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Interaction of advancing contact lines with defects on heated substrates
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We consider an advancing contact line traveling over a region of locally modified wetting or thermal substrate
properties. A lubrication-type model is developed to account for coupling of viscous flow, evaporation, surface
tension, and disjoining pressure. Stick-slip-type behavior is found for a range of conditions as the contact line
passes over the defect and explained by a temporary increase in the local stresses disrupting the liquid supply
into the contact line region. A simple estimate of the degree of contact line slowdown is obtained and compared
with the numerical simulation results. Tangential stresses arising from the action of the electric field on the
interfacial changes are accounted for in our model; neglecting them would lead to an overprediction of the time
of interaction between the contact line and the defect. Increasing the substrate temperature uniformly has little
effect on contact line motion, but local increase of the temperature enhances the tendency of the contact line to
be pulled back by the defect, an effect explained by the Marangoni stresses.
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I. INTRODUCTION

Moving contact lines on heated surfaces appear in many
applications such as spray cooling [1,2], boiling [3–5], heat
pipes [6,7], and fuel cells [8]. In the context of the present
work, we define a contact line as a line along which a liquid-
gas interface comes into contact with a flat solid substrate
based on macroscale observations. This definition includes the
case of the so-called apparent contact line, corresponding to a
situation when the solid is covered with an ultrathin wetting
film but still appears dry on macroscale. The existence of
adsorbed films in confined liquid-vapor systems was verified
in several careful experimental studies [9,10]. The experimen-
tal results are consistent with the predictions of theoretical
models originated in the classical works of Potash and Wayner
[11] and Moosman and Homsy [12].

The challenges in mathematical modeling of moving con-
tact lines stem from coupling of the effects of phase change,
surface tension, viscous flow, and substrate wetting properties.
Numerous studies of moving contact lines on heated sub-
strates are a subject of recent comprehensive review articles
[13,14]. Here we focus on a special case of when the solid
substrate is spatially heterogeneous due to nonuniformity of
either the local wetting properties or local temperature. Our
interest stems from both the fundamental issue of how sub-
strate imperfections affect contact line motion and heat trans-
fer applications in which patterned and structured surfaces
have been increasingly used for heat transfer enhancement for
a variety of configurations [15].

Experimental studies of dynamic contact lines on hetero-
geneous surfaces reported a phenomenon of the so-called
stick-slip motion in which a contact line remains stationary
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for a period of time and then rapidly advances until suddenly
coming to a halt again [16]; the process is then repeated
periodically. Quantitative modeling of this phenomena is a
difficult problem, since an attempt to impose a contact an-
gle, i.e., specify the angle between the local tangent to the
fluid interface and the substrate, leads to a nonintegrable
shear-stress singularity [17,18]. The presence of ultrathin
precursor films ahead of advancing contact lines on spatially
homogeneous nonheated substrates, detected in a number of
experimental studies [19,20], has been suggested as a pos-
sible physical mechanism for removing the singularity [17].
However, alternative mechanisms for removing the singularity
have been proposed in the literature, e.g., hydrodynamic slip
at the liquid-solid interface [21,22]. The slip models have been
implemented in several elaborate numerical studies [23,24].

A novel approach to overcoming the challenge of describ-
ing contact line motion over heterogeneous substrates was
introduced in the works of Schwartz [25] and Thiele et al.
[26,27]. Instead of imposing a contact angle condition, these
authors describe substrate heterogeneity using spatially vary-
ing disjoining pressure. The concept of disjoining pressure,
introduced in the pioneering works of Derjaguin et al., is
used to account for unbalanced intermolecular interactions
and a number of other physical effects which become im-
portant when liquids are confined between two interfaces
which are very close to each other, typically at a distance
of about 100 nm or less [28,29]. While initially developed
for perfectly wetting liquids, the disjoining pressure approach
was later successfully applied to situations when the macro-
scopic contact angle is not zero but the solid substrate is still
covered by an ultrathin film, a configuration often referred
to as pseudopartial wetting [30,31]. For water and aqueous
solutions, the disjoining pressure is usually approximated by
a two-component expression [28,32], where the first compo-
nent accounts for London–van der Waals dispersion forces,
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FIG. 1. Sketch of an apparent contact line advancing towards a
substrate defect.

while the second one has to do with electrostatic interactions
due to electrical charges at the solid-liquid and liquid-gas
interfaces and the rearrangement of ions in the liquid. The
two-component disjoining pressure approach allowed Thiele
and Knobloch [26] to uncover rich bifurcation dynamics
associated with pinning and depinning of droplets moving
under external forcing, such as gravity. However, no phase
change at the interface was considered by these authors.

The approach of Thiele et al. [26,27] was first applied to
situations with evaporation in our recent study [33]. However,
that work was mostly focused on the heat transfer aspects
of the problem and only dealt with receding contact lines.
Furthermore, it had two important limitations: the assumption
of uniformity of the substrate temperature and neglect of the
component of the shear stress at the interface due to action of
the electric field on the interfacial charges [34]. In the present
study we overcome both of these limitations.

II. FORMULATION

We consider a configuration of a liquid meniscus advanc-
ing in a capillary at a controlled speed, see Fig. 1. The liquid
phase has density ρ and viscosity μ, the gas phase is assumed
to be pure vapor of the same liquid, and the surface tension
at the interface is σ . This configuration is directly relevant to
the situation when a liquid plug is moving in pulsating heat
pipes [6] and some flow boiling configurations [35], but can
also be thought of as a simple model system for fundamental
studies of interaction of advancing contact lines with substrate
heterogeneities.

The starting point for our analysis is the general system
of Navier-Stokes, continuity, and energy equations coupled
to the equation describing the electrostatic effects. A number
of simplifications are made to these equations using the ideas
from the standard lubrication-type analysis [36–40]. It is con-
venient to outline these simplifications using nondimensional
variables.

Let us discuss the choice for nondimensional velocities
and coordinates. There are clearly two characteristic velocities
in the problem. The first one is the dimensional velocity of
forced motion of the meniscus U ∗, controlled experimentally
by, e.g., changing the pressure gradient in the capillary tube.

The second one, denoted by Ue, is related to the flow which
supports the evaporation process at the interface. If the limit-
ing factor for the rate of phase change is the supply of heat to
the interface and the superheat is given by �T , this velocity
can be estimated as Ue = k�T/ρLR0, where k is the thermal
conductivity of the liquid, L is the latent heat, and R0 is the
length scale set by the macroscopic geometry away from the
contact line, e.g., the radius of curvature of a meniscus moving
in a channel. Either U ∗ or Ue could be used as the velocity
scale; we use the latter to facilitate easier comparisons with
several recent studies [33,40]. The capillary number based on
this velocity, Ca = μUe/σ , is typically very small, allowing
one to use asymptotic methods to describe the apparent con-
tact line region. Specifically, the lubrication-type model we
are using is applicable when Ca � 1 and the vertical length
scale is much smaller than the horizontal one. Under these
conditions, the local balance of viscous and capillary forces
leads to the well-known Landau-Levich-Bretherton scaling
[38,41]. In the present framework, this implies using Ca1/6R0

and Ca1/3R0 as the scales for the Cartesian coordinates x and
y, respectively. We note that there is also another length scale
in the problem, the Debye length defined by

λD =
√

εkBT ∗

e2
∑N

k=1 n(0)
k z2

k

, (1)

where ε is the electric permittivity of the liquid, kB is the
Boltzmann constant, and T ∗ is the dimensional temperature;
we assume that the liquid contains N different types of ions of
valencies zk and bulk concentrations n(0)

k (k = 1, 2, . . . , N ).
Since the electrostatic effects make a substantial contribution
to the disjoining pressure only when the electrical double
layers formed near the interfaces overlap, we assume the
Debye length to be of the same order of magnitude as
the film thickness. In our formulation this corresponds to
the assumption of the ratio κ = Ca1/3R0/λD being an order
one quantity in the asymptotic limit of Ca → 0. This is a
reasonable assumption due to small values of the Debye
length, which are typically below 1 micron.

The potential of the electric field in the liquid phase is
described by the classical Poisson’s equation,

∇2ψ∗ = −ρE

ε
, (2)

where ρE is the bulk charge density. Assuming the Boltzmann
distribution for the ion concentrations allows one to rewrite
Poisson’s equation in the form

∇2ψ∗ = −
N∑

k=1

n(0)
k ezk

ε
exp

(
zkeψ∗

kBT ∗

)
. (3)

For electric potentials well below the value of kBT/e (about
25 mV), the right-hand side of Eq. (3) can be linearized, an
approach known as the Debye-Hückel approximation. With
the Debye length defined by (1), we write the linearized
equation in the form

∇2ψ∗ = λ−2
D ψ∗. (4)

With our choice of length scales, this approximation leads to
the following leading-order equation for the nondimensional
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potential,

ψyy = κ2ψ. (5)

Here the potential is scaled by q∗λD/ε, q∗ being the dimen-
sional charge density at the fluid interface, assumed constant
and spatially uniform along the interface, with typical value on
the order of 0.1mC/m2, although some experimental studies
report much smaller values; see, e.g., Ketelaar and Ajaev [40]
for a discussion of experimental results. The substrate charge
density q̃, scaled by q∗, is either constant or a prescribed
function of the spatial coordinate. These conditions allow us
to determine the potential from Eq. (5) and then express its
value at the fluid interface, denoted by ψ̂ , as

ψ̂ = q̃ + cosh(κh)

sinh(κh)
, (6)

where h is the liquid layer thickness scaled by Ca1/3R0.
The electrostatic effects in the contact line region are

commonly described in terms of the so-called electrostatic
component of disjoining pressure, 	e. Detailed derivations of
the general formulas for this quantity can be found, e.g., in
the classical book of Derjaguin et al. [28] and in Appendix 1
of Kuchin et al. [42]. Taking advantage of the small ψ and
the fixed charge density condition at the fluid interface, the
nondimensional form of Eq. (8) of Ref. [42] reduces to the
following simple form,

	e = Q

2
(ψ̂2 − 1). (7)

The dimensionless parameter Q ≡ q∗2R0/(σε), often referred
to as the electric Weber number, determines the relative
magnitude of the Maxwell stresses at the fluid interface as
compared to the surface tension. By substituting Eq. (6) into
the formula for 	e, the latter can be explicitly related to the
film thickness via

	e = Q

[
1 + 2q̃ cosh(κh) + q̃2

2 sinh2(κh)

]
. (8)

The structural component of disjoining pressure is neglected
in the present study, but the contribution of the London–van
der Waals component is retained, leading to the expression for
the total disjoining pressure of the form

	 = α

h3
+ 	e, (9)

where α = |A|/(σR2
0Ca), and A is the Hamaker constant,

which measures the contribution of unbalanced London–van
der Waals interactions to stresses in thin liquid layers [28,29].
Viscous flow which supplies liquid for evaporation is driven
by a combination of the gradients of capillary and disjoining
pressure, so the lubrication-type velocity profile [36–38] in
the reference frame moving with the contact line at speed U
is given by

u = − 1
2 (hxx + 	)x(y2 − 2yh) − U + τy. (10)

Here we introduced scaled tangential stress τ at the interface
which is due to a combination of the Marangoni effect, i.e.,
the dependence of surface tension on temperature, and the
action of electric field on the interfacial charges. The latter
term is often neglected, but for small Ca it is actually of

the same asymptotic order as the electrostatic contribution to
the normal stress [34,40,43]. Accounting for both sources of
variation of the interfacial shear stress leads to the following
expression:

τ = −κ−1Q(ψ̂hhx + ψ̂x ) − Ma T i
x , (11)

where Ma = γ�T/(σCa1/3) is the modified Marangoni num-
ber expressed in terms of the slope γ of σ (T ) curve, T i is the
scaled interfacial temperature, defined in terms of its dimen-
sional counterpart and the equilibrium saturation temperature
T ∗

s as

T i = T i∗ − T ∗
s

�T
. (12)

In the derivation of Eq. (11) we followed the same steps
as described in detail in two recent studies [33,40]. Both
capillary and electrostatic effects result in the shift of the
equilibrium saturation temperature. In the constant-curvature
meniscus region away from the apparent contact line, these
effects are small so that the equilibrium saturation temperature
there is actually close to the value that corresponds to a
flat liquid-vapor interface with negligible effect of electrical
charges. However, in the apparent contact line region, the
high curvature and relatively large disjoining pressure lead
to significant departures from the local equilibrium saturation
temperature. In nondimensional terms, the shift is character-
ized by the nondimensional parameter δ = σT ∗

s /(ρR0�TL).
Furthermore, departures from thermodynamic equilibrium
due to phase change are measured by the parameter K =
kT ∗

s

√
2π R̄T ∗

s /(2ρvR0L2Ca1/3) that emerges from the nondi-
mensional form of the classical Hertz-Knudsen relation [44].
Detailed asymptotic derivation of this relation from the kinetic
gas theory can be found, e.g., in Chap. 6 of Ref. [38]. The
pressure and temperature jumps obtained by direct kinetic
simulation are discussed in Polikarpov et al. [45]. Experimen-
tal investigations of this interfacial phenomenon are presented
in [46]. In the present study we use the classical approach,
which is valid when the mass flux in the energy balance is
maximal and the heat flux in vapor phase is negligible [45,46].
Combining the boundary condition for the pressure drop at the
liquid-vapor interface with the Hertz-Knudsen equation leads
to the following relation between the evaporative mass flux
and temperature at the liquid-vapor interface:

KJ = T i − δ(hxx + 	). (13)

Suppose the dimensional solid wall temperature is T ∗
w ,

which is either constant or a specified function of the coordi-
nate. Let us define the corresponding nondimensional quantity
according to

Tw = T ∗
w − T ∗

s

�T
. (14)

In the framework of our lubrication-type model, the tem-
perature profile across the liquid layer is linear and therefore
the interfacial and the solid wall temperatures are related by

T i = Tw − Jh. (15)

Substituting this expression into Eq. (13) leads to

J = Tw − δ(hxx + 	)

K + h
. (16)

022801-3



AJAEV, GATAPOVA, AND KABOV PHYSICAL REVIEW E 101, 022801 (2020)

The specified value of Tw implies that the model does not
account for heat conduction in the solid substrate, an effect
which may result in reduction of the heat flux and can in
principle be incorporated into our model using the approach
discussed, e.g., in Schweikert et al. [47]. For a heated wall
at temperature Tw evaporation is suppressed when the value
of J in Eq. (16) is zero, meaning that δ	(h0) = Tw. If this
equation has a positive solution h0, then the ultrathin flat
film of thickness h0 is expected to form on the substrate. For
disjoining pressure dominated by the London–van der Waals
component, h0 can always be found as long as the Hamaker
constant A is negative.

The integral mass balance in nondimensional form in the
lubrication-type framework is given by

ht + J +
(∫ h

0
u dy

)
x

= 0. (17)

Substituting the velocity profile from Eq. (10) together with
Eq. (11) into the integral mass balance leads to the evolution
equation,

ht − Uhx + J + 1

3

[
h3

(
hxx + α

h3
+ 	e

)
x

]
x

− 1

2

[
h2

(
κ−1Q(ψ̂hhx + ψ̂x ) + Ma T i

x

)]
x = 0. (18)

The boundary conditions for this equation are

h(0, t ) = hm, hxx(0, t ) = 1, hx(L, t ) = hxxx(L, t ) = 0,

(19)

where hm is chosen large enough so that the effects of dis-
joining pressure near the left endpoint of the domain are
negligible; in a typical simulation below, hm = 20 and L = 10.
The specified value of hxx reflects the condition of constant
curvature of the meniscus away from the wall, while the
two conditions at x = L are formulated to ensure that the
interface remains flat in the ultrathin-film region. Equation
(18) with these boundary conditions has been solved numeri-
cally using the finite-difference method with DVODE software
package [48]. Local mesh refinement is implemented near the
contact line.

III. MOTION OVER HOMOGENEOUS SUBSTRATE

In order to better understand the role of different factors
in the determination of the interface shape and flow structure
near an apparent contact line, let us first consider its motion
over the substrate with spatially homogeneous properties. In
the reference frame moving with the speed U , numerical
simulations indicate that, following a short transient, a steady
state is reached. The resulting shape of the interface in the
apparent contact line region is shown by the solid line in
Fig. 2(a). The interface has nearly constant curvature near
the left end of the domain but then flattens near x ∼ 4.1,
indicating a transition to the flat ultrathin film. The dashed
line in the plot indicates the constant-curvature line which
matches the behavior of the interface near the left endpoint
of the computational domain. The point of intersection of this
line with the horizontal axis is used to define the position of
the apparent contact line, xCL, as is common in the literature;

0.0 0.5 1.0 1.5
U

2

3

4

5

θ

(b)

3.4 3.6 3.8 4.0
0.0

0.5

1.0

1.5

2.0

2.5

z

xCL
.

(a)

FIG. 2. Numerical results for homogeneous substrates: (a) steady
interface shape in the apparent contact line region in the reference
frame moving with the speed U = 0.1 for q̃ = 0, with dashed line
showing the constant-curvature fit to the interface; (b) apparent
contact angle as a function of nondimensional speed for q̃ = 0 (solid
line) and q̃ = −1 (dashed line). For all simulations, Ma = Q = 1,
κ = 5, K = 0.01, α = 10−5, Tw = 0.1, δ = 2 × 10−4.

the magnitude of the dashed line slope at the point of intersec-
tion defines the apparent contact angle, θ . Alternatively, the
contact line position can be defined by the maximum of local
curvature; we verified that both definitions lead to similar
conclusions about the contact line dynamics.

The rapid change of the interfacial curvature near x ∼ 4.1
in Fig. 2(a) implies that the scaled capillary pressure, −hxx,
is significant in that region. However, the disjoining pressure,
negligible near the left end of the computational domain, can
become large in the contact line region. Indeed, in order to
suppress evaporation in the flat thin film, i.e., ensure that
the evaporative flux J is zero, the disjoining pressure there
has to satisfy 	 = Tw/δ. Thus, both capillary and disjoining
pressure gradients contribute to the flow that supplies liquid
into the transition region, as needed to maintain evaporation
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and continuous advancement of the contact line. There are
also two additional physical effects due to shear stresses, as
seen in Eq. (11); let us discuss their relative significance. The
Marangoni stresses are expected to make a small contribution
for uniformly heated substrates, since the interfacial temper-
ature gradient is proportional to the small parameter δ; we
verified this by running the code at different values of Ma
and observing the change in the interface shape to be very
small. To investigate the contribution of electrostatic effects
to the shear stress, we use an estimate ψ̂ ∼ (κh)−1 in place of
Eq. (6), as appropriate for small film thickness in the transition
region and for q̃ near zero. The component of the flow rate due
to electrostatically induced shear stress in Eq. (18) can then be
estimated by

Qh2

2κ
ψ̂hhx ≈ − Q

2κ2
hx. (20)

This flow contribution is comparable to that from the elec-
trostatic disjoining pressure gradient, although it can still
be negligible if the London–van der Waals component of
disjoining pressure dominates, i.e., if 	x ∼ −3αhx/h4 is large
compared to other pressure gradients in the system. This can
happen when the electric Weber number Q is small or when
the inverse scaled Debye length κ is large.

Let us now discuss how the apparent contact angle θ ,
defined by the slope of the dashed line in Fig. 2(a) at x = xCL,
depends on dynamics and the substrate properties. We plot the
angle as a function of the contact line speed in Fig. 2(b) for
different values of the substrate charge density. The contact
angles become larger when q̃ is increased and as the contact
line speed increases. It is also clear from the plot that the
contact angle is not very sensitive to q̃, as the difference
between the two curves in Fig. 2(b) is rather small. The
contact-angle correction is approximately the same for all
values of the velocity investigated, which is not surprising
given that q̃ characterizes a static property of the substrate not
likely to be strongly coupled to flow dynamics.

When a contact line advances under the isothermal con-
ditions, the cube of the dynamic contact angle is a linear
function of μU ∗/σ for sufficiently small capillary numbers
[17]. Our result in Fig. 2(b) shows qualitatively similar de-
pendence since the angle increases with the speed and the
curve θ (U ) is concave down. However, we did not observe
quantitative agreement with the isothermal results. This is not
surprising, since our apparent contact angle value depends on
complicated coupling between flows generated by contact line
advancement and by the evaporation.

IV. INTERACTION WITH WETTABILITY DEFECT

Let us now consider a situation when an advancing con-
tact line approaches an isolated wettability defect, which is
incorporated into our model through the spatially dependent
disjoining pressure, based on Eq. (8) with

q̃ = qd exp

[
− (x − xd )2

l2
d

]
. (21)

Thus, the defect is basically a region of substrate where
surface charges are presently characterized by three param-
eters: the maximum charge density qd , location xd , and the

0 4 83.9

4.0

4.1

xCL

FIG. 3. Position of the advancing contact line as a function of
time for U = 0.1, ld = 0.03, and different defect amplitudes, qd =
−1 (solid line), qd = −0.5 (dashed line), and qd = −0.1 (dot-dashed
line). All other parameter values are the same as in Fig. 2.

characteristic width ld . Highly localized defects correspond
to small values of the parameter ld . While we focus on
a specific method for wetting properties modification, i.e.,
surface charges, the conclusions are expected to be applicable
to other situations when the disjoining pressure is spatially
dependent.

The substrate temperature for now is assumed uniform,
an assumption to be revisited later in the present study. One
may argue that this assumption is not realistic since the local
change of chemical properties of the substrate should also be
accompanied by the change in the thermal properties. How-
ever, there are well-known experimental techniques which
allow one to modify the wetting properties only, e.g., by using
very thin layers of coating [15,49].

A. Contact line dynamics

We solve Eq. (18) numerically with the initial conditions
corresponding to the defect being far ahead of the contact
line, xd = 4.5. The position of the apparent contact line xCL

is then found from the numerical interface shape as illustrated
in Fig. 2(a), i.e., as the point of intersection of the constant-
curvature fitting meniscus with the substrate and plotted as a
function of time in Fig. 3. The position is recorded in moving
reference frame, so the negative slope corresponds so the
slowdown of the advancing contact line. This slowdown is
followed by an acceleration of the contact line after the defect
is passed, both features being consistent with the experimen-
tally observed stick-slip behavior. Comparison between the
three lines in Fig. 3 illustrates the importance of the defect
amplitude: the maximum of the slope magnitude and thus the
degree of contact line slowdown decrease with the decrease in
the magnitude of qd . Figure 3 also shows that the total time of
interaction of the contact line with the defect, estimated as the
time it takes to recover the original contact line speed from
the moment when the slowdown started, increases with defect
amplitude.
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FIG. 4. (a) The electrostatic contribution to the effective pressure
in the film pe = −δ	e/Tw as a function of the coordinate for qd =
−1 (solid line), qd = −0.5 (dashed line); (b) minimum contact line
speed recorded during the interaction of the contact line with the
defect is shown as a function of defect amplitude (for negative qd );
dashed line shows the prediction of the approximate model, Eq. (23).

Let us now discuss the physical explanation of the numer-
ical results illustrated in Fig. 3. When the defect is far ahead
of the contact line, the situation is similar to the homogeneous
substrate case, Sec. III; liquid supply into the transition region
is maintained by capillary and disjoining pressure gradients
together with the tangential stresses. When the contact line
region encounters the defect, the newly introduced charges
in the electrical double layer near the solid partially neu-
tralize the charges in the film and the osmotic pressure is
decreased, meaning that the local effective pressure (including
hydrodynamic and osmotic components) is increased. This
pressure acts against the flow of the liquid into the apparent
contact line region, as illustrated in Fig. 4(a). Both lines in the
figure represent the electrostatic contribution to the effective
pressure in the film, scaled by the maximum disjoining pres-
sure, as a function of the coordinate but for different defect
amplitudes. The pressure barrier introduced by the defect
naturally increases as the amplitude is increased, as seen by
comparing the solid and dashed lines in the figure. The contact

line slowdown becomes more significant since the liquid flow
has to overcome higher stresses, consistent with the result
shown in Fig. 3.

To further elucidate the role of the defect amplitude, we
plot the minimum contact line speed Um during the interaction
with the defect, scaled by U , as a function of the magnitude
of qd in Fig. 4(b), solid line. For higher defect amplitudes, the
contact line slows down dramatically almost to the point of
pinning, while weak defects can be passed with only slight
decrease in the velocity, so that Um ∼ 1. For the latter case,
a simple estimate of the degree of the slowdown can be
obtained using the following arguments. The local change in
the disjoining pressure induced by the presence of the defect
is estimated from Eq. (8) as

�	e ∼ Qqd (κh)−2 (22)

for κh � 1 and |qd | � 1. Assuming the defect width is
comparable to the length scale of the interface shape change
in the transition region, which is typically the case in our
simulations, we can then state that the pressure gradient
driving the flow into the contact line region reduces by a factor
of 1 − 2|qd | due to the defect. If the corresponding change in
the flow rate is compensated by the change in the speed of the
contact line, then the contact line speed has to decrease by the
same factor, leading to the following simple nondimensional
estimate:

Um = 1 − 2|qd |. (23)

The dashed line in Fig. 4(b) represents this equation and
agrees with the numerical results surprisingly well, even
for |qd | as large as ∼0.3. Note that the argument does not
account for complicated nonlinear coupling between contact
line motion, evaporation, viscous flow, and tangential stresses,
and thus is expected to break down for sufficiently large |qd |,
which is indeed seen in Fig. 4(b). Clearly, at large defect
amplitudes the contact line slows down, basically to the point
of pinning, in qualitative agreement with experimental data
showing that only sufficiently strong defects lead to contact
line pinning. In our model, complete pinning (Um = 0) is not
seen since the Hamaker constant is not affected by the defect
and thus the London–van der Waals component of disjoining
pressure continues to support slow contact line advancement
even near the defect. We verified that Um can be further
reduced below the values seen in Fig. 4(b) by making α

smaller.
Based on the estimate of Um, Eq. (23), the total time

of interaction of the contact line with defect is given by
ld/[U (1 − 2|qd |)]. Note that this value, consistent with the
result in Fig. 3, can be an order of magnitude larger than
expected from the rough estimate, ld/U , not accounting for
the contact line slowdown.

Estimates such as Eq. (23) highlight the crucial role of
the defect amplitude for the dynamics and suggest that the
significance of the defect width ld is less important, a con-
clusion supported by our numerical simulations. For example,
the results in Fig. 5 show that the change of the defect width
by a factor of 3 results in only a relatively small change in
the contact line dynamics. Comparing the two curves in the
figure, it is clear that more localized defects result in more
contact line slowdown (indicated by the higher slope of the
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FIG. 5. Position of the advancing contact line as a function of
time for Tw = 0.1, qd = −1, and different defect widths, ld = 0.03
(solid line) and ld = 0.01 (dashed line).

dashed line) for the same defect amplitude at the first stage of
interaction with the defect, while the contact line relaxation to
the original speed at the second stage of the process is almost
unaffected. The latter conclusion is not surprising, since the
timescale of relaxation is determined by the timescale of
viscous flow in the film after the contact line already passed
the defect.

B. Shear stress at the interface

The shear stresses at the liquid-vapor interface, represented
by Eq. (11) above, are often neglected in simulations of
moving contact lines. However, our estimates of their relative
importance in Sec. III suggests that even for the homogeneous
substrates the condition of negligible shear stress is often not
satisfied; we expect the shear-stress contribution to become
even more significant when an additional short length scale
is introduced due to the defect. It is therefore instructive to
investigate the role of shear stresses in contact line dynamics
in the presence of evaporation. Figure 6 illustrates the predic-
tions of the contact line motion by our model and a simplified
version of the same model with the interfacial stress τ set to
zero. We observe that the simplified model overestimates the
degree of the pull-back by the defect and that the discrepancy
can be significant. Both the minimum contact line speed and
the total time of interaction with the defect are not predicted
correctly.

To better understand the role of the shear stress in the
overall dynamics of the system, let us start by discussing
the case of a homogeneous substrate. The electric potential
ψ̂ from Eq. (6) increases as the interface approaches the
substrate, i.e., in the positive x direction. Based on Eq. (11),
the interfacial stress vector is in the opposite direction. This
can be explained in physical terms by electrical charges near
the interface interacting with their electrostatic images which
have the same sign (due to zero derivative condition on
the potential at the wall); thus there is repulsive interaction
pushing the interfacial charges away from the substrate. An
additional smaller contribution due to the Marangoni effect

0 5 103.9

4.0

4.1

4.2

xCL

FIG. 6. Position of the advancing contact line as a function of
time predicted by the solution of Eq. (18), solid line, and by the
simplified version of the same model obtained by setting the shear
stress τ to zero, dashed line.

acts in the same direction since the interfacial temperature is
increased as the hot wall is approached, see Eq. (10). The flow
generated by all these tangential stresses is in the direction
opposite to the main flow supplying the liquid into the region
of high evaporation. By artificially removing the tangential
stress component, we eliminate these extra contributions and
the contact line is expected to shift to the right, as indeed is
seen in Fig. 6.

When a defect is introduced, with no contribution from
shear-induced flow, all adjustments for altered local wetting
properties are made in the pressure gradient value, meaning
that larger changes in pressure and thus stronger interface
deformation can be expected. This results in a larger shift in
the apparent contact line position, as seen in Fig. 6.

C. Effects of evaporation

One of the key features of the proposed model is substrate
heating and the resulting evaporative mass loss which is
coupled to liquid flow. To the best of our knowledge, the
interaction of advancing contact lines with defects in the pres-
ence of evaporation has not been addressed in the literature
previously, despite its importance for numerous heat transfer
applications such as boiling and spray cooling. In order to get
some insight into how the stick-slip motion can be affected
by the evaporation, we carried out numerical simulations at
different values of the substrate superheat.

When the defect is far ahead of the contact line, the steady-
state solutions will be different depending on the superheat.
In addition to changes in the local structure of the solutions,
there is also a shift in the contact line location which is purely
due to the boundary condition of the specified thickness at the
left end of the computational domain, a shift which has no
physical significance. Therefore, we present all of our results
in terms of the contact line position x̂CL measured relative
to its value for the homogeneous substrate. The simulation
results for a range of values of Tw between 0.05 and 0.3 show
that the increase in the superheat has little effect on the slope
of the line, i.e., the value of Um, at the first stage of the process
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FIG. 7. Shift in the position of the advancing contact line as a
function of time for Tw = 0.02 (dot-dashed line), Tw = 0.05 (dashed
line), and Tw = 0.1 (solid line).

of contact line–defect interaction, as seen by comparing the
solid and dashed lines in Fig. 7. This is not surprising based on
the arguments made in Sec. IV A about the defect amplitude
being the key quantity determining the degree of the contact
line slowdown. The relaxation of the interface after the defect
passed proceeds faster for higher temperature, as the interface
can now adjust to the equilibrium shape not only via surface
tension effects but also via evaporative mass transport. The
evaporative mechanism can be expected to weaken signifi-
cantly at lower temperatures, which was indeed observed in
our simulations for Tw near 0.02 and below, illustrated by
the dot-dashed line in Fig. 7. At these low temperatures, the
degree of the contact line pullback during the interaction with
the defect also starts to decrease slightly.

V. NONUNIFORM SUBSTRATE TEMPERATURE

Nonuniformity of the substrate chemical properties often
leads to the nonuniformity of the thermal properties as well,
unless special care is taken to avoid the latter. Furthermore,
substrate temperature can be highly nonuniform in electronics
cooling applications, often characterized by the formation of
the so-called hot spots [50]. When such a substrate is cooled
by a thin-film flow [51,52], the film can rupture, leading to
formation of moving contact line on a substrate with highly
nonuniform temperature. The objective of the present section
is to analyze how the local change in the substrate temper-
ature could lead to changes in the contact line motion and
conditions of pinning. We take the Gaussian-type temperature
profile

Tw = Tw0 + (Td − Tw0) exp

[
− (x − xd )2

l2
d

]
, (24)

with the maximum temperature Td in the middle of the defect
assumed to be higher than the value away from it, Tw0. Local
increase in the substrate temperature is shown to increase
the degree of contact line pinning significantly, as illustrated
in Fig. 8. The overall time of the interaction of the contact
line with the defect also increased substantially. We attribute

0 5 10 153.5

3.7

3.9

4.1

xCL

FIG. 8. Position of the advancing contact line as a function of
time for the values of Td equal to (from top curve to bottom) 0.1,
0.15, 0.2, 0.25 with Tw0 = 0.1, qd = −1, ld = 0.03.

these changes to the Marangoni effect pushing liquid away
from the hotter region encountered during the contact line ad-
vancement. The Marangoni effect was rather small previously
due to the interface temperature gradient being proportional
to the small parameter δ. However, for nonuniform substrate
temperature the term Tw in Eq. (15) is also a function of
the spatial coordinate and thus contributes to the temperature
gradient; that term is independent from δ and is not expected
to be small.

VI. CONCLUSIONS

We investigated the interaction of advancing contact lines
with defects. For most of our study, we focus on the situation
when the wetting properties of the substrate are changed
locally, e.g., by the presence of electrical surface charges,
but the temperature and thermal properties remain uniform.
The defect amplitude, a measure of the magnitude of the
change in the local wetting properties, is identified as the key
parameter in the dynamics of the contact line. For the case
of local modification of the substrate properties by surface
charges, the amplitude can be interpreted simply as the local
scaled charge density. Stick-slip type behavior is found for
sufficiently large defect amplitudes; weak defects result only
in slight reduction of the contact line speed. For the latter case,
a simple analytical model predicts linear decrease of contact
line velocity with the defect amplitude; the analytical formula
matches the numerical result in the region where both are
applicable. The contact line dynamics is much less sensitive to
the changes in the defect width and the substrate temperature,
as long as the latter remains spatially uniform.

The classical disjoining pressure models involve modifi-
cations in the normal stress balance at the interface but not
in the shear stress. Our results point to the limitations of this
approach, especially for the interaction between a contact line
and a highly localized defect. The tangential stress is shown
to be comparable to the normal stress contributions of the
electrostatic forces. Its relative importance increases as the
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Debye length is increased. Models neglecting the shear-stress
effects at the interface tend to overestimate the degree of the
vapor-liquid interface deformation.

The effect of local change in the substrate temperature is
investigated and shown to result in a dramatic increase of
the degree of the contact line pull-back by the defect and the
overall time of the interaction. This dynamics is explained by
the role of the Marangoni stresses, which induce the flow away
from a hot region encountered during the advancement of the
contact line, a different mechanism of contact line pinning not
related to the wetting properties of the substrate.

Our results indicate that contact line motion is very sen-
sitive even to small defects on the substrate. Thus, accurate

experimental recording of contact line velocity can provide
valuable information about the chemical properties and degree
of uniformity of the substrate on micro- or even nanoscale.
Such properties, including the presence of defects, can be
investigated by a variety of methods such as scanning electron
microscopy, but these methods require much more sophisti-
cated equipment than simple experimental study of contact
line motion.
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