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Tailored morphologies in two-dimensional ferronematic wells
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We focus on a dilute uniform suspension of magnetic nanoparticles in a nematic-filled micron-sized shallow
well with tangent boundary conditions as a paradigm system with two coupled order parameters. This system
exhibits spontaneous magnetization without magnetic fields. We numerically obtain the stable nematic and
associated magnetization morphologies, induced purely by the geometry, the boundary conditions, and the
coupling between the magnetic nanoparticles and the host nematic medium. Our most striking observations
pertain to domain walls in the magnetization profile, whose location can be manipulated by the coupling and
material properties, and stable interior and boundary nematic defects, whose location and multiplicity can be
tailored by the coupling too. These tailored morphologies are not accessible in uncoupled systems and can be
used for multistable systems with singularities and stable interfaces.
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I. INTRODUCTION

Liquid crystals (LCs) are quintessential examples of soft
materials or mesophases that are intermediate between con-
ventional solids and liquids with a unique combination of
long-range order and fluidity [1]. There are many different
kinds of LCs, and we focus on nematic liquid crystals (NLCs)
with long-range orientational order that manifests in nematic
“directors” or locally distinguished directions of averaged
molecular alignment [1,2]. The directional nature of NLCs
makes them susceptible to external fields, incident light, tem-
perature, and foreign inclusions, e.g., colloids. Historically,
most NLC-based applications have relied on their dielec-
tric anisotropy, i.e., direction-dependent response to electric
fields, e.g., the thriving liquid crystal display industry. The
anisotropy in the NLC magnetic susceptibility is typically
much smaller (∼10−6), in some cases 7 orders of magnitude
smaller, than the dielectric anisotropy [1,3,4], and conse-
quently, the exciting field of magnetic phenomena in NLCs
and partially ordered materials remains relatively open.

In the 1970s, Brochard and de Gennes suggested that the
addition of magnetic nanoparticles (MNPs), i.e., nanopar-
ticles with magnetic moments, to a nematic medium can
generate a spontaneous magnetization without any external
fields and such systems were referred to as ferronematics in
their pioneering work [5]. The magnetic moments of MNPs
are influenced by the ambient nematic directors (and vice
versa) due to the surface-induced coupling between them.
Magnetic moments preferentially align either parallel or per-
pendicular to the nematic director depending on the surface
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treatment of nanoparticles. The suspension shows spatial
macroscopic magnetization in the absence of fields. This
spontaneous polar magnetization can, in turn, substantially
enhance magneto-optic responses in NLC systems. In 2013,
Mertelj et al. designed the first such stable ferronematic
suspension using barium hexaferrite magnetic nanoplatelets in
pentylcyanobiphenyl (5CB) LCs [3]. There have been several
challenges related to MNP aggregation and flocculation, but
the platelet shape, high magnetocrystalline anisotropy, and
polydispersity of the MNPs and the MNP-NLC interactions
(dipolar and quadrupolar) can be exploited to stabilize such
ferronematic suspensions [3,4]. Since then, there has been
a wave of interest in the physical, optical, and rheological
properties of ferronematics [3,4,6–8], in designing composite
materials [8], biaxial ferronematics [7], chiral ferronematics
[8], and easily switchable MNP-NLC systems with small
magnetic fields [7], and even creating topological solitons in
ferronematics [8]. From a purely scientific point of view, the
coupled MNP-NLC systems give us access to singular struc-
tures, theoretical frameworks, and exotic morphologies which
are inaccessible in uncoupled systems. From an applications
point of view, leading experimentalists propose that these
MNP-NLC systems have magneto-mechanical and magneto-
optic effects with potential applications in photonics [8,9],
display devices [10], optics [6,11,12], telecommunications
[4], microfluidics [4], and smart fluids [13,14].

In Ref. [15], we study a model problem of a ferronematic
suspension in a nematic-filled channel in a one-dimensional
setting. There are two variables, a nematic order parameter
and a magnetic order parameter, induced by the suspended
nanoparticles, without any external fields, with Dirichlet
conditions for both order parameters on the bounding sur-
faces. We work in a continuum framework and use the one-
dimensional geometry, the choice of boundary conditions, and
the nemato-magnetic coupling to give examples of tailored
inhomogeneous morphologies and domain wall formation in
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such systems, also looking at the effects of temperature in
destabilizing domain walls. However, the one-dimensional
nature of the problem naturally limits the solution landscape
for both the nematic and magnetic order parameters. In this
paper, we study a two-dimensional benchmark and highly
informative problem with a much richer solution landscape—
a dilute uniform suspension of MNPs in an NLC-filled square
well, motivated by the experimental work in Ref. [16]. We
assume that the well surfaces are treated to induce planar
degenerate or tangent boundary conditions; i.e., the nematic
molecules in contact with these surfaces are in the plane of the
surfaces. Following previous work on this problem [16–18],
we impose Dirichlet conditions on the lateral surfaces for
the nematic molecules and strong anchoring on the top and
bottom surfaces, which enforce planar degenerate conditions
on these surfaces without any preferred directions. As in
Ref. [19], one can rigorously prove that in the thin-film limit
(when the well height is much smaller than the cross-sectional
dimensions), we can study planar two-dimensional nematic
profiles on the square cross section that are invariant across
the height of the well. We adopt this reduced approach and
study coupled ferronematic systems on a square domain with
Dirichlet or fixed tangent conditions for both the nematic
molecules and the spontaneous magnetization on the square
edges (also see Ref. [3]). Whilst Dirichlet tangent conditions
are well accepted in the nematic framework [16,20,21], the
correct choice of boundary conditions for the spontaneous
magnetization remains open. In Ref. [22], the authors argue
that tangent boundary conditions naturally arise for spon-
taneous magnetization from energetic considerations. More
generally, Dirichlet conditions for the spontaneous magnetiza-
tion can be achieved by experimentally controllable ferromag-
netic walls or superparamagnetic walls [23] or by applying
an external field to fix the position and orientation of the
MNPs on the edges and then removing the field, disallowing
further reorientation of the MNPs on the edges. Given that
ferronematics are relatively nascent, a theoretical study of
nematomagnetic coupling with different types of boundary
conditions (such as the model problem studied here) opens in-
teresting avenues for experimental investigations. This square
system has received significant attention in the purely nematic
case (see, for example, Ref. [17]), where up to 21 different
nematic states have been reported. It is natural to ask how
this well-studied system responds to the inclusion of MNPs?
In particular, the nematic-filled square well is known to be
experimentally bistable [16] without any external electric
fields. Natural questions are the following: is the coupled
MNP-NLC system multistable too, can we stabilize interior
nematic defects with the MNP-NLC coupling, and can this
MNP-NLC system be an example of a liquid crystal device
controlled by magnetic fields as opposed to electric fields? We
partially address some of these questions in this paper and, in
doing so, unravel several complex phenomena in a relatively
simple ferronematic setup. These questions are not specific
to ferronematics, but also apply to a coupled system with
competing nematic and polar order in the absence of external
fields.

For a dilute ferronematic suspension as is considered
here, there are two continuous macroscopic order parameters
[3,24,25]: (i) the NLC Q-tensor order parameter contains
information about the orientational anisotropy of the NLC,

and (ii) the magnetization vector, M, which is the spatially
averaged magnetic moment of the suspended MNPs at every
point inside the domain. We do not account for any dipolar or
quadrupolar interactions between the magnetic nanoparticles
(also see Ref. [26]) explicitly since experimentalists report
that the attractive dipolar forces between magnetic moments
are counteracted by the repulsive nematic-mediated quadrupo-
lar interactions between the nanoparticles, for stable suspen-
sions. Further we are working in a continuum framework, and
the nematic-MNP and MNP-MNP interactions are absorbed
by a coupling energy [3,4].

More precisely, we build on the phenomenological ap-
proach in Ref. [26] and model the stable (Q, M) profiles as
minimizers of an appropriately defined free energy, which
contains magnetonematic coupling energy. Mathematically,
this is equivalent to solving a coupled system of nonlinear par-
tial differential equations with several technical difficulties.
There are four key phenomenological parameters that contain
information about intrinsic length scales, material properties,
and the magnetonematic coupling. In fact, by tuning these
parameters, we numerically observe stable domain walls in M
(analogous to experimental results in Refs. [3,7,22]), displace
the domain walls in M, generate exotic splay-twist M profiles,
and, crucially, stabilize interior nematic point defects without
external fields. In fact, the tuning parameters allow us to
control the locations and multiplicities of the nematic defects.
In particular, if we can experimentally realize stable defect
structures in coupled MNP-NLC systems, these may provide
new routes to probe universal defect structures in different
branches of physics and create self-assembled patterns of ne-
matic defects and magnetic domain walls without any external
fields, and our results are a forward step in that direction. The
rest of the paper is organized as follows. In Sec. II, we review
the theoretical framework and governing partial differential
equations; in Sec. III, we present our numerical results; and
in Sec. IV, we state the main conclusions and directions for
future work.

II. THEORY

Our domain is a square with edge length L, i.e.,

� = {(x, y) ∈ R2; 0 � x, y � L},
where L is typically on the scale of microns. For this two-
dimensional (2D) problem, we assume that the MNPs pri-
marly lie in a plane with favored in-plane alignment of
magnetic moments [27]. Therefore, we take the magnetization
vector M to be a 2D vector and, in particular, M can have
variable magnitude, including M = 0. In particular, domains
walls in M belong to the zero set of M or, more generally, re-
gions of small |M|. In our reduced approach, the Q tensor is a
symmetric, traceless 2 × 2 matrix whose leading eigenvector
n (with the largest eigenvalue which is necessarily positive)
models the locally preferred direction of NLC alignment at
every point in space. We refer to n as the 2D nematic director,
i.e., n = cos φx̂ + sin φŷ, where φ is the angle between n and
x̂, x̂, and ŷ are the coordinate unit vectors in the plane. Then
Q can be written as Q = S[2n ⊗ n − I], and the scalar order
parameter S is a measure of the degree of orientational order
and fluctuations about n [17,20]; a nematic defect corresponds

022706-2



TAILORED MORPHOLOGIES IN TWO-DIMENSIONAL … PHYSICAL REVIEW E 101, 022706 (2020)

to regions of low order with S ≈ 0. Since Q is traceless, one
can write

Q =
(

Q11 Q12

Q12 −Q11

)
and easily verify that TrQ2 = |Q|2 = 2(Q2

11 + Q2
12) = 2S2

and TrQ3 = 0. The generalized free energy density for this
composite system has three contributions [1,15,25,26,28]:

F = K

2

∑
i j

|∇Qi j |2 + A

2
TrQ2 + C

4
(TrQ2)2

+ κ

2

∑
i

|∇Mi|2 + α

2
|M|2 + β

4
|M|4

− γμ0

2

∑
i j

Qi jMiMj . (1)

The first line is the NLC Landau–de Gennes free energy den-
sity, the next line is the Ginzburg-Landau free energy density
for the magnetization, and the last line is the magnetone-
matic coupling energy density [28,29]. In a three-dimensional
framework, the Landau–de Gennes tensor is a 3 × 3 sym-
metric traceless QLdG tensor, the cubic order term (TrQ3

LdG)
is nonzero so that we have a first-order nematic-isotropic
phase transition and can observe biaxiality (when QLdG has
three distinct eigenvalues), which is outside the scope of our
reduced approach. The Landau coefficient A = Ā(T − T ∗),
where Ā is a positive constant and T ∗ is a characteristic
transition temperature for NLC. Similarly, α = ᾱ(T − T M

c ),
where ᾱ is a positive constant and T M

c is a critical temperature
for the spontaneous magnetization. The parameters C and
β are positive material-dependent constants, whereas K and
κ are the elastic constants, related to NLC elasticity and
magnetic stiffness, respectively. The elastic energy density
for M is included in general continuum energies for ferrone-
matics as in Ref. [4] and can be viewed as a regularization
term that penalizes short-range variations in M. This term
prevents arbitrary rotations in M without an energetic penalty.
Last, γ is an MNP-NLC coupling parameter [29] such that
positive values of γ coerce n and M to be parallel to each
other, whereas negative values of γ coerce n and M to be
perpendicular to each other. This can be roughly seen by the
following calculation,

−γμ0

2

∑
i j

Qi jMiMj = γμ0S|M|2
(

1

2
− cos2 θ

)
, (2)

where θ is the angle between the nematic director n and
the magnetization vector M; see Ref. [28] for more details.
We consider the simplest form of the coupling term that
is adequate to stabilize bulk ferronematic phases [28]. For
the S constant, this effectively reduces to (n · M)2 as used
in Ref. [3]. While higher-order magneto-nematic coupling
terms are required for the study of critical behavior or phase
diagrams, the simple cubic term suffices to capture stable
ferronematic states as studied here. The stray free energy is
not included. Following Ref. [4], we argue that the stray field
energy is small compared to the other energetic contributions
for dilute suspensions based on empirical energy calculations.
For nondilute suspensions or for small ferronematic square

wells, the stray field energy may need to be explicitly in-
cluded.

These phenomenological parameters are typically esti-
mated from experimentally measured quantities [30]. The
Landau coefficients A and C are related to experimentally
measured quantities like the isotropic-nematic transition tem-
perature, the latent heat of transition, and the order parameter
[31]. Similarly, the coefficients α and β can be evaluated
from the measurements of magnetization and susceptibility
[32]. The coupling constant γ has been estimated from the
reversal fields of hysteresis loops in Ref. [3]. In principle, it
is possible to estimate the parameters above, but the avail-
able experimental data on ferronematics is extracted in the
presence of external magnetic fields. As the latter influences
response functions and other characteristics, we cannot obtain
reliable estimates of the phenomenological parameters above
with zero magnetic fields at this juncture. However, we hope
that our work will motivate new investigations on these lines
for ferronematics.

We rescale Eq. (1) by defining [Q′
11, Q′

12] =√
2C/|A|[Q11, Q12], [M ′

1, M ′
2] = √

β/|α| [M1, M2], [x′,
y′] = [x, y]/L (where L is the length of the side of the
well), and F ′ = FC/A2. The Euler-Lagrange (EL) equations
associated with the dimensionless free energy density are
given by

	1∇2Q11 − Q̃Q11 + c

2

(
M2

1 − M2
2

) = 0,

	1∇2Q12 − Q̃Q12 + cM1M2 = 0,
(3)

ξ (	2∇2M1 − M̃M1) + c(Q11M1 + Q12M2) = 0,

ξ (	2∇2M2 − M̃M2) + c(Q12M1 − Q11M2) = 0,

where Q̃ = ( TrQ2/2 − 1), M̃ = (|M|2 − 1) and

	1 = K

|A|L2
; 	2 = κ

|α|L2
; ξ = C

|A|2
|α|2
β

; c= γμ0

|A|

√
C

2|A|
|α|
β

.

There are four dimensionless phenomenological constants
above. We work with low temperatures so that A, α < 0. The
parameter c is the coupling constant; the sign of c has the
same meaning as the sign of γ above. The parameters

√
	1

and
√

	2 set the scale of curvature for Q and M, respectively;
for simplicity we set them to be identically equal to

√
	,

which is a physically relevant choice since
√

	1 and
√

	2 are
defined as ratios of parameters. In our simulations, unless
otherwise stated, we take 	 = 0.001, which is a benchmark
value motivated by previous studies for uncoupled systems
with c = 0 in Ref. [20]. The fourth parameter, ξ , is a measure
of the strength of the magnetic energy relative to the nematic
energy; i.e., larger values of ξ will coerce the composite
system to minimize the magnetic energy in Eq. (1) so that
the magnetization profile M will strongly tailor the Q profile
but not necessarily the other way around (i.e., M → Q) [at
least for minimizers of Eq. (1)]. Similarly, for very small
values of ξ , minimizers of the composite system are less
influenced by the magnetic energy density in Eq. (1), and in
this limit, the M profiles are tailored by the Q profiles and
not strongly in the other direction (i.e., Q → M). Both limits,
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ξ → 0 and ξ → ∞, physically describe the one-way coupling
of Q → M and M → Q, respectively.

We work with Dirichlet boundary conditions for Q and
M, respectively, on the rescaled square edges, x = 0 and
1 and y = 0 and 1, and our choices are guided by earlier
experimental and theoretical works, which assume that n is
constrained to be tangent to the square edges [16,20,33–36].
The tangent conditions require that Q11 = −1 and Q12 = 0
at x = 0 and 1 and that Q11 = 1 and Q12 = 0 at y = 0 and 1
(this is equivalent to fixing n = (±1, 0) on the edges y = 0
and 1 and n = (0,±1) on the edges x = 0 and 1). We assume
that S = 1 on the edges, by analogy with previous work on
uncoupled systems. Since we have no experimental data for
the boundary values of S in the context of ferronematics,
we believe that S = 1 is a good starting point for theoretical
studies on these lines. For M, we assume M = (0, 1) at x = 0;
M = (0,−1) at x = 1; M = (−1, 0) at y = 0; and M = (1, 0)
at y = 1. These are topologically nontrivial tangent Dirichlet
conditions by construction, motivated by similar experimental
observations in confined ferronematic systems by Shuai et al.
[22] that require M to rotate by 2π radians along the boundary,
so that the M profile necessarily has an interior defect with
M = 0. This is a plausible choice in the strong anchoring
limit with positive γ (see Refs. [22,28]), since M is either
parallel or antiparallel to n on the square edges, and we
speculate that there may be experimental methods to fix M
on the edges, even with negative values of γ . In fact, the
topologically nontrivial boundary conditions for M stabilize
interior nematic defects in our numerical results, in certain
parameter regimes. We could also impose natural boundary
conditions for M which are experimentally realizable and
essentially imply that we do not prescribe any boundary
conditions for M. Preliminary numerical investigations show
that in the case of natural boundary conditions for M, the M
profile is tailored by the Q profile for positive and negative
c and we may not achieve two-way coupling between Q and
M, as can be achieved by our choice of Dirichlet conditions
for M.

The critical points of this system are solutions of the
EL equations, Eqs. (3), which are computed numerically
by the standard finite-difference method (five-point formula
for �) and Newton’s method [18,37]. In order to track the
complex solution landscape, we apply the deflation technique
for nonlinear problems [17,18,38]. The solution stability can
be checked by looking at the smallest eigenvalue λ1 of the
Hessian matrix of the discretized free energy [17,39]. A
solution is locally stable if λ1 > 0. In what follows, we first
discuss the uncoupled system with c = 0, and then we discuss
the effects of the MNP-NLC coupling with different values of
ξ (= 0.1, 1 and 10), with both c > 0 and c < 0. Some of our
most interesting results pertain to how we can tune the system
properties with c and ξ , opening new vistas of scientific and
experimental possibilities.

III. NUMERICAL RESULTS

NLC-filled square wells (corresponding to c = 0) are well
studied; see Refs. [16,17,20,21,26,35,39–42]. There are two
stable nematic equilibria: DN and RN [16,20]. The solution
DN has a diagonally aligned nematic director, whereas the

FIG. 1. Nematic (left panels) and magnetic configurations (right
panels) for 	1 = 	2 = 0.001 and c = 0: (a) DN , (b) RN . The color
bars denote the values of S and |M|, respectively.

nematic director rotates by π radians between a pair of
opposite edges for the RN state. We plot the DN and RN states
in Fig. 1, along with the scalar order parameter (read by the
color chart). Both the DN and RN states have zero winding
number; i.e., the corresponding n has no net rotation around
the square boundary. We also plot the M profile with c = 0.
As expected, we see a distinct vortex of charge +1 at the
square center (with M = 0) consistent with the topologically
nontrivial boundary conditions for M. We point out that M
has a direction, whereas the n field is a director field without
a direction. We plot |M| with the color bar to highlight the
reduction in |M| at the vortex center.

Next, we consider coupled systems (c �= 0) with ξ = 1,
where the nematic and magnetic energy densities are of com-
parable importance for energy minimizers or locally stable
solutions (Q, M) of Eqs. (3). In Figs. 2(a) and 2(b), we
plot two numerically computed stable solutions of Eqs. (3)
with ξ = 1 and c = 0.25, denoted by (Q1

D,0.25, M1
D,0.25) and

(Q1
R,0.25, M1

R,0.25), respectively. Here, the superscripts specify
the value of ξ ; the subscripts D and R indicate the numerical
solutions computed with DN and RN as initial numerical
guesses for the Q solution, respectively; and the numerical
value in the subscript is the value of c. In this regime, the
Q profile does not develop any interior defects (with S ≈ 0)
since ξ is unity. Rather, we see that M1

D,0.25 exhibits a smeared
out vortex along the square diagonal, to induce coalignment
between n and M, creating an interior domain wall with M ≈
0. Similar remarks apply to the pair (Q1

R,0.25, M1
R,0.25) where

we observe a distinct domain wall (with |M| ≈ 0) containing
a smeared out vortex near one of the square edges, which
induces a rotated-like, MR, profile away from the domain wall.
There is a corresponding reduction in S for the QR profile too,
along this square edge, tailored by the domain wall in M1

R,0.25.
Interestingly, there is some evidence of two-way coupling
for ξ = 1 when c is large enough. An example for c = 0.5,
labeled by (Q1

D∗,0.5, M1
D∗,0.5), is shown in Fig. 2(c). Here,

the subscript D∗ indicates that this is another computable
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FIG. 2. Nematic and magnetic configurations for 	1 = 	2 =
0.001, ξ = 1, and (a) c = 0.25, (Q1

D,0.25, M1
D,0.25); (b) c = 0.25,

(Q1
R,0.25, M1

R,0.25); (c) c = 0.5, (Q1
D∗,0.5, M1

D∗,0.5); (d) c = −0.25,
(Q1

D,−0.25, M1
D,−0.25); and (e) c = −0.25, (Q1

R,−0.25, M1
R,−0.25).

solution using DN as the initial guess for the Q profile and
the deflation technique. There are emergent point defects of
charge +1/2 in the Q solution tailored by the interior vortex
in M1

D∗,0.5. We also consider negative coupling for ξ = 1
and compute two locally stable critical points for c = −0.25,
denoted by (Q1

D,−0.25, M1
D,−0.25) and (Q1

R,−0.25, M1
R,−0.25), re-

spectively [see Figs. 2(d) and 2(e)]. In both cases, n retains the
diagonal and rotated profiles, respectively, and M distorts to
be perpendicular to the corresponding n. Notably, the vortices

in M migrate to a square vertex, and this may have interesting
optical consequences for experiments.

In Figs. 3(a)–3(d), we set ξ = 0.1 and look at c =
0.05 and c = −0.05, respectively. Again there are multi-
ple critical points but we only illustrate the stable pairs
(Q0.1

D,±0.05, M0.1
D,±0.05) and (Q0.1

R,±0.05, M0.1
R,±0.05). Qualitatively,

the profiles look similar to stable profiles with ξ = 1 with little
coupling effect on n (since ξ is quite small). For positive c, as
in Figs. 3(a) and 3(b), we see a distinct domain wall (with
|M| ≈ 0) along one of the square diagonals in M0.1

D,0.05 or near
one of the square edges in M0.1

R,0.05. This gives us excellent
control on magnetic domain walls, their structure, location,
and stability. Equally, for c = −0.05, shown in Figs. 3(c) and
3(d), M0.1

D,−0.05 and M0.1
R,−0.05 reorient to be perpendicular to

the corresponding nematic directors, the vortices migrate to
one of the square vertices, and interestingly, we see partial
domain walls in M along pairs of adjacent square edges. In
this regime, M is more susceptible to Q and we can use Q to
tailor M effectively.

Finally, in Figs. 4(a)–4(d), we set ξ = 10 and study the
effects of both positive and negative coupling, through
the solution pairs (Q10

D,0.25, M10
D,0.25), (Q10

R,0.2, M10
R,0.2),

(Q10
D,−0.25, M10

D,−0.25), and (Q10
R,−0.25, M10

R,−0.25), respectively.
The case ξ = 10 illustrates the exotic possibilities offered by
a system with nonpolar (nematic) and polar (magnetic) order
which is of independent interest. For ξ = 10, the M profiles
strongly tailor the corresponding n profiles as expected;
i.e., the corresponding M vector fields retain the interior
vortex in all four cases in Figs. 4(a)–4(d). For ξ = 10 and
c = 0.25 [Fig. 4(a)], the nematic director n10

D,0.25 loses the
diagonal profile and exhibits two distinct +1/2 interior point
defects, following the M10

D,0.25 profile. For c = 0.2, shown in
Fig. 4(b), we observe a clear displacement of the interior
vortex in M10

R,0.2, in response to n10
R,0.2. This displaced vortex

state is not stable for stronger coupling, say c = 0.25.
For c = −0.25, two defects appear near the square edges

in n10
D,−0.25 and the interior vortex in M migrates to-

wards the left-down corner in (M10
D,−0.25) [see Fig. 4(c)]. In

(Q10
R,−0.25, M10

R,−0.25), the interior M vortex migrates vertically
downwards in M10

R,−0.25 whilst we observe three defects on
the square edges and one interior +1/2 defect in the cor-
responding n10

R,−0.25 profile. Whilst we cannot give detailed
explanations about the appearance and multiplicity of these
nematic defects, they are stable and arise naturally from
energetic and topological considerations without external
fields.

IV. CONCLUSIONS

We report interesting and exotic morphologies in an MNP-
NLC square system that exhibit defects in both n and
M, with rich spatial inhomogeneities. These textures are
stabilized by an interplay between the coupling parameter
c and the material- and temperature-dependent parameter
ξ . The coupling parameter c is largely a material prop-
erty and in some cases acts as an external magnetic field;
i.e., we can displace magnetic domain walls by varying c.
The parameter ξ has not been highlighted in the literature
due to limited theoretical studies. The material-dependent
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FIG. 3. Nematic and magnetic configurations for 	1 = 	2 = 0.001, ξ = 0.1, and (a) c = 0.05, (Q0.1
D,0.05, M0.1

D,0.05); (b) c = 0.05,
(Q0.1

R,0.05, M0.1
R,0.05); (c) c = −0.05, (Q0.1

D,−0.05, M0.1
D,−0.05); and (d) c = −0.05, (Q0.1

R,−0.05, M0.1
R,−0.05).

constants, C and β, and the temperature-dependent parame-
ters, A and α, can be tuned to control ξ . We focus on static
ferronematic equilibria without any external magnetic fields
which address the pivotal question—what are the observable
states in this coupled system with nonpolar nematic and
polar magnetic order? The most likely state is the global
energy minimizer, and we defer energy comparisons to future
work.

Our work in a simple 2D setting actually captures (to
some extent) the experimentally reported complex magnetic
domain walls, nematic twist walls, and other defects in a
three-dimensional ferronematic-filled rectangular capillary in
Ref. [22]. Further, we can adapt our theoretical methods to
study defect lattices in ferronematics (also see reported in
Refs. [6,7]) and defects as binding sites for new materials de-
sign. The dynamic counterparts of our static study are equally
rewarding, e.g., persistent vortices (which are essential for

nano- and microscale mixing applications) in microfluidic
channels or even applications in electrokinetics [43] and in
tailored colloidal assemblies [41,44–48]. Last but not least,
we plan to study the interaction of these simple systems with
external magnetic fields. With an external magnetic field, both
n and M will couple to each other and with the external field,
and this coupling can either enhance or suppress the effects
of c and ξ , or lead to completely different morphologies.
For example, magnetic domain walls may have different
laws of motion with magnetic fields or one may even see
stable nematic line defects in the interior, tailored by the
external field. Equally, we may be able to switch between
the reported ferronematic equilibria by applying relatively
small magnetic fields. If the external field is nonplanar, a
three-dimensional approach is needed for both Q and M. This
would be a new ball game with fundamentally new scientific
implications.

FIG. 4. Nematic and magnetic configurations for 	1 = 	2 = 0.001, ξ = 10, and (a) c = 0.25, (Q10
D,0.25, M10

D,0.25); (b) c = 0.2, (Q10
R,0.2,

M10
R,0.2); (c) c = −0.25, (Q10

D,−0.25, M10
D,−0.25); and (d) c = −0.25, (Q10

R,−0.25, M10
R,−0.25).
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I. Muševič, and S. Dhara, Opt. Express 25, 1073 (2017).
[10] C. Cîrtoaje, E. Petrescu, C. Stan, and D. Creangč, Phys. E
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