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Negative viscosity of liquid crystals in the presence of turbulence: Conductivity dependence,
phase diagram, and self-oscillation
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Recently, we reported the discovery of enormous negative viscosity of a nematic liquid crystal in the presence
of turbulence induced by ac electric fields, which enabled us to observe unique phenomena related to the negative
viscosity, such as spontaneous shear flow, hysteresis in flow curves, and self-oscillation [Orihara et al., Phys. Rev.
E 99, 012701 (2019)]. In the present paper, we report the rheological properties of another nematic liquid crystal,
which is a homologue of the previous one. The properties of the present liquid crystal are strongly dependent
on electrical conductivity. Three samples with different conductivities were prepared by changing the amount of
an ionic dopant. It was found that the lowest-conductivity sample without dopant shows no negative viscosity
whereas the other ion-doped samples exhibit negative viscosity with strong dependence on the frequency of the ac
electric field, consistent with microscopic observations. Phase diagrams of the negative- and positive-viscosity
states in the amplitude and frequency plane are constructed to show the conductivity effect. Furthermore, we
propose a model to reproduce another type of self-oscillation found in the present study.
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I. INTRODUCTION

We recently discovered enormous negative viscosity of
the nematic liquid crystal MBBA (p-methoxybenzylidene-
p′-n-butylaniline) in the presence of turbulence induced by
electric fields [1]. The viscosity of a fluid is a measure
of its resistance to flow. Therefore, in the case of negative
viscosity, the flow is amplified by negative resistance, even
in the absence of external stress, resulting in spontaneous
flow. Numerous experimental [2–9] and theoretical [10–20]
studies have attempted to observe negative viscosity, mainly
in magnetic fluids [7,8,16,17], electrorheological suspension
[9,18–20], and active suspensions of bacteria [2–6,10–15,21–
23]. Recently, active suspensions exhibit liquid crystalline
order at high concentrations, have attracted much attention
[13,15,21–23], and are theoretically predicted to show intrigu-
ing nonlinear rheological properties [13,15]. In suspensions
of Escherichia coli, negative viscosity was first measured,
although it was very low (approximately −10−1 mPa s) [5].
In contrast, MBBA exhibited much larger negative viscosity
of −40 mPa s [1].

Taking advantage of the enormous negative viscosity of
MBBA, we successfully observed several characteristic phe-
nomena with a conventional rheometer [1]. We observed a
spontaneous shear flow that rotated the upper disk of the
rheometer, as well as reversal of the rotational direction upon
application of an external torque in the opposite direction.
The rotation speed (∝ shear rate) was proportional to the
square of the electric field amplitude. Hysteresis loops were
also observed in the shear rate–shear stress curves under
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controlled shear stress, which were quite similar to those seen
for ferroic materials such as ferromagnetics. As the frequency
of the applied ac electric field was increased, the hysteresis
loop or the negative viscosity vanished, indicating that a
phase transition took place from a negative- to a positive-
viscosity state. In this case, the frequency can be regarded
as the temperature for ferroic materials. Thus, we coined the
terms ferroviscosity, ferroviscous, and paraviscous. However,
the ferroic materials are at equilibrium, whereas the liquid
crystal is out of equilibrium and electric energy is constantly
being supplied and partially converted into the spontaneous
rotation. Under controlled shear rate, we observed S-shaped
curves for the shear rate–shear stress measurements, where a
negative slope, which confirms negative viscosity, was clearly
seen at the origin. Theoretical consideration based on the
Ericksen-Leslie theory revealed that the negative viscosity
originates from the electric field–induced shear stress, which
is generated by the rotation of the director in the presence
of turbulence. In addition, we constructed a self-oscillator by
attaching a coil spring to the upper disk of the rheometer,
in which the spring exerts a restoring torque on the disk to
convert the constant rotation to an oscillatory rotation. We
would like to emphasize that MBBA is the only fluid known
to possess such enormous negative viscosity.

In this paper, we report another nematic liquid crys-
tal homologue of MBBA, EBBA (p-ethoxybenzylidene-p′-
n-butylaniline), which exhibits properties similar to MBBA.
However, the properties depend strongly on the conductivity
of EBBA. For example, the negative viscosity vanishes in a
low-conductivity sample. Therefore, we prepare three samples
with different conductivities by changing the amount of an
ionic dopant to examine the conductivity dependence. The
conductivity affects the dependence on the frequency of the
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FIG. 1. Schematic of the experimental setup. The upper disk
and bottom stage consist of glass coated with ITO. Microscopic
observations are made through the bottom glass stage.

ac electric field strongly; thus, we measure the rotation speed
as a function of the amplitude and frequency of an ac electric
field and construct a phase diagram consisting of the paravis-
cous (positive-viscosity) and ferroviscous (negative-viscosity)
phases in the amplitude and frequency plane. Furthermore,
we discuss another type of self-oscillation found in the EBBA
system based on a model in which the viscoelasticity of EBBA
is considered. This paper is organized as follows. In Sec. II,
we describe the sample preparation and experimental setup.
In Sec. III, we present the experimental results, including
the electric field dependence of spontaneous shear stress,
microscopic observations, S-shaped curves, phase diagrams,
and self-oscillation. In Sec. IV, we discuss the mechanism
of the self-oscillation mentioned in Sec. III by proposing a
model including viscoelasticity. In Sec. V we summarize our
findings.

II. EXPERIMENTAL DETAILS

The nematic liquid crystal (NLC) materials used were
EBBA (Tokyo Chemical Industry) and MBBA (Tokyo
Chemical Industry), both of which have negative dielectric
anisotropy. EBBA exhibits the nematic-to-isotropic phase
transition at 79.3 °C [24], and the dielectric anisotropy �ε is
−0.26 at 50 °C [25]. We prepared the following three EBBA
samples with different conductivities by doping with an ionic
compound (tetrabutylammonium benzoate, Sigma-Aldrich):
pure EBBA [EBBA(P)], low-doped EBBA [EBBA(L)], and
high-doped EBBA [EBBA(H)]. The conductivities of these
samples measured with unaligned cells at 1 kHz were 5.67 ×
10−9, 2.50 × 10−8, and 1.28 × 10−7 �−1 m−1, respectively.
The conductivity of EBBA(H) is comparable to that of pure
MBBA [MBBA(P); 0.90 × 10−7 �−1 m−1], which was used
as a reference.

A schematic of the experimental setup is shown in Fig. 1.
The nematic liquid crystal samples were sandwiched between
the bottom glass stage and the upper rotating glass disk
attached to a rheometer (MCR302, Anton Paar). Since the
shear rate depends on the measurement position for the par-
allel plates, we defined it as that at the edge of the upper

FIG. 2. Amplitude dependence of shear stress for EBBA(P) and
EBBA(H), at a constant shear rate of 5 s−1. The frequencies are
100 Hz for EBBA(H), and 20 and 50 Hz for EBBA(P). The shear
stress is always positive at all electric fields for EBBA(P). However,
the shear stress of EBBA(H) becomes negative at high electric fields
(E0 > 1.2 V/μm).

disk, and the shear stress at the edge of the upper disk was
calculated from the measured torque by assuming that the
fluid is Newtonian. The surfaces of these glass plates were
coated with indium tin oxide (ITO) to apply electric fields to
the samples. No anchoring treatment was performed on the
glass plates. The radius of the upper rotating glass disk, r, was
25 mm and the gap between the upper disk and the bottom
stage, d , was 100 μm. An electric field was applied through
a metal wire and ionic liquid [1-ethyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide] (Tokyo Chemical Indus-
try) was placed in a vessel attached to the upper disk to
prevent friction between the metal wire and upper disk. The
temperature of the bottom glass stage was kept at 50.0 °C for
EBBA and 25.0 °C for MBBA with a temperature controller
(TDC-1600, Cell System). We applied an ac electric field,
E = E0 cos(2π f t ), with an oscillator (WF1974, NF) and a
high-voltage amplifier (T-HVA02, Turtle), the amplitude E0

and frequency f of which were controlled with a PC to
measure the E0 and f dependences of shear rate γ̇ and shear
stress σ . Microscopic observations were made through the
glass disk and stage using a microscope (IX73, Olympus) and
a high-speed video camera (ORCA-Flash4.0, Hamamatsu).
The samples were illuminated with a white LED (SLA-100A,
Sigma Koki).

III. RESULTS

A. Negative shear stress

Figure 2 shows the electric field (amplitude E0 of the
applied ac electric field) dependence of shear stress under
a constant shear rate of 5 s−1 for EBBA(P) and EBBA(H)
at 50 °C in the nematic phase, and at each electric field the
shear stress was averaged for 200 s. The frequencies f were
100 Hz for EBBA(H), and 20 and 50 Hz for EBBA(P). The
shear stress measured at 50 Hz in EBBA(P) monotonically
increased with increasing applied electric field. At 20 Hz,
the shear stress first increased to a maximum at 1.7 V/μm
and then decreased, but this decrease was small and the
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FIG. 3. Microscopic images observed (a) in EBBA(H) at f =
100 Hz and E0 = 2.4 V/μm, and in EBBA(P) at (b) f = 20 Hz and
E0 = 2.4 V/μm and (c) f = 50 Hz and E0 = 2.4 V/μm. Although
turbulence occurs in (a), (b), the pattern in (b) is coarser than that in
(a). In (c) the sample contains many fluctuating disclinations without
turbulence. The scale bar is 1 mm.

shear stress never became negative. No negative viscosity was
observed in the frequency range of 0–2 kHz for EBBA(P).
At 20 and 50 Hz the rheological properties of EBBA(P)
were slightly different, but their structures were markedly
different from each other and different from that of EBBA(H)
at 100 Hz, as shown below. The shear stress for EBBA(H)
first increased to a maximum at about 0.5 V/μm, and then
decreased monotonically with increasing electric field, and the
shear stress became zero around 1.2 V/μm and negative as the
electric field increased further. The behavior of EBBA(H) and
EBBA(L) (results not shown) was similar to that of MBBA
[1].

B. Microscopic observations under electric fields

The negative viscosity is closely related to electric field–
induced turbulence [1]. Figure 3 shows the structures of
EBBA(H) and EBBA(P) observed with a microscope. In
EBBA(H), typical turbulence was observed at f = 100 Hz
and E0 = 2.4 V/μm [Fig. 3(a)], where the viscosity was
negative (Fig. 2). This image was taken in the steady state
of dynamic scattering mode (DSM) 2, in which the fluid is
in a turbulent state with disclinations [26–32]. In EBBA(P),
turbulence was also observed at f = 20 Hz and E0 =
2.4 V/μm [Fig. 3(b)]. However, the pattern of EBBA(P) was

coarser than that of EBBA(H), indicating that the turbulence
in EBBA(P) was less developed compared with EBBA(H),
which is thought to explain the absence of negative viscosity
in EBBA(P). In contrast, at 50 Hz, EBBA(P) showed no
turbulence [Fig. 3(c)], although it contained many fluctuating
disclinations. These observations explain why the shear stress
of EBBA(P) monotonically increased at 50 Hz but began to
decrease at 20 Hz (Fig. 2). At 20 Hz, the electrically in-
duced turbulence reduced the shear stress at high electric field
strength, which was so weak that the shear stress remained
positive.

C. N-shaped curve and scaling relation

We examined whether the scaling relation between the
shear stress σ and the shear rate γ̇ observed in MBBA(P)
also holds in EBBA(H). Figure 4(a) shows the γ̇−σ curves
measured at a frequency of 100 Hz and various electric field
strengths (amplitudes) at controlled shear rate, where the sam-
pling time was 10 s at each shear rate. In Fig. 4(a), the average
value of shear stress is plotted as a function of shear rate.
N-shaped curves were clearly observed at large electric fields
(0.9–2.4 V/μm). In our previous paper [1], we referred to
the curves as the S-shaped curves instead of N-shaped curves
because the γ̇ and σ axes were reversed. The N-shaped curves
were observed in the ferroviscous phase, whereas mono-
tonically increasing curves (0–0.6 V/μm) were observed in
the paraviscous phase [1]. The N-shaped curves reveal the
occurrence of negative viscosity because the slope around the
origin is negative (dσ/d γ̇ < 0). The fact that the slope at
the origin is almost independent of the electric field in the
ferroviscous phase implies the validity of the scaling relation,
as explained in our previous paper [1].

The scaling relation between σ and γ̇ was derived from
dimensional analysis in the ferroviscous phase [1] as

γ1γ̇

ε0|�ε|E2
0

= f

(
σ

ε0|�ε|E2
0

)
, (1)

where γ1 is the rotational viscosity and f (x) is a scaling func-
tion. The scaled data from Fig. 4(a) are plotted in Fig. 4(b),

FIG. 4. N-shaped curves and scaling relation in EBBA(H). (a) γ̇ − σ curves under a controlled shear rate for various amplitudes of ac
electric field at f = 100 Hz. (b) Relationships between scaled shear rate and scaled shear stress based on the data shown in (a). The scaling
relation holds at large electric fields (E0 > 0.90 V/μm) in the ferroviscous phase. Here, γ1 = 0.057 (Pa s) and �ε = −0.26 [24,25].
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FIG. 5. Frequency dependence of N-shaped curve at E0 =
2.40 V/μm in EBBA(H). The slope (viscosity) at the origin in
the ferroviscous phase is negative and it gradually decreases with
increasing frequency.

which shows that scaling relation (1) holds at large electric
fields in the ferroviscous phase. This scaling relation also held
for EBBA(L) and MBBA(P).

Figure 5 shows the frequency dependence of the γ̇−σ

curve of EBBA(H) at E0 = 2.40 V/μm as the frequency was
increased. The transition from the ferroviscous to paravis-
cous phase was observed. The slope at the origin, which
gives the viscosity, gradually decreased with increasing fre-
quency. Similar frequency dependence was also observed for
EBBA(L) and MBBA(P).

D. Spontaneous shear rate and phase diagram

The negative shear viscosity in the ferroviscous state can
generate spontaneous shear flow, resulting in the rotation
of the upper disk of the rheometer if the disk can rotate
freely, that is, under zero shear stress. Figure 6 shows the
spontaneous shear rate γ̇s as a function of E2

0 at f = 50 Hz

FIG. 6. Dependences of spontaneous shear rate (proportional to
the angular velocity of the upper rotating disk) on the square of the
amplitude, E 2

0 , at f = 50 Hz for EBBA(P), EBBA(L), EBBA(H), and
MBBA(P). The measurements are performed at zero shear stress.
The samples other than EBBA(P) show spontaneous shear flow.

under zero shear stress, where the shear rate was measured
for a period of 200 s at each electric field, and the average
value was plotted. In EBBA(P), no spontaneous shear flow
was observed because it has no negative viscosity in the
measured range of electric field. The other samples showed a
similar dependence of spontaneous shear rate on electric field.
There was a critical electric field, which corresponds to the
paraviscous to ferroviscous phase transition point, over which
the spontaneous shear rate monotonically increased. However,
it should be noted that shear rate periodically oscillated in
EBBA(H), which was behavior markedly different from that
of EBBA(L) and MBBA(P) around the transition point. The
oscillation period was much smaller than the measurement
time, so the oscillation was averaged out, and γ̇s = 0 in Fig. 6.
The oscillation is discussed in detail in Sec. IV. For steady
rotation, EBBA(H) had the largest spontaneous shear rate,
which was about three times larger than that of MBBA(P).
In our previous paper, the spontaneous shear rate was pro-
portional to the square of the electric field amplitude in the
high electric field region and the proportionality arose from
the scaling relation described by Eq. (1); substitution of σ = 0
into Eq. (1) yields γ̇ ∝ E2

0 . In Fig. 6, MBBA(P) shows good
proportionality, whereas EBBA(L) and EBBA(H) do not.

Figure 7(a) shows the frequency dependence of sponta-
neous shear rate γ̇s for EBBA(L), EBBA(H), and MBBA(P)
at E0 = 2.10 V/μm. For all samples, the spontaneous shear
rate reached a maximum, and then dropped to zero at critical
frequency fc. The fluid was in the ferroviscous state below
fc and in the paraviscous state over fc. The fc values at
E0 = 2.10 V/μm were 160, 1100, and 470 Hz for EBBA(L),
EBBA(H), and EBBA(P), respectively. In addition to the
voltage dependence, near the critical frequency the shear
rate of EBBA(H) oscillated. The amplitude and frequency
dependence of the spontaneous shear rate were examined
with a two-dimensional plot of γ̇s in the E0 − f plane for
each sample [Figs. 7(b)–7(d)], giving the phase diagram
consisting of the paraviscous and ferroviscous phases, where
we included the oscillation state in the paraviscous phase.
The measurements were taken at 17 amplitudes and 20 fre-
quencies [indicated by white and red dots in Fig. 7(c)], and
the interpolated data were plotted. The phase diagrams show
that the ferroviscous phase appeared at high amplitudes and
low frequencies in the three samples, although the lowest
amplitude and the highest frequency depended on the sample.
The amplitudes and frequencies were 0.68 V/μm and 160 Hz
for EBBA(L), 0.60 V/μm and 1100 Hz for EBBA(H), and
0.53 V/μm and 470 Hz for MBBA(P). For EBBA, the low-
est amplitude of EBBA(H) was almost the same as that of
EBBA(L), whereas the highest frequency of EBBA(H) was
much higher than that of EBBA(L). The large difference in
fc can be explained if fc is only related to the electrical
relaxation time given by the ratio of the dielectric constant
and the conductivity. For this assumption, fc may be inversely
proportional to the electrical relaxation time, that is, fc ∝ σ̄ /ε̄,
where we neglect the anisotropies in dielectric constant and
conductivity, and the bars indicate averages. Because ε̄ is the
same for the two samples, fc may be just proportional to σ̄ .
The ratio of fc of EBBA(H) to EBBA(L) is 6.5, whereas
that of σ̄ is 5.1, indicating that the difference in fc mainly
comes from the difference in the electrical relaxation time. A
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FIG. 7. (a) Frequency dependences of spontaneous shear rate γ̇s at E0 = 2.10 V/μm for EBBA(L), EBBA(H), and MBBA(P). (b)–(d)
Phase diagrams for the paraviscous and ferroviscous phases in the E0 − f plane for EBBA(L), EBBA(H), and MBBA(P). The measurement
points are indicated by white and red dots only in (c); the oscillation is observed at the red dots. The ferroviscous phase appears at high
amplitudes and low frequencies for all three samples. The zigzag boundaries are due to the lack of data points.

similar conductivity dependence was theoretically shown for
electrohydrodynamic convection [33,34].

The shear rate oscillation was observed in the narrow
region near the boundary between the paraviscous and ferro-
viscous phases [red dots in Fig. 7(c)] in EBBA(H), although
it was not observed in the other samples. Figure 8 shows

FIG. 8. Temporal changes in shear rate for three typical frequen-
cies at E0 = 1.50 V/μm. At f = 900 Hz, the shear rate is constant
and its value is 2.5 s−1. At f = 1000 Hz, the shear rate temporally
oscillates and amplitude A is about 0.34 s−1 and period T is about
16 s. At f = 1100 Hz in the paraviscous phase, the oscillation
disappears.

the temporal changes in shear rate at three frequencies at
1.50 V/μm. At 1000 Hz [red arrow in Fig. 7(c)], self-
oscillation was observed, where amplitude A and period T
were 0.34 s−1 and 16 s, respectively. In contrast, at 900 Hz,
the self-oscillation changed to spontaneous steady rotation,
whereas at 1100 Hz neither behavior was observed.

IV. DISCUSSION

A. Model for self-oscillation

In this section, we discuss the mechanism of the self-
oscillation shown in Sec. III. In our previous study [1], similar
oscillation occurred when we attached a coil spring to the
shaft of the upper disk. In that case, the oscillation is caused
by the restoring force of the spring. In the present case,
however, there is no spring. An important difference is that
in the spring system, the oscillation occurs around a position
at which the restoring force vanishes, whereas in the system
without the spring, the oscillation occurs around any position
because there is no special position. Furthermore, the oscil-
lation in the present system changes to steady rotation when
the electric field is increased or the frequency is decreased.
Thus, we need a model with a restoring force but no special
center for oscillation. We construct such a model by combin-
ing a nonlinear rheological element with negative viscosity
(N-shaped element) and the Maxwell element, which consists
of a spring (an elastic element) with shear modulus GM,
connected in series to a viscous dashpot (viscous element)
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FIG. 9. Model consisting of a nonlinear rheological element (N-
shaped element) and the Maxwell element with a viscous dashpot
and an elastic spring.

with shear viscosity ηM (Fig. 9). We discuss the origin of the
elasticity included in the Maxwell element in Sec. IV C.

In the model, the equation of motion for the upper disk is
expressed in terms of strain γ as

I γ̈ = −σN − σM + σ, (2)

σ̇M = − 1

τ
σM + GMγ̇ , (3)

where σN and σM are the shear stresses of the nonlinear
element with negative viscosity and the Maxwell element,
respectively, and the rotation angle of the upper disk φ is given
by φ = aφγ (aφ = h/r, where h is the gap and r is the radius
of the upper disk), and torque M exerted on the upper disk
from the liquid crystal is given by M = aM(σN + σM) (aM =
πr3/2). I corresponds to the inertia IP of the upper disk and
is given by I = (aM/aφ )IP, and σ corresponds to the torque
exerted on the upper disk by the rheometer. τ = ηM/GM is the
relaxation time of the Maxwell element.

B. N-shaped curve and phase diagram

We consider the γ̇−σ curve shown in Sec. III obtained
under controlled shear rate. For this case, Eqs. (2) and (3)
become

σ = σN + σM, (4)

σM = τGMγ̇ = ηMγ̇ . (5)

Therefore, the shear stress measured under controlled shear
rate is given by

σ = σN + ηMγ̇ . (6)

This means that the measured stress is increased by the
viscous part, ηMγ̇ , of the Maxwell element. In contrast, when
γ̇ changes quickly or the relaxation time is large, we can
neglect the first term of the right-hand side of Eq. (3), so
that σ̇M = GMγ̇ , that is, σM = GMγ because a constant of
integration can be omitted without loss of generality for the
present system. By substituting σM = GMγ into Eq. (2) with

σ = 0, we get

I γ̈ = −σN − GMγ , (7)

resulting in our previous model with a coil spring, which pro-
duces the oscillation. We approximate σN as a cubic function
of γ̇ for simplicity,

σN = aγ̇ + bγ̇ 3, (8)

where b > 0. Substitution of Eq. (8) into Eq. (7) yields

σ = (a + ηM)γ̇ + bγ̇ 3. (9)

This equation indicates that the N-shaped curve appears
when a + ηM < 0, and therefore it cannot always appear, even
when the viscosity of σN is negative (a < 0).

Now, we consider the self-oscillation under controlled
shear stress of σ = 0. For convenience, we scale Eqs. (2) and
(3) with Eq. (8) and σ = 0,

d2γ̃

dt̃2
= −ã

d γ̃

dt̃
−

(
d γ̃

dt̃

)3

− σ̃M, (10)

d σ̃M

dt̃
= −σ̃M + G̃M

d γ̃

dt̃
, (11)

introducing the scaled quantities

t̃ = t

τ
, γ̃ =

√
b

Iτ
γ , σ̃M =

√
bτ 3

I3
σM,

ã = a
τ

I
, G̃M = GM

τ 2

I
. (12)

We construct a phase diagram consisting of the static
state (d γ̃ /dt̃ = 0), the oscillation state, and the steady rota-
tion state (d γ̃ /dt̃ = constant) in the ã − G̃M plane based on
Eqs. (10) and (11). First, we examine the linear stability of
the static state. Setting γ̃ = γ̃0 exp[λ̃t̃], and σ̃M = σ̃M0 exp[λ̃t̃]
and omitting the cubic term in Eq. (10), λ̃ is obtained as

λ̃ = −(ã + 1) ±
√

(ã + 1)2 − 4(ã + G̃M)

2
. (13)

In Fig. 10, the stable region of the static state (Re[λ̃] < 0)
is shown in blue. As ã decreases, the system undergoes a tran-
sition from the static state to the oscillation state (Im[λ̃] �= 0,
red region) for G̃M > 1, or to the steady rotation state
(Im[λ̃] = 0, yellow region) for G̃M < 1. In the oscillation
state, numerical calculations showed that the steady rotation
state appears as ã decreases further (Fig. 10). The broken
black line in Fig. 10 was obtained by linear stability analysis
of the steady rotation state. Because the transition between
the oscillation and steady rotation states is of first order (dis-
continuous), the stability limit line goes over the coexisting
line obtained by the numerical calculations. The change in
E0 and f in the experiment may correspond mainly to that
of ã in Fig. 10. As ã decreases, for G̃M < 1, only a direct
transition to the steady rotation state occurs (blue solid line
in Fig. 10), whereas for G̃M > 1, the transition occurs through
the oscillation state (red solid line). Thus, the transition for
G̃M < 1 corresponds to EBBA(L) and MBBA(P), and the
transition for G̃M > 1 corresponds to EBBA(H).

022702-6



NEGATIVE VISCOSITY OF LIQUID CRYSTALS IN THE … PHYSICAL REVIEW E 101, 022702 (2020)

FIG. 10. Phase diagram consisting of the static state (blue), os-
cillation state (red), and steady rotation state (yellow) in the ã − G̃M

plane. The broken black line was obtained by linear stability analysis
of the steady rotation state.

C. Analysis of experimental results

To analyze the experimental data, we find an approximate
solution for the oscillation state from Eqs. (10) and (11) by
assuming

γ̃ (t̃ ) = Ã cos(ω̃0t̃ ), (14)

where Ã and ω̃0 are the amplitude and the angular frequency of
oscillation, respectively. When the transition to the oscillation
state occurs (G̃M > 1), the transition point is given by ã = −1,
and thus, ω̃0 at the transition point is obtained from Eq. (13)
as

ω̃0 =
√

(ã + 1)2 − 4(ã + G̃M)

2i
=

√
G̃M − 1. (15)

Hereafter, for simplicity we assume that ω̃0 is given by
Eq. (15) independent of ã. For Eq. (14), the stationary solution
of Eq. (11) becomes

σ̃M(t̃ ) = ÃG̃M
ω̃0[ω̃0 cos(ω̃0t̃ ) − sin(ω̃0 t̃ )]

1 + ω̃2
0

. (16)

Substitution of Eq. (16) into Eq. (10) with Eq. (14) and
integration with respect to γ̃ from 0 to 2π/ω̃0 yield

0 = Ã2c̃
πω̃0

1 + ω̃2
0

+ Ã2πω̃0

(
ã + 3

4
Ã2ω̃2

0

)
. (17)

Thus, Ã is obtained as

Ã2 = − 4

3ω̃2
0

(ã + 1). (18)

Equations (15) and (18) are rewritten in terms of the
quantities before scaling by using Eq. (12) as

ω0 =
√

GM

I
− 1

τ 2
, (19)

A2 = 4

3

Iτ

b

aτ + I

I − GMτ 2
. (20)

FIG. 11. γ̇−σ curve measured at f = 1000 Hz and E0 =
1.50 V/μm. The solid blue line indicates the fitting result from
Eq. (9) with a + τGM = 3.2 × 10−3 Pa and b = 5.1 × 10−4 Pa s2.

Now, we analyze the experimentally obtained self-
oscillation based on the above equations. Figure 11 shows
the γ̇−σ curve measured under the same conditions as the
oscillation data at 1000 Hz in Fig. 8, from which we ob-
tained a + ηM = a + τGM = 3.2 × 10−3 Pa and b = 5.1 ×
10−4 Pa s2 by the least-squares fit using Eq. (9). On the
other hand, parameters ω0 and A were obtained from Fig. 8
as ω0 = 0.39 s−1 (T = 16 s) and A = 0.34 s−1. From these
results and Eqs. (19) and (20), we numerically obtained GM =
1.9 × 10−2 Pa and τ = 0.98 s, and then we numerically
solved Eqs. (2) and (3) with Eq. (8) and σ = 0 using the
above parameters. The result is shown in Fig. 12, in which
the period T is 16 s and the amplitude A is 0.27 s−1. This
result is consistent with the experimental result, T = 16 s and
A = 0.34 s−1.

Finally, we discuss the origin of the elasticity included in
the Maxwell element. We consider disclinations, which have

FIG. 12. Numerical result calculated using Eqs. (2) and (3). The
initial condition is γ̇ = 0.1 s−1, γ = 0, and σM = 0 Pa. The period
of oscillation T is 16 s (ω0 = 0.39 s−1) and amplitude A is 0.27 s−1.
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tension that brings about the elasticity. The line tension of
disclinations is given by σline = πKs2log[R/rc], where K is
the Frank elastic constant, s is the strength of the disclination,
R is the system size, and rc is the core size of the disclination
[33,34]. Substituting the typical values, K ≈ 10−11 N [35,36],
s = 1/2, and R/rc ≈ 105, we obtain σline ≈ 102 pN. From
the dimensional analysis, the elastic modulus is given by
σlineρ, where ρ is the line density of disclinations, that is,
the length of disclinations per unit volume. At high elec-
tric fields in EBBA(H), ρ is estimated to be higher than
100 μm/(100 μm)3 = 10−4 μm−2, because we observed by
microscopy at least one disclination line per 100 × 100 μm2

area with a gap of 100 μm. Therefore, the elastic modulus
originating from disclinations is at least 10−2 Pa, which can
explain the expected value of GM = 1.9 × 10−2 Pa. The
line density may increase with the conductivity (Fig. 3), so
GM may also increase with the conductivity. This explains
the experimental result that self-oscillation was observed in
EBBA(H) but not in EBBA(L). Related to this, we briefly
mention MBBA(P), in which the self-oscillation was not
observed, although the conductivity is comparable to that
of EBBA(H). In the present model, the occurrence of self-
oscillation is determined by G̃M = GMτ 2/I [Eq. (12)], and
GM originates from the line tension of disclinations and τ

can be regarded as the annihilation time of disclination lines.
Therefore, we can ascribe the difference between EBBA(H)
and MBBA(P) to different GM and τ , which depend not only
on the conductivity, but also on the Frank elastic constants and
the Leslie viscosity coefficients.

V. CONCLUSION

We have investigated the conductivity dependence of neg-
ative viscosity by using ion-doped EBBA, which is a homo-
logue of MBBA. The rheological properties were strongly
dependent on conductivity. The pure sample with no dopant
showed no negative viscosity, whereas the doped samples

exhibited negative viscosity and rheological properties similar
to those of MBBA. Microscopic observations showed that
the negative viscosity appeared when the turbulence was
sufficiently developed, and high conductivity was necessary
for developing the turbulence. Spontaneous shear flow and
N-shaped curves were observed, and the scaling relation for
the N-shaped curve was confirmed in the ion-doped sam-
ples. We measured the spontaneous shear rate as a function
of the amplitude and frequency of the ac electric field to
create two-dimensional plots in the frequency and amplitude
plane, which gave phase diagrams of the paraviscous and
ferroviscous phases, indicating that the critical frequency in-
creased remarkably with increasing conductivity. In addition,
in the high-conductivity sample EBBA(H), self-oscillation
occurred around the transition point. We discussed the mech-
anism of this self-oscillation and proposed a model with
viscoelasticity, which arose from disclinations. The model
reproduced the self-oscillation. However, the texture formed
by the turbulence which creates the disclinations is not
explicitly considered in the model. As a future work, we
need to construct a mesoscopic theory of the rheological
properties of textured liquid crystals in the presence of
turbulence.

We identified another nematic liquid crystal, EBBA, that
exhibits large negative viscosity in addition to MBBA,
though an ionic dopant was necessary to increase the con-
ductivity of EBBA. We expect that other liquid crystals
with negative viscosity will be found, and that they will
deepen our understanding of negative viscosity in active
matter.
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