemical potentials with the gas
phase. Thus, even in the thin film limit the electrostatic po-
tential difference between the surface and metal is a constant
during diffusion-limited oxide growth. The electrochemical
potential difference between the oxide-metal interface and
the surface is a constant during growth, thereby giving the
Wagner-type parabolic growth law even in the thin film limit.
In the thick film limit, the defect concentration and elec-
trostatic potential decay exponentially as in Gouy-Chapman
theory [26] on a length scale LD. Thus, the defect concentra-
tions, charge density, and electrostatic potential profiles are
approximately linear in the thin film limit when there is a
nonzero surface charge as shown in Figs. 7(a)–7(c).

The surface charging effect itself does not influence the
overpotential at theinterface given a constant electrochemical
potential difference in the thin film limit. Specifically, the
difference between μ̄O

v |x=0 + μ̄O
e |x=0 and the gas chemical

potential in equilibrium, μg,eq, is a driving force for oxida-
tion. When we assume a constant driving force of oxidation
for given a value of μg, the values of the electrochemical
potentials at the gas-oxide interface will vary with the surface
charge density in Eq. (10). However, since the driving force
of oxidation, μg − μg,eq, is a constant, the overpotential at the
oxide-metal interface is only affected by its kinetics or the
phase-field mobility. In the Supplemental Material [41], we
see that the coupled current condition holds where Jv = Je.
Specifically, there is a nonzero slope of electrostatic potential
in Figs S.1(e) and S.1(f) [41] when the mobilities of vacancy
and electron are not equal; M̃v = 0.6, M̃e = 3. This gives
differences in the electrochemical potential gradients of va-
cancies and electrons in Figs S.1(a)–S.1(d) in the thick and
thin film limit. Based on this, our phase-field method can be
easily written in terms of one defect variable and the coupled
current condition, making it yet more computationally effi-
cient.

The previous results assume that the mobility of vacancies
and electrons is independent of concentration, Mi(ci ) = M̄i.
This is used to assure that we recover the classical Wagner

treatment in the thick film zero-surface-charge limit. In the
Wagner treatment [42], the rate constant in the parabolic
growth law, a, is as a function of the spatially varying con-
centrations of cations and electrons. Wagner takes the integral
of the product of these concentrations over the film thickness
to be a constant, and thus obtains a thickness-independent rate
constant. Thus, a time- (or thickness-) independent parabolic
rate constant can be obtained in the phase-field model if we
assume a concentration-independent mobility. Otherwise, the
rate constant becomes time (or thickness) dependent because
defect concentration at a certain point varies with time during
growth in the phase-field model.

To examine the effects of this approximation, we com-
pare the results where Mi(ci ) = M̄i with those where mobil-
ity depends on concentration, Mi(ci ) = M̄ici. The factor of
102 is included due to low defect concentrations in oxide.
Figures 8(a)–8(d) show the defect concentration and elec-
trostatic potential profiles across the oxide-metal interface
with or without the additional defect concentration term in
the mobility. In the thick film limit in Figs. 8(a) and 8(b),
the defect concentration and electrostatic potential profiles
for both Mi(ci ) = M̄i and Mi(ci ) = 102M̄ici are very similar.
However, in the thin film limit, a concentration-dependent
mobility leads to a small difference in the defect concentration
and electrostatic potential profiles, as shown in Figs. 8(c)
and 8(d). In particular, the vacancy concentration profile
shown in Fig. 8(c) is now nonlinear, which gives a lower
flux near the interface. This is illustrated in Fig. 8(e) which
shows the diffusion flux, |Ji| = |Mi(ci )∇μ̄v|, as a function
of distance across the oxide-metal interface. This nonlinear
defect concentration profile is due to a significant difference
between the phase-field variable and defect mobility. This
effect decreases as oxide film thickness increases due to
slower growth kinetics of the oxide. The oxidation velocity
as a function of oxide film thickness is shown in Fig. 8(f). The
black line is a parabolic growth rate with a fixed rate constant.
Clearly, the growth rate of the film where Mi(ci ) = 102M̄ici

is not parabolic. To quantify this deviation from parabolic ki-
netics, the rate constant a is determined assuming a parabolic
growth when the oxide film thickness is 10LD. We find that
the rate constant is approximately 10% lower for films of
thickness 1LD, and 4% lower for films of thickness 2LD.
Thus, a concentration-dependent mobility leads to slightly
nonparabolic growth and higher growth rates for small film
thicknesses. The deviation from parabolic kinetics becomes
smaller as the film thickness increases. Thus, for the param-
eters taken in the simulation, where there is a small defect
flux and the equilibrium defect concentrations in oxide are
on the same order of magnitude, a concentration-independent
mobility assumption is a reasonable approximation.

To illustrate one of the major advantages of the phase-field
method, we investigate the evolution of a nonplanar interface
during oxide growth. In this case, we examine the evolution
of a nonplanar oxide-metal interface where the amplitude of
the nonplanar interfacial perturbation is comparable to the
Debye length. The mobility of the oxide interface is large,
and thus growth is diffusion limited and the mobilities of the
vacancies and electrons are constants. It is also assumed that
diffusion in the oxide dominates the growth process. Under
these conditions, Bobeth et al. [2] predict that the oxide-metal
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FIG. 8. Concentration profiles of vacancies cv and electrons ce relative to ceq in the (a) thick and (c) thin film limit. Electrostatic potential, ψ ,
profiles across the oxide-metal interface in the (b) thick and (d) thin film limit. Red (and blue) curve represents phase-field model results without
(and with) additional defect concentration, Mi(ci ) = M̄ici, in Eq. (32). (e) Diffusional flux of vacancy versus distance from |Ji| = |Mi(ci )∇μ̄v|
in the thin film limit. (f) Dimensionless oxidation velocity versus oxide film thickness. The black curve represents a parabolic growth rate with
a fixed rate constant assumption. The rate constant a is taken from when oxide film thickness is 10LD. The phase-field model results and a
parabolic growth law agree well when the film thickness is larger than 2LD, but diverge where film thickness becomes close to 1LD.

interface is morphologically stable. However, this prediction
was made using linear stability theory, which is limited to
small amplitude perturbations. We will use the phase-field
model to investigate the case for large amplitude interfacial
perturbations. Given the sharp transitions in electron, vacancy,
and potential near the interfaces, along with the need to
resolve the long-range diffusion fields, it was necessary to
use the mesh adaptivity implemented in the open source Mul-
tiphysics Object-Oriented Simulation Environment (MOOSE)
code [40] as shown in Fig 9(a). Figures 9(b)–9(d) show that
the concentration and potential fields vary along the interface

as well as away from the interface. This spatial variation leads
to an evolution of the nonplanar interface during oxide growth.
There are lateral gradients in the defect concentrations, as
shown in Figs. 9(c) and 9(d), unlike the one-dimensional
model. Figure 10 shows the temporal evolution of the mor-
phology of the interface when the oxide is growing into the
metal, showing that the nonplanarity of the interface becomes
smaller with time (see video in Supplemental Material [41]).
The defect concentrations change rapidly at the interface due
to the electrostatic double layer, and we find that the thick-
ness of the double layer is not uniform along the interface.
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FIG. 9. (a) Phase-field variable, (b) electrostatic potential, (c) vacancy, and (d) electron defect concentrations across the oxide-metal
interface in two dimensions, 5LD by 7LD. For two-dimensional simulations, we used mesh adaptivity in the open source Multiphysics
Object-Oriented Simulation Environment (MOOSE) for computational efficiency.

This phase-field simulation is consistent with experiment
where the interface smoothing was observed during the in-
ward growth of aluminum oxide [34]. In the future, we
plan on including alloying effects or elastic stress to ex-
amine cases where the interface may be morphologically
unstable [43,44].

To understand why the interfacial perturbation de-
cays, Figs. 11(a)–11(d) give comparisons of the defect

FIG. 10. Morphological change during inward oxidation in two
dimensions. The perturbed, nonplanar interface becomes a planar
one during growth.

concentrations, electrostatic potential, and electrochemical
potentials across the oxide-metal interface between the flat
and perturbed interfaces. Unlike one-dimensional models
of oxidation, the gradient of the electrochemical potentials
through oxide changes with position along the perturbed
interface. Using Fig. 11(e) the mechanism for stabilization
becomes clear. In this case, since a peak is closer to the
oxide-vapor surface than for a planar interface, the gradient
in the electrochemical potential is higher at a peak than at a
planar interface, and this region of interface grows faster than
a planar interface. By contrast, since the trough is farther from
the oxide-vapor surface than a planar interface, the gradient in
the electrochemical potential is lower than at a planar interface
and thus the growth rate in this region is lower than that for
a planar interface. As a result, the peaks grow faster than a
planar interface while the troughs grow slower than a planar
interface. Thus, the perturbations decay and a planar thin
film results. The phase-field model includes interfacial energy,
which is a well-known stabilization mechanism of nonplanar
growing interfaces. Since the mechanism we identify relies
only on bulk transport processes, it is clear that interfacial
energy is not the main contributor to interfacial stability in this
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FIG. 11. Schematics of (a) flat and (b) perturbed interfaces. (c) The nondimensional concentration profiles of vacancies cv and electrons
ce relative to ceq, (d) electrostatic potential, ψ , profiles, electrochemical potential, μ̄i, profiles of (e) vacancy and (f) electron across the trough
and peak of a curved interface, and a flat interface. The dotted lines represent the location of the interface between the oxide and metal phases
where φ is equal to 0.5.

case. This mechanism is consistent with the “self-stabilizing
or self-healing” of a planar interface due to nonuniform
electrochemical potential gradients when local equilibrium
holds at the interface [6]. We studied a basic two-dimensional
morphology with nonlinear periodic perturbations. Based on
the current work, we will be able to simulate more complex
morphologies (e.g., grain boundary) using multiorder param-
eters (phase-field variables) in the future.

IV. CONCLUSIONS

In this work, we have performed the phase-field modeling
of oxidation. Based on our phase-field approach, we find the
following:

(i) The phase-field model using a high interfacial mobility
agrees with the Wagner parabolic growth law for diffusion-
limited growth in the thick film limit where local equilibrium
is satisfied at the gas-oxide and oxide-metal interfaces in the
zero-charge limit.

(ii) Local equilibrium does not hold when the velocity of
the interface becomes reaction limited. This occurs as the
interfacial mobility is decreased. When the total oxidation
reaction is controlled by the reaction at the interface, an elec-
trostatic overpotential develops that results in linear growth
kinetics during oxidation.

(iii) There is a transition in the kinetics of metal oxidation
from a parabolic to linear growth rate depending on the value
of the phase-field mobility. In the thin film limit where the
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oxide phase is not charge neutral, the growth rate deviates
more readily from the t1/2 power than in the thick film limit for
a given value of the phase-field mobility. In the low overpo-
tential regime, the phase-field model yields a growth rate that
is linearly proportional to the overpotential, consistent with
Butler-Volmer kinetics.

(iv) For films with thicknesses less than the Debye length
a concentration-dependent vacancy and electron mobility give
rise to nonparabolic growth kinetics. However, for the ma-
terial parameters employed in the simulations, the deviation
from a parabolic growth law is small. As the film thickness
increases and approaches a charge-neutral bulk film, this
deviation becomes still smaller, and we recover parabolic
kinetics.

(v) A perturbed nonplanar oxide-metal interface will
eventually become planar during oxide growth. The phase-
field method shows that the mechanism for the stabilization

of a planar interface is primarily the increase in growth rate of
the peaks of the perturbation compared to the troughs, and not
the interfacial energy.
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