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Synchronization of active rotators interacting with environment
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Multiple organs in a living system respond to environmental changes, and the signals from the organs regulate
the physiological environment. Inspired by this biological feedback, we propose a simple autonomous system
of active rotators to explain how multiple units are synchronized under a fluctuating environment. We find that
the feedback via an environment can entrain rotators to have synchronous phases for specific conditions. This
mechanism is markedly different from the simple entrainment by a common oscillatory external stimulus that is
not interacting with systems. We theoretically examine how the phase synchronization depends on the interaction
strength between rotators and environment. Furthermore, we successfully demonstrate the proposed model by
realizing an analog electric circuit with microelectronic devices. This bioinspired platform can be used as a
sensor for monitoring varying environments and as a controller for amplifying signals by their feedback-induced
synchronization.
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I. INTRODUCTION

Living systems maintain their physiological equilibrium
for survival, called homeostasis [1,2]. It literally means “stay-
ing the same” and is also an important concept for controllers
such as thermostats [3] in engineering. Under fluctuating
environment with uncertainty, it is crucial to keep dynamical
equilibrium for the proper functioning of living systems.

The regulation of blood glucose levels is one of the most
primitive examples of homeostasis as it maintains energy
balance for living systems. The islets of Langerhans in the
pancreas respond to varying glucose levels and produce
hormones in an oscillatory manner to regulate the glucose
homeostasis [4]. The phase of hormone oscillation is mod-
ulated by the glucose stimulus depending on glucose lev-
els. As the glucose level increases, the ratio of active to
silent phases of the oscillation increases, while its period
changes minimally [5]. Here oscillatory hormone secretion
from physically separated islets can be synchronized by
the common stimulus of glucose. The hormone secretion
from multiple islets is coordinated by their phase mod-
ulation responding to the common environment of glu-
cose concentration [6–8]. The entrainment of systems to
the environment via interactions is an important mecha-
nism for the adaptation of biological systems. Cells or or-
gans secrete hormones with different patterns depending on
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the environment, and then these messengers of hormones
regulate the physiological environment [9]. The synchroniza-
tion of gonadotropin-releasing hormone (GnRH) neurons in
the hypothalamus is another example that the GnRH pulses se-
creted by multiple GnRH neurons act as a common feedback
stimulator [10]. Figure 1(a) summarizes this mechanism of
synchronization. The environment stimulates multiple com-
ponents in a system [A, B, and C in Fig. 1(a)], and then they
secrete messengers [small circles in Fig. 1(a)] that regulate the
state of the environment.

We consider an active rotator as a building unit of each
component that generates nonsinusoidal oscillations of which
phases are modulated by the state of the environment. The ac-
tive rotator is a well-known model of limit-cycle oscillators in
excitable systems [11], which has been adopted to describe the
Josephson junction array, chemical reactions, charge density
waves, and neuronal firing [12–15]. In electric engineering,
the active rotator model is also known as Adler’s equation
[16] approximating second-order LC (inductor-capacitor) os-
cillator, and it is widely used to describe injection-locked
oscillators [17]. Recently, the active rotator model is also
adopted to describe the phase modulation of biological hor-
mone secretion [18].

The synchronization of interacting oscillators has been
intensively studied, particularly for globally coupled oscil-
lators through mean-field approaches [19–21]. In the ab-
sence of direct coupling between oscillators, even common
noise can induce synchronization between uncoupled oscil-
lators [22,23]. Similarly, a dynamic common environment
can also induce synchronization between uncoupled periodic
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FIG. 1. Biological homeostasis and electric circuit. (a) The mul-
tiple components (denoted as A, B, and C) secrete messengers (small
circles) responding to their surrounding environment h. The secretion
patterns depend on the state of the environment. Here external
stimulus s and the messengers change the state of environment. The
interaction between elements and environment is controlled by a
coupling strength K (h). (b) An equivalent analog electric circuit of
the model system. The red dashed boxes represent each element.
In particular, the last box shows an explicit circuit with electric
devices.

oscillators [24] and between uncoupled chaotic oscillators
[25]. In this study, we propose a minimal model for the
synchronization induced by the common dynamic environ-
ment. Unlike previous studies considering general dynamical
systems [25] or explicitly considering amplitude and phase
dynamics of oscillators [24], we focus on the phase of active
rotators. The state of environment modulates the phase, while
the phases of rotators regulate the environment. Then we
demonstrate this synchronization mechanism by realizing an

analog electric circuit with microelectronic components, such
as UA741, as shown in Fig. 1(b). The realization of the
mechanism can suggest a biomimetic device for coordinating
multiple components to regulate environmental states.

This paper is organized as follows. In Sec. II, we intro-
duce our model system and then present the environment-
dependent synchronization with the boundary of parameter
space for synchrony using the Ott-Antonesen ansatz [26],
which is our primary finding. In Sec. III, we experimentally
demonstrate the synchronization mechanism. Here we design
an analog electric circuit to realize active rotators. Finally, in
Sec. IV, we summarize our results and discuss their potential
applications.

In this paper, we define several terms to describe syn-
chronized state of phase oscillators. To probe the degree of
synchronization between phases θn(t ), we use the absolute
value of the complex Kuramoto order parameter, ρ(t ) ≡
1
N

∑N
n=1 exp[iθn(t )] [13]. The order parameter |ρ(t )| usually

fluctuates at the beginning, continuously increases, and finally
saturates at the unity [|ρ(t )| = 1] that represents complete
synchronization. In contrast, we refer to the nonsynchro-
nization condition, when the order parameter fluctuates with
negligible values [|ρ(t )| � 1]. In some conditions, however,
the oscillators have fixed phases or phase differences between
them and keep the phases. The former is called phase locking
and the latter is called phase coordination. Complete synchro-
nization is a special case of phase coordination. When the
degree of synchronization can be changeable by manipulating
environment, we call the phenomenon as controllable syn-
chronization. To measure the degree of synchronization over
time, we practically use a time-averaged value of the order
parameter. When the system is completely synchronized, the
time-averaged order parameter has the same value with its
instantaneous value.

II. ACTIVE ROTATORS INTERACTING
WITH ENVIRONMENT

We consider a system with multiple rotators of which
phases are perturbed by an environment. The phase of the nth
rotator θn and the environment h evolve with time t as follows:

dθn

dt
= ωn − K (h) cos θn, (1)

dh

dt
= F ({θn}, h, s), (2)

where ωn is an intrinsic angular velocity of the nth rotator
and K (h) represents the interaction between phase θn and
environment h. The interaction strength controls the degree
of phase modulation. The first equation represents the re-
sponse of rotators to environment, while the second equation
describes the regulation of environment by rotators.

The regulation rate F ({θn}, h, s) could be generally de-
pendent on the phases {θn} ≡ (θ1, θ2, . . . , θN ) of every ro-
tator, the present state h of environment, and the external
stimulus s. As a simple but reasonable choice, we consider
F = s − a

∑
n rn(1 + cos θn), where the external stimulus s

increases the environmental variable h, whereas the ampli-
tude rn and phase θn of rotators decreases h. Note that an
auxiliary parameter a represents the effectiveness of rotators
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for regularing h. Given a fixed amplitude (rn = 1), the phase
term (1 + cos θn) can be interpreted as pulsatile secretion of
regulators (e.g., hormones in biology). Active phases of θn =
(−π/2, π/2) can largely decrease h, whereas silent phases
of θn = (π/2, 3π/2) can minimally decrease h. Since the
scale of stimulus s and the amplitude of regulation rate F are
arbitrary, we set

F ({θn}, h, s) = s − 1

N

N∑
n=1

cos θn, (3)

with reparameterized s and F instead of (s − 1)/a and F/a.
Note that the environmental variable h diverges unless the
finite sum of

∑
n cos θn is large enough to balance with the

external stimulus s.
We numerically solve the coupled differential equations

of Eqs. (1) and (2) with Eq. (3) using the fourth-order
Runge-Kutta method [27] with a sufficiently small time step
(�t = 0.001). We then demonstrate that the system-
environment interaction can entrain noninteracting rotators
to be synchronized. This feedback-induced entrainment is
markedly different from the unidirectional entrainment by an
external oscillatory driving with a characteristic frequency
ω: dθn/dt = ωn + K (h) sin(ωt − θn). For the unidirectional
entrainment, the environmental variable h is independent on
the phases θn of rotators unlike in Eq. (2).

A. Environment-dependent synchronization

The interaction between rotators and environment is me-
diated by the phase modulation function K (h), which is
a monotonic and smoothly saturating function of h, e.g.,
K (h) = K0 tanh h. Depending on the strength of the phase
modulation, the active rotator has two regimes of distinct
dynamic behavior: phase-locked and oscillatory regimes [11].
Since we are interested in biological oscillation, we consider
the oscillatory regime guaranteed by a constraining condition
of |K (h)| < K0 < ωn. Given this condition, the sign of K (h)
determines the oscillation pattern and the ratio of active to
silent phases. For example, given constant K (h) = K0 with
quenched environment (dh/dt = 0), active rotators showed
distinct oscillation patterns depending on K0 [Fig. 2(a)].
The positive and negative plateau indicates active and silent
phases, respectively.

Once we turned on the dynamics of environment h, active
rotators showed either complete synchronization or desyn-
chronization depending on the interaction parameter K0 and
stimulus s. We numerically examined the two distinct regimes
for rotators’ synchrony. Given N = 200 identical rotators
(ωn = ω0 = 1), we explored the synchronization boundary for
K (h) = K0 tanh h and F ({θn}, h, s) in Eq. (3) by controlling
the parameters K0 and s. Figure 2(b) shows the phase traces
of randomly selected 20 rotators from a total of 200 rotators.
Initial states of rotators are all different. However, as rotators
interact with the common environment, they are modulated to
be synchronized.

B. Synchronization boundary

Unless the absolute level of the stimulus |s| is too large
to be bound by the finite regulators in Eq. (3), rotators

FIG. 2. Environment-dependent synchronization of active rota-
tors. (a) Phase modulation of rotators depending on the modulation
factor K (h) = 0.8 (upper) and K (h) = −0.8 (lower). Phase dynam-
ics of randomly selected 20 rotators (gray lines and a black line), their
degree of synchronization [|ρ(t )|, green solid line], and the state of
environment [h(t ), red dashed line] for (b) a synchronizing condition
(s = 0.4, K0 = 0.8) and (c) a nonsynchronizing condition (s = 0.4,
K0 = 0.4). For the plot, we used N = 200 identical oscillators (ωn =
ω0 = 1) with a phase modulation function, K (h) = K0 tanh h.

always become synchronized through the dynamic feedback
between rotators and environment. In other words, if the phase
modulation of rotators can manage to regulate the stimulus,
then the rotators are synchronized. However, if the stim-
ulus is too large beyond the manageable capacity of the
phase rotators, then the environmental variable blows up,
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FIG. 3. Boundary for complete synchronization. Heat maps of
degree of synchronization |ρ̄| for the maximum coupling strength
K0 and stimulus s. The red line represents the theoretical synchro-
nization boundary in Eq. (4). The boundary is robust for varying
total number N of oscillators and heterogeneity of their intrinsic
frequencies ωn. We sampled ωn from a normal distribution with a
mean ω0 = 1 and standard deviation �ω. The plots are obtained
from averages of 100 ensembles for (a) (N,�ω) = (200, 0); (b) (500,
0); (c) (200, 0.05); (d) (100, 0); (e) (200, 0.1); and (f) (10, 0). We
numerically computed |ρ̄| ≡ ω0

2π

∫ T
T −τ

|ρ(t )|dt with a burning period
of T = 1000 and for a sufficiently long period of τ = 20π/ω0.

and the rotators have drifting phases without synchronization
[Fig. 2(c)]. Here we obtained the threshold external stimulus
sb determining the boundary for complete synchronization by
using a linear stability analysis based on the Ott-Antonesen
ansatz [26]:

sb = ω0

K0
−

√(
ω0

K0

)2

− 1, (4)

of which detailed derivation is referred to Appendix A. The
synchronized area of numerical results are denoted by the
green area in Fig. 3 and the theoretical boundary for syn-
chronization is denoted by red solid lines. Note that the time
trajectory of |ρ(t )| depends on the specific shape of K (h),
whereas the synchronization boundary does not depend on the
shape, but it depends on the saturation value K0. As shown in
Fig. 3, we confirmed that the synchronization boundary did
not change in the presence of small heterogeneity of intrinsic
frequencies ωn and under different numbers of rotators.

III. EXPERIMENTAL REALIZATION

Now we build an analog electric circuit to realize the
theoretical model as shown in Fig. 1(b). The circuit mapping
is straightforward by introducing new variables: Vxn ≡ cos θn

and Vyn ≡ sin θn. Then the dynamics of V̇xn can be obtained
by multiplying −Vyn to Eq. (1), and V̇yn can be similarly

FIG. 4. Schematic diagram of the electric circuit for single active
rotators. The light red and dark blue dots indicate reference nodes for
Vx and Vy, respectively, and ⊗ denotes a multiplier implemented by
analog multiplier AD633. The blue shaded area implements the key
part of [ω0 − K (Vh)Vx] in Eqs. (5) and (6) with the input parameters
of intrinsic frequency ω0 and feedback strength K (Vh ).

obtained by multiplying Vxn to Eq. (1). Since the functional
shape of K (h) does not affect stationary responses of rotators,
we choose a simple modulation function for experimental
convenience: K (h) = K0h3 for h = [−1, 1], K (h) = −K0 for
h < −1, and K (h) = K0 for h > 1. After changing variables
with a fixed frequency ω0, Eqs. (1) and (2) can be rewritten as
follows:

V̇xn = −[ω0 − K (Vh)Vxn]Vyn, (5)

V̇yn = [ω0 − K (Vh)Vxn]Vxn, (6)

V̇h = Vs − sN

N∑
n=1

Vxn, (7)

where Vh and Vs correspond to the variables of h and s,
respectively, and sN is introduced for proper normalization.
Then we could successfully implement an electric circuit for
the theoretical model.

Equations (5) and (6) were realized on an electric circuit by
using an operational amplifier (op-amp) and an analog multi-
plier (Fig. 4). The op-amps (UA741CP) were basic building
blocks in our circuit design. Except for the multiplication
with an analog multiplier (AD633JN), other logic calculations
were implemented by op-amp circuits for integrator, summing
adder, voltage follower, and inverting amplifier [28]. In par-
ticular, we operated integration by using the lossy integrator
of 10 ms RC (resister-capacitor) time with a shunt resister
preventing charge storage of capacitors in the integrator. We
monitored the signals from the circuit by using an Agilent os-
cilloscope (DSO-X 2012A) and a function generator (Agilent
33220A). Furthermore, we used green LEDs to visualize the
activities of electric rotators.

Varying system parameters such as ω0 to set a proper
value of circuit components, we monitored voltage
Vxn (red filled dot in Fig. 4) and Vyn (blue filled dot).
Depending on the amplitude of the external stimulus Vs,
the four electric rotators showed either synchronized or
desynchronized behavior that was measured by the order
paramter |ρV | (Fig. 5). We directly measured outputs of the
trigonometric functions Vxn and Vxn (see Appendix B for the
recording set-up) and computed the order parameter |ρV | =
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FIG. 5. Controllable synchronization of electric elements. De-
pending on the magnitude of external signal Vs, the degree of
synchronization |ρV | changes with time (light green lines). For
clear demonstration, its moving average (dark gray line), |ρ̄V (t )| ≡

1
�T

∫ t
t−�T |ρV (t ′)|dt ′ with �T = ω0/2π ≈ 0.43 s, is also plotted. The

zoom-in plot of 130 � t � 145 time window shows the detail of
transition from desynchronization to synchronization.

1/N
√

(
∑N

n=1 Vxn)2 + (
∑N

n=1 Vyn)2 . Since |ρV (t )| largely
fluctuates for a small number N = 4 of rotators, we used a
moving average. For this particular demonstration, we used
a fixed K0 = 0.75ω0 and two values of stimulus (s = 0 for
synchronization and s = 15ω0 for desynchronization), and
set the natural frequency ω0/2π corresponding to 2.33 Hz.

IV. DISCUSSION

Synchronization of oscillators has been extensively studied
in various contexts, including biological [29] and engineering
systems [30]. The control of synchronization has been mainly
achieved by changing the coupling strength between oscilla-
tors [11]. In this study, however, we considered interactions
between systems and environment as a natural way to induce
synchronization among noninteracting systems. The active
system-environment feedback has been proved to be useful
for the adaptation of robot locomotion [31]. To control the
robot locomotion, Owaki and colleagues have considered the
interaction between robot legs and local reaction force from
ground (environment). The motion of legs has been modeled
by active rotators, dθn/dt = ω − K (hn) cos θn, while the local
reaction force hn for each leg depends on the posture of
the four legs with different phases such as hn(θ1, θ2, θ3, θ4).
Unlike the heterogeneous local environment hn, our model
considered a homogeneous global enviromnent h.

Biomimetic devices have been emphasized with their ad-
vanced functions of redundancy, low power, high sensitivity,
and multiple purposes [32]. A PID (proportional-integral-

derivative) controller controller [33] is a state-of-the-art tech-
nology as a closed-loop controller to maintain a desirable set
point. Inspired by the biological homeostasis, the biological
mechanism may propose a biomimetic device for controlling
the set point. Unlike the single-unit PID controller, our model
suggested that the phase coordination of multiple units could
be another mechanism for regulating environment in addition
to the amplitude modulation of single units. The synchroniza-
tion response of multiple units could be used as a sensor for
monitoring a varying environment and also as an amplification
of signals for regulating the environment.

In summary, we proposed a simple model for describ-
ing phase coordination between multiple rotators influenced
by the environment. Based on the closed-loop interaction
between the environment and multiple rotators, we found that
the dynamic environment could entrain noninteracting rota-
tors if the phase responses of rotators could manage external
perturbation on environment. We analyzed the synchroniza-
tion boundary depending on the environment-system coupling
strength K0 and the level of external perturbation s and showed
that either synchronization or desynchronization regime ex-
isted with clear separation through the boundary. Moreover,
we realized the synchronization mechanism using an electric
analog circuit. The circuit can be potentially applicable for
practical purposes as an analog controller, and it can serve as
a biomimetic platform to further understand the regulation of
biological oscillation.
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APPENDIX A: LINEAR STABILITY ANALYSIS

We derive the dynamic equation to describe the degree
of synchronization between the active rotators. The phase
dynamics of the active rotators is

dθn

dt
= ωn − K cos θn, (A1)

for n = 1, . . . , N . In the continuum limit of N → ∞, we
consider the instantaneous phase distribution P(ω, θ, t ) with
the normalization condition

∫ 2π

0 dθP(ω, θ, t ) = 1. The prob-
ability density satisfies the Fokker-Planck equation,

∂P

∂t
= − ∂

∂θ

[(
ω − K

eiθ + e−iθ

2

)
P

]
. (A2)

Using P(ω, θ, t ), we can define the order parameter ρ(t ) that
measures the degree of synchronization between rotators,

ρ(t ) ≡
∫ ∞

−∞
dω

∫ 2π

0
dθP(ω, θ, t )eiθ . (A3)
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To obtain the dynamics of ρ(t ), we use the Ott-Antonsen
ansatz [26],

P(ω, θ, t )= g(ω)

2π

{
1+

∞∑
m=1

[αm(ω, t )eimθ +ᾱm(ω, t )e−imθ ]

}
,

(A4)

where g(ω) is the distribution of intrinsic frequency ω and
ᾱ(ω, t ) is the complex conjugate of α(ω, t ). Putting this ansatz
into the above Fokker-Planck equation [Eq. (A2)], we obtain
the following two equations:

∂α

∂t
= −iωα + i

K

2
(1 + α2), (A5)

∂ᾱ

∂t
= iωᾱ − i

K

2
(1 + ᾱ2), (A6)

by considering the independent mth order for eimθ and e−imθ .
It is straightforward to show ρ(t ) = ᾱ(t ) from Eq. (A3),

given the identical intrinsic frequency of g(ω) = δ(ω − ω0).
Therefore, ρ(t ) should be also governed by Eq. (A6) as

dρ

dt
= iω0ρ − i

K

2
(1 + ρ2). (A7)

Note that the partial derivative for time t is changed to the
total derivative because now ρ is dependent only on t . This
equation for the complex variable ρ(t ) = x(t ) + iy(t ) can be
decomposed into the equations for real variables, x and y:

dx

dt
= −(ω0 − Kx)y, (A8)

dy

dt
= ω0x − K

2
(1 + x2 − y2). (A9)

Indeed, we are interested in the amplitude |ρ(t )| of the order
parameter. Its squared value |ρ|2 = x2 + y2 evolves as

d|ρ|2
dt

= 2x
dx

dt
+ 2y

dy

dt
= −Ky(1 − |ρ|2). (A10)

Since the coupling parameter K is defined as a positive value,
the stationary solution for this equation is y = 0 or |ρ| = 1.
Later we will show that the solution y = 0 cannot be stable.
However, ρ(t ) � 1 largely fluctuates for |ρ| � 1, whereas it
minimally fluctuates when |ρ| ≈ 1. Thus, we expect that ρ(t )
evolves to the stationary solution |ρ| = 1 that represents the
complete synchronization between rotators.

Now we consider that the coupling parameter K = K (h)
depends on the environmental status h. The variable h is
governed by an external source s and the feedback from active
rotators:

dh

dt
= s − 1

N

N∑
n=1

cos θn. (A11)

Here the feedback term is the real part x ≡ 1
N

∑N
n=1 cos θn

of ρ ≡ 1
N

∑N
n=1 eiθn . Then, we obtain complete equations for

(x, y, h) as follows:
dx

dt
= −[ω0 − K (h)x]y, (A12)

dy

dt
= ω0x − K (h)

2
(1 + x2 − y2), (A13)

dh

dt
= s − x. (A14)

The above stationary solution |ρ(t )| = 1 assumed that K
is constant. We examine whether K (h) can be constant
with dh/dt = 0 for the given solution |ρ(t )| = 1. Un-
der the full synchronization (θn = θ ), Eq. (A14) becomes
dh/dt = s − cos θ . Then its time-averaged equation for a
period T of oscillations is〈

dh

dt

〉
= s − 〈cos θ〉, (A15)

for a constant stimulus s. Here the time average is defined as
〈 f 〉 ≡ 1

T

∫ T
0 f (t )dt . The identical active rotators have a time

period,

T =
∫ 2π

0

dθ

dθ/dt
=

∫ 2π

0

dθ

ω0 − K cos θ
= 2π√

ω2
0 − K2

.

(A16)

Given T , the time average of cos θ (t ) is

〈cos θ〉 = 1

T

∫ T

0
cos θ (t ) dt = ω0

K
−

√(
ω0

K

)2

− 1.

(A17)

Then the manageable positive stimuli s by the averaged
response from the rotators should satisfy the following
inequality:

s � 〈cos θ〉 = ω0

K0
−

√(
ω0

K0

)2

− 1, (A18)

which guarantees the stationarity of 〈dh/dt〉 = 0. This con-
dition explains the synchronization boundary in Fig. 3 in the
main text.

Finally, we explore the other possible stationary solu-
tions for (x, y, h) of Eqs. (A12)–(A14). Suppose that other
stationary solutions (x∗, y∗, h∗) exist with the stationarity
conditions (dx/dt = dy/dt = dh/dt = 0). (i) The first con-
dition dx/dt = 0 implies x∗ = ω0/K or y∗ = 0, where
x∗ = ω0/K > 1 cannot be a solution due to |x| � |ρ| � 1,
given ω0 > K . (ii) The second condition dy/dt = 0 with
y∗ = 0 implies

x∗ = ω0

K (h∗)
−

√[
ω0

K (h∗)

]2

− 1, (A19)

where another solution x∗ = ω0/K (h∗) +
√

[ω0/K (h∗)]2 − 1
is excluded due to the condition |x| � 1. (iii) The third con-
dition dh/dt = 0 finally imposes x∗ = s that fixes x∗ and h∗
in Eq. (A19). Is this solution (x∗, y∗, h∗) stable? To exam-
ine its stability, we consider x = x∗ + εx, y = y∗ + εy, and
h = h∗ + εh, located slightly away from the fixed point
(x∗, y∗, h∗). Then the time evolution of the deviation vector
ε = (εx, εy, εh) can be derived up to their linear orders as
dε/dt = Jε by using Eqs. (A12)–(A14). The Jacobian matrix
is defined as

J =

⎡
⎢⎣

0 −ω0 + K (h∗)x∗ 0

ω0 − K (h∗)x∗ 0 1
2

[
dK
dh

]∗
(1 + x∗2)

−1 0 0

⎤
⎥⎦
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FIG. 6. Recording set-up. A power supplier provides ±15 V to a
breadboard during experiment, while a function generator generates
input voltage Vs. The oscilloscope panel shows two signals of Vs

(yellow line) and |ρV | (green line) from the breadboard.

with the derivative [dK/dh]∗ at h = h∗. The eigenvalues of J
can be obtained from the equation of |J − λI| = 0:

λ3 + (ω0 − K (h∗)x∗)2λ

+ (ω0 − K (h∗)x∗)
1

2

[
dK

dh

]∗
(1 + x∗2) = 0. (A20)

This polynomial equation of λ3 + aλ + b = 0 for a, b > 0
should have one real negative eigenvalue (λ1 < 0) and two
complex eigenvalues (λ2,3 = α ± iβ), where the real value
α = −λ1/2 > 0 must be positive. Therefore, the devia-
tion of ε cannot be vanished with time. In other words,
the stationary solution (x∗, y∗, h∗) cannot be stable. How-
ever, once [dK/dh]∗ = 0, Eq. (A20) becomes λ3 + [ω0 −
K (h∗)x∗]2

λ = 0. Then, the eigenvalues of J are λ1 = 0,
λ2,3 = ±i

√
ω2

0 − K2(h∗). Indeed, the saturation condition
[dK/dh]∗ = 0 represents K (h∗) = K0. This implies the exis-
tence of an oscillatory solution around (x∗, y∗ = 0, h∗) with
an effective frequency ωeff ≡

√
ω2

0 − K2
0 . The third stationary

condition x∗ = s with Eq. (A19) reproduces the synchroniza-
tion boundary, s = ω0/K0 −

√
(ω0/K0)2 − 1, again.

APPENDIX B: EXPERIMENTAL SET-UP

The system consists of two parts: (i) electric rotators, Vxn

and Vyn (red boxed area in Fig. 6), and (ii) environment, Vh

(blue boxed area). We put four copies of the electric rotators
and then connected them to the environment. To easily mon-
itor the degree of synchronization between four rotators, we
put four green LEDs as shown in Fig. 6. The LED lights were
on if voltages over 0.7 V were applied. The threshold voltage
corresponds to 1 V for the electric rotators [34].
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