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The collective effects of microswimmers in active suspensions result in active turbulence, a spatiotemporally
chaotic dynamics at mesoscale, which is characterized by the presence of vortices and jets at scales much larger
than the characteristic size of the individual active constituents. To describe this dynamics, Navier-Stokes—based
one-fluid models driven by small-scale forces have been proposed. Here, we provide a justification of such
models for the case of dense suspensions in two dimensions (2D). We subsequently carry out an in-depth
numerical study of the properties of one-fluid models as a function of the active driving in view of possible
transition scenarios from active turbulence to large-scale pattern, referred to as condensate, formation induced
by the classical inverse energy cascade in Newtonian 2D turbulence. Using a one-fluid model it was recently
shown [M. Linkmann et al., Phys. Rev. Lett 122, 214503 (2019)] that two-dimensional active suspensions
support two nonequilibrium steady states, one with a condensate and one without, which are separated by
a subcritical transition. Here, we report further details on this transition such as hysteresis and discuss a
low-dimensional model that describes the main features of the transition through nonlocal-in-scale coupling

between the small-scale driving and the condensate.
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I. INTRODUCTION

Active suspensions consist of self-propelled constituents,
e.g., bacteria such as Bacillus subtilis and Escherichia coli
[1,2], chemically driven colloids [3], or active nematics [4—6]
that move in a solvent liquid, most often water. Their col-
lective motion results in complex patterns on many scales,
and shows different phases of coherence and self-organization
such as swarming, cluster formation, jets, and vortices [2,7—
12] and, eventually, active or bacterial turbulence [2]. The
latter is a state characterized by spatiotemporal chaotic dy-
namics reminiscent of vortex patterns in turbulent flows. The
analogy is not complete, though, since Newtonian turbulence
is a multiscale phenomenon associated with and dominated
by dynamics in an inertial range of scales. Since dissipative
effects are negligible in the inertial range, the rate of energy
transfer across inertial ranges is constant, and is one of the
determining features of the well-known energy cascade [13].
Thus far, the states that have been described as bacterial
turbulence do not have an inertial range.

Active and Newtonian turbulence usually occur in different
regions of parameter space. With Reynolds numbers Re =
UL/v based on typical velocities U, lengths L, and the vis-
cosity v of the liquid, one finds turbulence occurs in pipes and
other flows for Reynolds numbers around 2000 [14—-16], while
the mesoscale vortices observed in bacterial suspensions [2]
are associated with a Reynolds number of O(1073 — 1072),
far from the inertial dynamics of Newtonian turbulence.
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However, rheological measurements of the effective viscosity
have shown that the active motion of the constituents can
reduce the effective viscosity by about an order of magnitude
compared to the solvent viscosity [17-23]. Multiscale states
at Reynolds number around 30 have been reported for larger
microswimmers such as magnetic rotors [24]. That is, under
favorable conditions active suspensions can reach parameter
ranges where inertial effects will influence the dynamics, and
where a a transition from active to inertial turbulence could be
achieved.

The effects of inertia are particularly intriguing in two-
dimensional (2D) and quasi-two-dimensional suspensions, as
kinetic energy is transferred from small to large scales in 2D
turbulence, eventually resulting in the accumulation of energy
at the largest length scales [25-28]. This phenomenon can be
viewed in analogy to Bose-Einstein condensation, which is
why the concentration of energy on the largest scales is called
the formation of a condensate.

Full models for the dynamics of active suspensions re-
quire equations for the velocity field and the swimmers, with
suitable couplings between them [29]. Since our focus is on
the inertial effects in the flow fields, it is advantageous to
eliminate the bacteria and to use equations for the flow fields.
Such one-fluid models of active suspensions have recently
been proposed [10,30] and have already led to a number
of numerical investigations into the nonlinear dynamics of
active suspensions that have revealed new phenomena, such as
nonuniversality of spectral exponents [31], mirror-symmetry
breaking [32], or the formation of vortex lattices [33]. Hints of
condensation and multiscaling have been also been observed
[34,35], but the actual formation of sizable condensates and
the connection between 2D active and Newtonian turbulence
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have not been explored systematically. Using a variant of these
one-fluid models we have recently shown that condensates
can form in active suspensions, and they do so through a
subcritical transition [36]. We here provide further results on
this transition and on the multiscale dynamics of dense active
suspensions.

This paper is organized as follows. We begin with a general
discussion of continuum models for active suspensions in
Sec. II, including a justification of Navier-Stokes—based one-
fluid models for dense suspensions in 2D. Section III contains
a description of the data sets collected in direct numerical
simulations (DNS), followed by a discussion of the general
features of multiscale dynamics and large-scale pattern forma-
tion in one-fluid models of active suspensions in Sec. IV. The
subcritical transition to condensate formation is described in
detail in Secs. V and VI introduces a low-dimensional model
that captures the qualitative features of the transition through
a nonlocal-in-scale coupling between the condensate and the
driven scales. We summarize our results in Sec. VIIL.

II. MODELS DESCRIBING BACTERIAL SUSPENSIONS

Active suspensions consist of swimmers immersed in a
fluid. Models for such suspensions have to capture the dy-
namics of the solvent fluid and the motion of the bacteria,
which, in a continuum description, leads to a two-fluid ap-
proach, where the solvent flow and the polarized motion of
the microswimmers are described by separate, but interacting
fields. In order to simplify the model, one-fluid descriptions
leading to Navier-Stokes—type equations have been proposed
[10,11,30,32,37]. Such simplified models are usually obtained
in one of two ways: (i) by eliminating the motion of the sol-
vent in favor of the bacterial motion to obtain * bacterial flow
models” [10,11,37] or (ii) by eliminating the motion of the
bacteria in favor of the fluid flow, resulting in a “solvent flow
model” [30,32]. In both cases the resulting velocity field is
assumed to be divergence free, which limits the applicability
of these models to very dense suspensions where fluctuations
in the bacterial density can be neglected [10]. In the next
sections, we motivate a single-equation solvent flow model in
two dimensions from the general two-fluid approach.

A. Justification of effective models in 2D

At the continuum level, an active bacterial suspension
is described by equations for the total density p and flow
velocity u of the suspension, the concentration ¢ of bacteria,
and a vector field p describing bacterial motion. A finite
value of |p| also corresponds to polar orientational order
of the elongated swimmers, hence p is generally referred
to as bacterial polarization. We assume that the suspension
is incompressible, i.e., p = 0, implying V -u = 0, and that
the bacterial concentration is constant, resulting in V - p = 0.
This then leaves two coupled equations [29], given by

u+u-Vu=-VII+V - 0%+ vAu, (D)
) 1
op+u-Vp=-VII'(pl,c)—2p-Vp+ F@xPp

1
+AD-p+ —h, 2)
YF

where I1 is the pressure (divided by the total density) which
ensures incompressibility of the velocity field, o the active
stress that couples bacteria and flow (and that will be dis-
cussed further below), IT" is an effective pressure term that
depends on the bacterial concentration and the polarization,
® =V x u is the vorticity, D = %[Vu + (Vu)T] the rate of
strain tensor, and v the kinematic viscosity of the solvent. The
parameters A; and XA capture advective and flow alignment,
and yp is a rotational viscosity.

The molecular field & can be obtained from a free energy
F for a polar fluid, modeled similar to a liquid crystal, as the
derivative h = —5F /§p, where

_ % B Ky,
F—f[2p+4p+2(Vp)]dx, 4

with K the liquid crystalline stiffness in a one-elastic constant
approximation and ar and B the parameters which determine
the onset of a polarized state for o < 0. Note that we have
neglected in both equations passive liquid-crystalline stresses
of higher order in gradients of the polarization. A derivation
of Eq. (2) can be found, for instance, in Ref. [29].

The feedback of the active swimmers on the flow is con-
tained in the stress tensors o?, which results from the active
dipolar forces exerted on the solvent by the microswimmers
[38]. On length scales large compared to the size of swim-
mers, it can be expressed through a gradient expansion, with
leading-order term

o = a(pip; — 18,ilpI) + O(V). @
where « is a parameter known as activity, that depends on
the concentration of microswimmers, their typical swimming
speed, and the type of swimmer. The symbol O(V) indicates
higher-order terms that contain gradients of the polarization
field. The contribution of the diagonal term —%8,~ jp2 can be
absorbed in the pressure gradient in Eq. (1).

Note that the leading-order contribution to the active stress
given in Eq. (4) has nematic rather than polar symmetry, as it
is parity invariant. Indeed, an active stress with purely polar
symmetry arises first in terms containing gradients [39], and
is given by

oV = B(dip; + d;pi), ©)

where § is another activity parameter that depends, amongst
other quantities, on the direction of the polarization field with
respect to the swimming direction [29,40].

In most studies of active suspensions, the fluid flow u is
slaved to the polarization field p, resulting in the Toner-Tu
model for the dynamics of the polarization [10]. In contrast,
we here wish to eliminate p in favor of u in order to obtain an
equation for active flows, as done for instance in Ref. [32].

In order to derive such a single-equation model, one has
to solve the equation for p and substitute the solution into the
equation for u. Even though the nonlinearities in (2) make
it difficult to obtain an analytical solution, such an approach
will generally give a functional relation between p and u. In
what follows, we show how the 2D solvent model can be
obtained as the leading-order contribution for the case of a
linear, though not necessarily local, relation between p and u,
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of the form
pilul(x,t) = (Gij x uj)(x, 1), (6)

where G;; is a kernel that depends on the details of the
system and * denotes a convolution. The derivation follows
similar steps as in active scalar advection in geophysical flows
[41,42].

In 2D, incompressibility of the fields reduces the number
of degrees of freedom of each vector field from two to
one, usually given by the out-of-plane vorticities w(x,y) =2 -
(V xu(x,y)) and m(x,y) =2 - (V x p(x,y)) of the respec-
tive fields, where Z is a unit vector in the z direction. Equation
(6) then becomes a scalar relation

mlw]x, 1) = (G * w)(x, ). @)

In a dense bacterial suspension, hydrodynamic interactions
are screened and the relation between m and w is expected
to be local. We can then assume G to be a sharply peaked
function, for instance, proportional to a narrow spherically
symmetric 2D Gaussian

A
Gx) = —e W, ®)
Ta

with shape parameter a > 0 and constant amplitude A. Ex-
panding the Fourier transform of the Gaussian in terms of its
shape parameter around zero leads to an expansion of Eq. (7)
of the form

2
mlw](x, 1) = Aw(x, ) + A%Aw(x, N+ 0(2AP).  (9)

where A is the Laplace operator. Since V x wZ = —Au and
similarly for p and m, we obtain

2
p = Au(x, 1) +A%Au(x, D+ 0(aAR).  (10)

Inserting Eq. (10) into Eq. (4) for the zeroth-order term yields

1 a’
0‘5.(0) = O[A2 (Lt,'l/tj — §8iju2) + OtAzz(MiAuj + MjALt,’)

4 1
+ aAzﬁ(AuiAu_,‘ - §5i_j(Au)2) +0(la® AT, (11)

resulting in additional quadratic nonlinearities in Eq. (1),
some of which break Galilean invariance. The first term in
Eq. (11) leads to a renormalization of the Navier-Stokes
nonlinearity and hence to a different Reynolds number. Since
the sign of o depends on the type of swimmer with o < 0
for pullers and @ > 0 for pushers, the renormalization of the
Reynolds number depends on the type of microswimmers.
The second term can be subsumed into the pressure gra-
dient, while remaining terms which are of higher order in
the gradients contribute to a redistribution of kinetic energy
mostly at small scales. Since all terms conserve the mean
kinetic energy and hence do not result in a net energy input,
we neglect the additional small-scale nonlinearities, thereby
ensuring Galilean invariance. The energy input from the
microswimmers hence has to originate from the first-order
term in the gradient expansion of the active stresses given in

Eq. (5). Substituting Eq. (10) in Eq. (5) results in

a2

4
ai‘;(l) = ,BA(I + ZA + %Az)(aiuj + dju;) + O([a” AT),
(12)

where terms up to order A? from Eq. (10) have been included
in order to ensure the existence of a driving interval in scale
that corresponds to the experimentally observed mesoscale
vortices induced by the bacterial motion. The structure of V -
oD takes on the form of the effective viscosity previously
proposed by Stomka and Dunkel [30], provided 8 > 0. The
latter is the case if p is chosen to point along the swimming
direction and does not depend on the type of microswimmer
[40]. If we choose p to point against the swimming direction,
then A should be negative. That is, the product BA is always
positive. In what follows, we choose A > 0 such that p points
into the same direction as the solvent flow. After the rescaling

t > tv1l—aA, u—uvl—cA, (13)

the resulting two-dimensional one-fluid model reads as
FZ
du—+u-Vu=—VII + I‘<F0 + A + 72A2>Au,

V-u=0, (14)
where

r—_r4 Fomitt, med 15
= Vicen Mt DEE W

Equation (14) relies upon two main assumptions: (i) u
and p are divergence free, i.e., the bacterial concentration
must be constant and density fluctuations negligible; (ii)
the system must be two dimensional, as the reduction to a
one-dimensional problem resulting in Eq. (7) is not justified
otherwise. Specifically, in three dimensions there is no a priori
reason to set G;; = G§;; in Eq. (6). In summary, Eq. (14) is
applicable to dense suspensions of microswimmers in very
thin layers, where a 2D approximation is justified. We note
that friction with a substrate has been neglected, however, the
corresponding term can easily be added.

In this context, the original introduction of the solvent
model by Stomka and Dunkel corresponds to setting G(x) ~
8(x) and using certain higher-order terms in the gradient
expansion of the active stresses. The former amounts to
assuming that the polarization and solvent velocity fields
are related only locally and the latter introduces additional
parameters. Physically, locally means on scales smaller than
that of the mesoscale vortices. Here, we obtain a very similar
model from a long-range relation between the fields, which is
more appropriate in a hydrodynamic context.

Similarly, the bacterial flow model introduced in Ref. [10]
can be obtained by formally solving Eq. (1) to obtain u[p],
or by neglecting u altogether. Both solvent and bacterial flow
models reproduce the experimentally observed spatiotempo-
rally chaotic dynamics characteristic of active matter turbu-
lence [10,11,32] and have been used extensively in investiga-
tions thereof [30-35,37,43-47]. They differ in the choice of
fields in which the model is expressed, with the consequence
that terms originating from the free energy are not explicitly
present in the solvent model.
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The solvent models resemble the Navier-Stokes equations
in their structure and have the key ingredient for an inertial
range that is typical of normal turbulence: in the absence of
forcing and dissipation, the nonlinear terms in the equation
preserve the mean kinetic energy (|u|?). We note that in
general Galilean invariance is broken by active corrections of
the type aA2§(u,-Auj + u;jAu;) coming from Eq. (11) to the
advective nonlinearity in Eq. (14) that have been neglected
here, as the constant Galilean shift is neither canceled by a
contribution from another term or removed by spatial gradi-
ents. The effects of the active particles are thus concentrated
in the effective viscosity in Eq. (14), and we will focus on two
variants of the models and discuss similarities and differences
to results in the literature that were obtained with the bacterial
flow model.

B. Polynomial effective viscosity

The solvent model introduced by Stomka and Dunkel [30]
has a stress tensor in Eq. (1) given by a polynomial gradient
expansion

0ij = (To + T A + Ty A*) (D + 0ju;), (16)
and results in a continuous effective viscosity
D(k) = Ty — Tok? + T4k*, (17)

where * denotes the Fourier transform. In what follows, we
will therefore refer to the combination of Egs. (1) and (16) as
the polynomial effective viscosity (PEV) model.

If I'; < 0, then Eq. (17) is a combination of normal and
hyperviscosity and all terms dissipate energy. If, in contrast,
', > 0, there is a wave number interval where v(k) < O,
resulting in a linear amplification of the Fourier modes in that
wave number interval. The interplay between this instability
and the Navier-Stokes nonlinearity drives spatiotemporal dy-
namics that for certain values of I'; results in the formation of
mesoscale vortices and spatial correlations, which resemble
the experimental observations [32].

By completing the square, the wave number form of the
effective viscosity can be written as

(k) = To + Ty[ (2 — k2)* — k] (18)
with
ki =T5/(2T4) (19)

the wave number of the minimum in the viscosity (which
is real only for I'; > 0). With the normalization of wave
numbers to kg, i.e., k = k/ke, the effective viscosity can be
written

D(k) = Tofl + y[(k* — 1)* — 11}, (20)

where
s _ (I'/To)?
4oy 4(T4/To)

is the one remaining parameter that controls the forcing.

The scaled effective viscosity » has two parameters [y,
which sets the scale for the viscosity and y, which is a
measure for both the amplification and the range of wave

y = T4k} /T = (21

0.0 05 1.0 1.5 2.0
k/kt

10.0 (b)
19}

v(k) /v

-1

2.0

o]

0.0 05 1.0 1.
k/k

FIG. 1. Effective viscosity for PEV and PCV models. (a) PEV
/Lo vs k/ke. (b) PCV D(k)/vg vs k/k¢. The gray-shaded area corre-
sponds to the interval [kyn, kmax ], Where the amplification occurs.

numbers that are forced, as we wi~ll now discuss. The effective
viscosity attains its minimum at k> = 1, where

Dk =1)=Ty(l —yp). (22)

Clearly, ¥ can become negative, and hence forcing rather than
dissipating, for . > 1 only. The range of wave numbers over
which it is forcing is given by

- 1 . 1
k2, =1-— 1—;<k2<1+ 1—;=k3nax, (23)

and varies with y. A sketch of D(k) for the PEV model is
provided in Fig. 1(a), the gray-shaded area indicating the wave
number interval where amplification occurs, D(k) < 0. The
upper end of the interval approaches 2 for y — oo, showing
that there will be no forcing on smaller wavelengths, whereas
the lower end of the interval approaches 0, indicating that the
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driving band extends to ever lower wave numbers and thus
larger scales in this limit.

Since the effective viscosity is measured in units of Iy and
since the length scale has been fixed as Ly = 7 /k¢ all scales in
the momentum equation are set: specifically, time is measured
in units of L7/T and velocity in units of I'y/Ly. Introducing
that scale, Eq. (1) contains a single parameter y, with the
stress tensor given by

o = {1+ y[(1 + A — 11} @ + duy).

Variations in y should therefore give rise to different dy-
namics. Stomka and Dunkel [30] discuss statistically steady
states for several values of their control parameters Iy, I',
and Iy, that is, in our notation for different values of y and
corresponding driving scales and amplitudes. Some of these
states were multiscale with energy spectra reminiscent of fully
developed 2D turbulence [30,35], and small condensates were
observed for certain parameter values [35]. One can then
expect that stronger large-scale structures may form for more
intense driving, but since y controls not only the strength
of the forcing but also the width and the location of the
driving band, it is is difficult to see which of the effects
dominate. This was remedied in the model used in [36] and
described next, where amplification and driving scale can be
set independently from each other.

(24)

C. Piecewise constant viscosity

The piecewise constant viscosity (PCV) model [36] is a
discontinuous approximation to the PEV model, with the
Navier-Stokes stress tensor written in terms of an effective
viscosity given as a set of step functions in Fourier space

vo >0 for k < kyn,
ﬁ(k) =]V < 0 for kmin < k < kmax, (25)
v, >0 for k > kpax-

The values of v; are chosen such that the resulting discrete
form of D(k) resembles the polynomial form of the PEV
model. Specifically, v; controls the forcing, and v, > vy mim-
ics the hyperviscous term in the PEV model. A sketch of D (k)
for the PCV model is provided in Fig. 1(b), the gray-shaded
area indicating the wave number interval where amplification
occurs, D(k) = —v; < 0. As in the PEV model, v, sets the
scale for the effective viscosity. The PCV model can thus
be described by dimensionless parameters for amplification
v1/vo and small-scale dissipation v,/vy. An effective driving
scale Ly = 7 /k¢ can be defined by the midpoint of the interval
[Kmin» kmax], 1.€., kg = (kmin + kmax)/z-

The PCV model approximates the functional form of the
PEV model’s effective viscosity by a piecewise constant
function, remaining faithful to the original PEV model in an
important point: the driving is proportional to the velocity
field and it is confined to a wave number band. This results in
driving through local-in-scale amplification in both cases, i.e.,
in essentially the same physics. That is, even though the small-
scale properties of the velocity fields obtained by the PCV and
the original PEV model may differ in some detail, the large-
scale and mean properties should be similar, if not the same,
as they are dominated by the nonlinearity and not by details of
how the driven interval is specified. In this context, we point

out that the functional form of the effective viscosity in any
one-equation model is essentially a consequence of the choice
of convolution kernel. For a Gaussian filter, one obtains PEV,
using a sinc filter in configuration space results in the PCV
model with v, = vg. Moreover, a small increase in energy
input for a fixed viscosity results in a considerably wider
driven interval in the PEV model. In experiments, this would
correspond to a significantly wider distribution of vortices
for faster microswimmers than for slower microswimmers
and correspondingly to much broader energy spectra in the
former case than in the latter. We are not aware of experiments
testing this, but it would be interesting to compare data from
different organisms, for instance, B. subtilis versus E. coli.
Since the driven range is held fixed for the PCV model, it is
therefore phenomenologically closer to experiments than the
PEV model.

III. DIRECT NUMERICAL SIMULATIONS

The PEV and PCV models are studied in two dimensions,
using data generated by numerical integration of the momen-
tum equation in vorticity form

k) + [m](k) = —D(k)k> k), (26)
where o is the only nonvanishing component of the vorticity,
V xu(x,y) = w(x, y)Z. Equation (26) is supplemented with
either Eq. (18) for PEV or Eq. (25) for the PCV model. In
all cases, we use the standard pseudospectral technique [48]
on the domain [0, 27r]% with periodic boundary conditions
and full dealiasing by truncation following the (2/3)rds rule
[49]. The simulations are initialized with random Gaussian-
distributed data, or, in case of hysteresis calculations for the
PCV model, with data obtained from another run at a different
value of the control parameter.

For PCV, two series of simulations were carried out. The
first one, PCV-A, consists of a parameter scan in v; /vy with
all other parameters, i.e., vy, V2, kmin, and knyax held fixed. That
is, only the amplification is varied between the simulations in
each PCV-A data set. The three simulations of the second se-
ries, PCV-B, were done at higher resolution, with parameters
chosen such that results can be compared with PCV-A using
the scaling properties of the Navier Stokes equations, i.e.,
PCV-B corresponds to PCV-A in a larger simulation domain.
Parameters and observables of all runs are summarized in
Table I. The PEV model is investigated for three test cases
at lower resolution and subsequently through a series of
simulations with fixed scale separation between the domain
size and the beginning of the driven interval. Parameters and
observables for the PEV model are summarized in Table II.
All simulations reach a statistically stationary state, where the
total energy per unit volume fluctuates about a mean value,
and are subsequently continued for at least 2000 large-eddy
turnover times. Prior to that, the system evolves through a
transient nonstationary stage. Owing to the absence of a large-
scale dissipation mechanism, this can take a long time for
certain parameter regimes. During the statistically stationary
state, the velocity fields were sampled in intervals of one
large-eddy turnover time.
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TABLE I. Parameters and observables for all PCV simulations, with N denoting the number of grid points in each coordinate of the
simulation domain [0, 2], vy, v;, and v, are the parameters defining the PCV model as in Eq. (25) with vy = 0.0011 for PCV-A and
v = 1.7 x 10~ for PCV-B. The driven intervals are specified by kmin and kp, as defined in Eq. (25) for PCV. The Reynolds number Re is
based on the integral scale L = 2/U? fooo dk E(k)/k and the rms velocity U, and Re is the Reynolds number based on the effective driving
scale L; and the velocity in the driven range of scales, ¢ the energy dissipation rate in the interval [1, ki, ), &iv the energy input rate in
the interval [kmin, kmax], and ess the energy dissipation rate in the interval (kpmax, 277 /(N/3)]. All observables are ensemble averaged during
the statistically stationary state, with samples taken at intervals of one large-eddy turnover time 7' = L/U. The asterisk indicates data from

Ref. [36].

Run id N V1 /Vo V2 /vy Kemin kinax Re U L Rey £Ls EIN £ss
PCV-AT1* 256 0.25 10.0 33 40 19 0.29 0.07 19 0.029 0.048 0.023
PCV-A2* 256 0.5 10.0 33 40 26 0.36 0.085 21 0.056 0.10 0.046
PCV-A3* 256 0.75 10.0 33 40 35 0.39 0.09 21 0.086 0.16 0.071
PCV-A4* 256 1.0 10.0 33 40 44 0.43 0.11 21 0.11 0.21 0.09
PCV-A5* 256 1.25 10.0 33 40 58 0.47 0.13 21 0.15 0.26 0.14
PCV-A6* 256 1.5 10.0 33 40 75 0.52 0.15 20 0.18 0.30 0.16
PCV-AT* 256 1.75 10.0 33 40 106 0.57 0.20 19 0.17 0.34 0.16
PCV-A7a 256 1.75 10.0 33 40 106 0.57 0.20 20 0.18 0.32 0.15
PCV-A8* 256 2.0 10.0 33 40 212 0.66 0.35 19 0.18 0.36 0.18
PCV-A8a 256 2.0 10.0 33 40 227 0.67 0.37 19 0.19 0.34 0.17
PCV-A9* 256 2.02 10.0 33 40 249 0.68 0.40 19 0.18 0.36 0.18
PCV-A9a 256 2.02 10.0 33 40 2686 1.64 1.79 17 0.15 0.28 0.13
PCV-A10* 256 2.04 10.0 33 40 296 0.70 0.46 19 0.18 0.36 0.18
PCV-Al0a 256 2.04 10.0 33 40 2957 1.77 1.82 17 0.14 0.28 0.13
PCV-A11* 256 2.083 10.0 33 40 3347 1.95 1.87 17 0.13 0.28 0.15
PCV-Alla 256 2.083 10.0 33 40 3270 1.92 1.85 17 0.14 0.28 0.13
PCV-A12* 256 2.167 10.0 33 40 3708 2.13 1.90 16 0.13 0.27 0.15
PCV-A13* 256 2.25 10.0 33 40 3927 2.24 1.91 16 0.13 0.28 0.15
PCV-A14* 256 2.5 10.0 33 40 4455 2.52 1.92 15 0.12 0.27 0.15
PCV-A15* 256 2.625 10.0 33 40 4636 2.63 1.92 14 0.11 0.26 0.15
PCV-A16* 256 2.75 10.0 33 40 4851 2.75 1.92 14 0.11 0.26 0.15
PCV-A17* 256 2.875 10.0 33 40 5088 2.89 1.92 14 0.11 0.27 0.16
PCV-A18* 256 3.0 10.0 33 40 5313 3.01 1.92 14 0.11 0.28 0.17
PCV-A19* 256 3.25 10.0 33 40 5793 3.28 1.92 14 0.12 0.29 0.18
PCV-A20* 256 3.5 10.0 33 40 6241 3.54 1.92 14 0.13 0.31 0.19
PCV-A21* 256 3.75 10.0 33 40 6708 3.80 1.93 14 0.13 0.33 0.20
PCV-A22* 256 4.0 10.0 33 40 7214 4.08 1.93 14 0.14 0.35 0.22
PCV-A23* 256 4.25 10.0 33 40 7723 4.27 1.93 14 0.16 0.38 0.24
PCV-A24* 256 4.5 10.0 33 40 8230 4.65 1.93 14 0.17 0.40 0.25
PCV-A25* 256 4.75 10.0 33 40 8751 4.95 1.93 14 0.18 0.43 0.27
PCV-A26* 256 5.0 10.0 33 40 9258 5.24 1.93 14 0.19 0.46 0.29
PCV-A27 256 5.25 10.0 33 40 9690 5.51 1.92 15 0.21 0.53 0.32
PCV-A28* 256 5.5 10.0 33 40 10286 5.81 1.93 15 0.23 0.57 0.34
PCV-A29* 256 6.0 10.0 33 40 11416 6.44 1.93 15 0.27 0.65 0.39
PCV-A30* 256 6.5 10.0 33 40 12530 7.08 1.93 15 0.31 0.74 0.44
PCV-A31* 256 7.0 10.0 33 40 13677 7.77 1.93 16 0.36 0.84 0.49
PCV-B1* 1024 1.0 10.0 129 160 45 0.027 0.029 21 0.0001 0.00019 9 x107°
PCV-B2* 1024 2.0 10.0 129 160 226 0.041 0.094 20 0.00017 0.00033 0.00016
PCV-B3* 1024 5.0 10.0 129 160 132914 1.17 1.93 15 0.00018 0.00046 0.00026

IV. MODEL DYNAMICS

We begin our study of the properties of the models by
tracking the time evolution of the total kinetic energy per
unit volume E(¢) given by the difference between input and
dissipation,

dE
— =en() — [ers(?) + ess(t)], 27

dt

where the input ey, the large-scale dissipation ¢g, and the
small-scale dissipation egg are obtained by integrating the

effective viscosity over the respective wave number ranges,
i.e., calculated as

Kmax

SIN(t)=/ dk/dfc DK |k, 1), (28)
kmin
kmin

sLS(t):/ dk/di%a(k)kzm(k,z)ﬁ (29)
0

£ss(t):/ dk/d/%a(k)kﬂa(k,rnz, (30)
k,

‘max
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TABLE II. Parameters and observables for all PEV simulations, with N denoting the number of grid points in each coordinate of the
simulation domain [0, 277]%. The model parameters in Eq. (18) are 'y = 0.0011 for the PEV series and I'y = 0.0002725 for the PEV-64

series, ', /Tg and I'y /T resulting in I = fkk'“_“ D(k) dk, with the driven intervals specified by ki, and kn.x as defined in Eq. (23) for PEV. The

Reynolds number Re is based on the integral scale L = 2/U? fooo dk E(k)/k and the rms velocity U, and Re; is the Reynolds number based
on the effective driving scale L and the velocity in the driven range of scales, .5 the energy dissipation rate in the interval [1, ki), v the
energy input rate in the interval [kpyin, kmax], and ess the energy dissipation rate in the interval (ky.x, 277 /(N/3)]. All observables are ensemble

averaged during the statistically stationary state, with samples taken at intervals of one to three large-eddy turnover time 7 = L/U.

Run id N 1 Fz/ro F4/Fo kmin kmax Re U L Re_f EIN ELS £€ss

PEV-1 256  0.21 0.002 7.72 x 1077 26 43 14 0.10 0.15 5 0.002 0.0012  0.0008
PEV-2 256  0.31 0.0023 9.26 x 1077 23 45 68 022 035 9 0.0072  0.0044  0.0028
PEV-3 256 093 0.0025 9.65 x 1077 22 45 668 0.66 1.56 10 0.0155  0.0097  0.0056
PEV-64-1 512 0.00578  0.0003076  1.55 x 107% 64 126 34 0.09 0.10 8 0.0083  0.0050  0.0033
PEV-64-2 512 0.00586 0.0003072 1.54 x 10~% 64 126 50 0.09 0.12 8 0.0086  0.0051  0.0034
PEV-64-3 512 0.00595 0.0003069 1.53 x 107% 64 126 65 0.10 0.14 9 0.0089  0.0053  0.0036
PEV-64-4 512 0.00604  0.0003065 1.52 x 107% 64 127 70 0.11 0.18 9 0.0093  0.0056  0.0037
PEV-64-5 512 0.00613  0.0003062 1.51 x 10~* 64 127 109 0.12 0.25 9 0.0096  0.0058  0.0039
PEV-64-7 512 0.00614  0.0003061 1.51 x 10% 64 127 140 0.12 0.31 9 0.0097  0.0058  0.0039
PEV-64-7 512 0.00616  0.0003061 1.51 x 1078 64 127 170 0.13  0.36 9 0.0098  0.0058  0.0039
PEV-64-8 512 0.00617  0.0003060 1.51 x 10~% 64 127 247 0.14 047 9 0.0098  0.0059  0.0039
PEV-64-9 512 0.00619 0.0003059 1.51 x 107% 64 127 282 0.15 0.51 9 0.0099  0.0059  0.0039
PEV-64-10 512 0.00622  0.0003058  1.51 x 1078 64 127 389 0.17 0.63 9 0.0100  0.0060  0.0040
PEV-64-11 512  0.00631  0.0003055 1.50 x 1073 64 128 719 024 0.81 9 0.0104  0.0062  0.0042
PEV-64-12 512 0.00641  0.0003051 1.49 x 1078 64 128 980 030 0.88 9 0.0108  0.0065  0.0044

with k = k/k a unit vector in direction of k. During statisti-
cally stationary evolution, mean energy input must equal mean
energy dissipation, ey = & = €15 + €ss. The characteristics
of the nonstationary evolution depends on the presence of an
inverse energy transfer. If an inverse cascade is present, as in
fully developed 2D turbulence, it can be expected that E(¢)
grows linearly in time as long as g g is negligible. This is a
consequence of the fact that the dynamics at the small scales
is much faster than at large scales leading to e =~ const and
gss = const, and one obtains

E() ~ (elv — ess)t, 3D

until e g becomes sufficiently large. This equation holds as
long as eL s ~ 21 E L) 2 is negligible compared to ey —
£ss ~ 2v1EINLf_2 — &ss. Neglecting egs, one must have gy >
eLs resulting in (vl/vo)En\]Lf’2 > E(t)L(t)"2, where L(t) =
7 /k(t) denotes the length scale corresponding to the maxi-
mum of E(k, t). That is, Eq. (31) describes the dynamics to a
good approximation on timescales ¢ < ((vi/vo)EL; 2))’1/ 2,
For later times, when fluctuations on the largest available scale
are excited, i.e., when L(¢) = Lyox, Eq. (27) results in

dE

E = E&IN — €8S — SLS(Z) N EIN — €SS — ZUOE(I)L'J_()Z)(’ (32)

such that E(¢) saturates exponentially

IN —&ss o/t

&
E(t)~ 33
() Pl (33)

on the viscous timescale T = 1/ (2v0Lb_0i) [50].

The time evolution of E (¢) is shown in Fig. 2 for represen-
tative cases. Figure 2(a) contains the results for the runs PCV-
B1, PCV-B2, and PCV-B3 with amplification factors v; /vy =

1, vi/vo = 2, and vy /vy = 5, respectively. Figure 2(b) shows

the corresponding results for PEV with parameters I', /Ty =
0.0025,I", /Ty = 0.0023,and I', /Ty = 0.002, with 'y chosen
such that the forcing remains centered around k; = 36.

The behavior of E(t) is qualitatively similar for the two
models and differs between the respective example cases.
The two cases with low amplification, that is, v;/vg =1
and v;/vy =2 for PCV and I';/Ty = 0.002 and I',/Ty =
0.0023 for PEV become statistically stationary and fluctuate
around relatively low mean values of E. In contrast, for the
cases v; /vy =5 for PCV and I';/T"g = 0.0025 for PEV, the
kinetic energy grows at first linearly, which is characteristic
of a nonstationary inverse energy cascade in 2D turbulence
[51]. This is followed by statistically stationary evolution,
where E (t) fluctuates about mean values which are an order
of magnitude larger than for the aforementioned cases. In
absence of a large-scale friction term, once an inverse energy
transfer is established, statistical stationarity can only be re-
alized through the development of a condensate at the largest
scales.

Compared with the energy levels of the PCV cases shown
in Fig. 2(a), the energy levels of the PEV runs shown in
Fig. 2(b) are much lower. As can be seen from the values listed
in Table I, the driven interval is much wider in PEV than it is
in PCV, such that more nonlinear interactions are taking place
within and close to the driven interval. That is, the nonlinear
transfer is more efficient in redistributing energy across scales
in PEV than it is in PCV. Furthermore, the effective viscosity
is smaller in PEV than in PCV close to the driven interval,
that is, less energy is dissipated there. The consequence of the
two effects is that in PEV less energy input is necessary to
reach statistically stationary states with multiscale dynamics
and, eventually, with a condensate. This can also be seen by
comparing the energy input rates listed in Table 1.

022609-7



MORITZ LINKMANN et al.

PHYSICAL REVIEW E 101, 022609 (2020)

1.21
1.01
<08
K
0.6
0.41
0.2
Vl/VO =1
0.04 : , :
0 500 1000 1500 2000
t)T
0.10
(b) x0.2

0.08
T'y/Ty = 0.0025

0.061
=
0.041 I'y/T = 0.0023
0.021 Ty/T = 0.002
..,
0.00 : : : :
0 2000 4000 6000 8000

t)T

FIG. 2. Time evolution of the total kinetic energy per unit volume
for three example cases for PCV (a) and PEV (b). The energy has
been divided by a factor of 20 for the PCV case v; /vy = 5 and by a
factor of 5 for the PEV case I';/T"y = 0.0025 in order to improve the
readability of the figure.

Emergence of large-scale structures

The formation of successively larger structures and the
eventual formation of a condensate with increasing amplifi-
cation can be seen in visualizations of the velocity field, as
given in [36]. Here, we provide visualizations of o for the
three PCV cases in Fig. 3. The vorticity fields for v; /vy = 1
and v; /vy = 2 are similar, with the vortices in the latter case
slightly stronger and a bit larger. Finally, for v;/vp =35 a
condensate manifests itself in form of two counter-rotating
vortices as in classical 2D turbulence [27,51].

The emergence of large-scale organization and coherence
can be quantified through the calculation of equal-time corre-
lation functions. Owing to isotropy, it is sufficient to consider
the two-point longitudinal correlator

Crr(r) = (ur(x +rju(x)), (34

where r = |r|, and u; = u -r/r is the velocity component
along the displacement vector r, and the angled brackets
denote a combined spatial and temporal average. Longitudinal
correlation functions have been calculated through the spec-
tral expansions of the respective velocity fields for PCV and
PEV, with results shown in Fig. 4, where PCV and PEV data
are contained in the Figs. 4(a) and 4(b), respectively. Clear
correlations up to the size of the system can be identified for
vi/vo =5 and I',/Ty = 0.0025, while C;; decreases much
faster in r for the cases without a condensate, v;/vy = 1,
vi/vo =2,1,/Tg =0.002, and I', /T’y = 0.0023. In all cases,
anticorrelations are present. For the weakly forced cases
shown in black and blue (dark gray) in Fig. 4 these are barely
visible in comparison to the condensate.

The differences in correlation can also be quantified with
the integral scale

1
Cr(0)

listed in Table I: There is at least an O(10) difference between
the respective values of L for PCV-B3 and the two cases with
less amplification, PCV-B1 and PCV-B2, and similarly for
PEV.

/Oodr Crr(r), (3%)
0

V. TRANSITION

The transition between the two cases v;/vy =1 and 2
without a condensate and v;/vy =5 with a condensate is
discontinuous, as shown in [36]. This discontinuous transition
between spatiotemporal chaos and classical 2D turbulence
suggests that the two states are separated by a subcritical
bifurcation. Accordingly, we expect to find a bistable scenario
with the possibility of coexisting states in a parameter range
around the transition, and eventually also hysteresis. As ob-
servable we take the energy at the largest scale E;, which will
be considered as a function of the amplification factor and the
energy input. E| is calculated in terms of the energy spectrum

E(k) = <%fdic |12(k)|2> , (36)

where [ dk indicates an average over all angles in k space with
prescribed |k| = k and (-); denotes a time average during sta-
tistically steady evolution. E; is then given by E| = E(k)jk=1.
Following our analysis in Ref. [36], Fig. 5 presents E; as a
function of v; /vy close to the critical point. Two main features
of the transition can be identified in the figure. First, E,
increases suddenly at the critical value v /vy = 2.00 £ 0.02,
as observed in Ref. [36]. Second, the system shows hysteretic
behavior: the red (gray) curve consists of data points obtained
for decreasing v; /vy, while the black curve corresponds to
states obtained for increasing v;/vy. The resulting hysteresis
loop is clearly visible.

Apart from the presence of hysteresis shown here, the
expected bistable scenario is realized in the statistically sta-
tionary total energy balance

(2m)?
&€ =enN ~2v—5—En, 37
Lg
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FIG. 3. Visualization of the vorticity field w(x, y)Z for PCV cases v, /vy =1 (a), vi/vy = 2 (b), and v; /vy = 5 (c) using samples taken

during the statistically stationary state.

where

kmax
ELN=/ dk E(k), (38)
k,

‘min

with an upper and a lower branch of ¢ as a function of Ey
corresponding to classical 2D turbulence with an emerging
condensate and spatiotemporal chaos at the forcing scale, re-
spectively [36]. The two branches were found to be connected
by an unstable S-shaped region. The existence of two branches
connected by an S-shaped region is also visible in the phase-
space projection relating the energy at the largest scale to
the energy input, i.e., for E; as a function of ey as shown
in Fig. 6(a). The lower branch corresponds to injection rates
obtained for v /vy < Vi qit/Vo, Where E; is negligible and
the inverse transfer is damped by dissipation at intermediate
scales before reaching the largest scale in the system. On the
upper branch that describes states with a sizable condensate,
we observe a linear relation between E; and &py, as can be
expected if most energy is dissipated in the condensate

e = & = 2w E kT Ak, (39)

where k; = 1 is the lowest wave number in the domain, and
Ak = 1 the width of the wave number shell centered at k.
The S-shaped region in Fig. 6(a) can only occur if ey is
a nonmonotonous function of the amplification factor. This
is indeed the case as can be seen in Fig. 6(b), where a
sudden decrease in ey occurs at vy qit/Vo, followed by an
interval in vy /vy where epy varies very little. Eventually, for
states with a condensate ey increases linearly with vy /vy.
The nature of the transition is thus related to nonmonotonous
behavior of the energy input (and therefore the dissipation) as
a function of the control parameter, which can only occur if
the energy input depends on the velocity field. In particular,
for Gaussian-distributed and §-in-time correlated forcing ey
itself is the control parameter and a scenario as described
here is unlikely to occur. This observation suggests that the

type of transition depends on the type of forcing, that is, it is
nonuniversal.

As explained in Sec. II B, the structure of the PEV model
precludes a parameter study with fixed driving scale and
energy input range, as variations in the energy input or the
amplification factor I'; invariably lead to a variation in the
width of the forcing band. One can either fix the scale separa-
tion between the domain size and the driven range of scales by
fixing ki, With the consequence that ki, and location k¢ of
the maximum of ¥ (k) vary, or one fixes k¢ and the scale sep-
aration varies with energy input or amplification factor. That
is, a parameter scan cannot result in like-for-like comparisons
between simulations as the location of a critical point most
likely depends on the location and width of the driven interval.
In order to carry out at least a systematic investigation into the
PEV model, we introduce a new control parameter

kmax
1= / b (k)dk. (40)
k,

‘min

For the PCV model, I is proportional to the amplification
factor vy, as the width of the driven interval is held constant.
As such, using I as a control parameter comes closest to a
like-for-like comparison with the parameter study for the
PCV model.

The PEV parameter study was carried out on 256 and 5122
lattice points, and we could not find hysteresis as shown in
Fig. 7 using the series PEV-64 summarized in Table II. How-
ever, we found transiently coexisting statistically stationary
states with different values of the kinetic energy at the largest
scale in the system E|. These intermediate states can remain
for about 2000 large-eddy turnover times as shown for an
exemplary calculation in Fig. 8(a). To observe the eventual
collapse, the simulations have to be continued to more than
8000 large-eddy turnover times as shown in Fig. 8(b). For
comparison with experimental conditions we identify Ly with
the typical size of a mesoscale vortex and measure velocities
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FIG. 4. Longitudinal correlation functions. (a) PCV for different
values of v;/vy. (b) PEV for different values of I';/I"y. The color
coding and the values for v /vy and for I';/I"y correspond to data
shown in Fig. 2.

in um/s as in Ref. [36], resulting run times of about 30 min
for the intermediate states and 7 h to eventually observe the
single, final flow state. The latter may become difficult to
observe in experimental conditions, as the microswimmers
will eventually slow down owing to oxygen depletion of their
environment.

To compare to experimental data and between the two
models, we define a Reynolds number based on the effective
driving scale Ly and the velocity at the driven scales

~ENLt
f) 9

Res = (41)
where ¥ is the Newtonian viscosity, i.e., ¥ = vy for PCV
and ? = Iy for PEV. This Reynolds number corresponds to
the Reynolds number associated with the mesoscale vortices
observed in experiments. Values of Re; for all simulations
are given in Table I. The transition occurs at Rey >~ 20 for

0 - : :
1.6 1.8 2.0 2.2 2.4
/vy

FIG. 5. E; as afunction of v; /vy. The black curve corresponds to
flow states obtained by increasing v, /vy and the red (gray) curve to
flow states obtained by decreasing v;/vy. A hysteresis loop is visible
in the region 2.00 < v; /vy < 2.04.

PCV and at Re; >~ 10 for PEV, the exact value may depend
on simulation details such as the width of the driving range
and the level of small-scale dissipation. However, the main
point is that both models transition at Reynolds number of
0(10). In comparison, the experimentally observed Reynolds
numbers are about O(1072), based on characteristic vortex
sizes of 100 um, with a characteristic speed of 100 um/s for
B. subtilis [2], and the kinematic viscosity of water vy,o =
1076 (um)?/s.

A. Spectral scaling

Energy spectra for PCV and PEV are shown Figs. 9(a) and
9(b), respectively. The dotted lines in Fig. 9(a) correspond to
series PCV-A, and the solid lines to rescaled PCV-B data as in
Ref. [36]. The transition can be located clearly in the spectra
as E| increases by three orders of magnitude from the third
to the fourth dotted line. The PEV energy spectra presented
in Fig. 9(b) correspond to I';/Tg = 0.0025 (red), I'»/Ty =
0.0023 (blue), and I'; /Ty = 0.002 (black), with the forcing
centered around ks = 36 as in the PCV model. The results
are similar to those for the PCV model shown Fig. 9(a) in
terms of spectral scaling and the formation of the condensate.
However, the condensate appears more gradually in PEV
than it does in PCV and the energy in the driven range is
a monotonic function in PEV while being nonmonotonic in
PCV. Energy spectra with an extended scaling range and a
small accumulation of energy at the smallest wave number
have also been observed in the bacterial flow model [34].
There, the critical amplification rate at which the conden-
sate occurs will depend on the relaxation term —app that
originates from the functional derivative of the free energy
given in Eq. (3). Indeed, the existence of a critical value of
ap > 0, below which no energy accumulation occurs, has
been reported in Ref. [31]. Similarly, condensate formation
in Newtonian turbulence can be suppressed in presence of
sufficiently strong linear friction [52]. In view of the transition
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the PCV cases discussed in Sec. IV. The horizontal lines in (a) and
the vertical lines (b) show the standard error on &, which was
calculated by taking samples at intervals of one large-eddy turnover
time during statistically steady evolution.
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FIG. 7. E; as a function of 7 for series PEV-64. The black curve
corresponds to flow states obtained by increasing / and the red (gray)
curve to flow states obtained by decreasing /.

scenarios, a general quantification of the effect of large-scale
dissipation would be of interest.

At low amplification, equipartition scaling E (k) o« k is
observed for PEV and PCV, as indicated by the black curves
in Fig. 9. In contrast, the low wave number form of E (k) is
nonuniversal for the bacterial flow model even at very low
amplification [31]. This difference also originates from the
presence of the relaxation term —opp in the bacterial flow
model, in Ref. [31] the scaling exponent of E (k) at k < kpjy, 1S
found to depend on . In Newtonian turbulence, deviations
from Kolmogorov scaling of E (k) also depend on details of
large-scale dissipation such as the strength of a linear friction
term or the use of hypoviscosity [52].

Further observations can be made from the data shown in
Fig. 9. The spectral exponent is larger than the Kolmogorov
value of —% even in presence of an inverse energy transfer,
resulting in shallower spectra. This can have several reasons.
For simulations with a small condensate such as for the PEV

0.05

(b)
0.04
0.031
g
0.021
0.011 i )
— increasing |
— decreasing [
000 2000 4000 6000 8000
t/T

FIG. 8. E, as a function of ¢ for run PEV-64-4. The black curve corresponds to flow states obtained by increasing / and the red (gray) curve
to flow states obtained by decreasing /. (a) Short evolution times, (b) full time series.
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FIG. 9. Energy spectra. (a) PCV with for different values of
v1/vo. The solid lines show the rescaled PCV-B cases v, /vy = 1
(black), vy /vy = 2 (blue), and v, /vy = 5 (red), and the dotted lines
PCV-A data. (b) PEV with I';/T"y = 0.0025 (red), I'; /Ty = 0.0023
(blue), and I';/I"g = 0.002 (black). The gray-shaded areas indicate
the respective driving ranges.

data set with I';/I"g = 0.0025 shown in red (light gray) in
Fig. 9(b), energy dissipation is not negligible in the wave
number range between the condensate and the driven interval,
and Kolmogorov’s hypotheses do not apply. For simulations
with a sizable condensate such as PCV-B3 shown in red (light
gray) in Fig. 9(a), the condensate itself alters the dynamics in
the inertial range. In presence of a condensate, the spectral
scaling is known to become steeper [53], with E (k) o< k=3
for the entire wave number range k < kpni,. Removing the
coherent part of the velocity field results in shallower scaling
E (k) o k= [53]. Intermediate states with spectra similar to
PCV-B3 have also been obtained [see Fig. 3(A) in Ref. [53]].

B. Nonlocal transfers

Since the driving in both models depends on the amount of
energy in the driven range, a reduction in the energy input with
increasing amplification requires a reduction in Ejy. One way
by which this could happen is through an enhanced nonlinear

2,
21
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FIG. 10. PCV shell-to-shell transfer function T (k, ¢)/ (sINsz) for
k=1and 1 < g < 50. Blue (dark gray): v, /vy = 2, without conden-
sate. Red (light gray): v; /vy = 5, with condensate at k = 1.

transfer out of the driven wave number range. The reduction
in Epy occurs at the critical point, which suggests that the
condensate may couple directly to the driven scales, leading
to a nonlocal spectral energy transfer from the driven wave
number interval into the condensate. In order to investigate
whether this is the case, the energy transfer spectrum was
decomposed into shell-to-shell transfers [31,54,55] between
linearly spaced spherical shells centered at wave numbers k
and g:

T(k,q)= </ di(/d@/dpﬁ,t ity - iq)lgo(k + p — q)> ,
“2)

where k& and q are unit vectors. Here, the focus is on the
existence of a coupling between the condensate and the driven
scales, hence, linear shell spacing is sufficient. More quantita-
tive statements concerning the relative weight of different cou-
plings within the overall transfer requires logarithmic spacing
[56]. Figure 10 shows the nondimensional energy transfer
into the lowest wave number shell T'(k, g)/ (SINsz) fork =1,
for the two example cases PCV-AS8 (without condensate) and
PCV-A26 (with condensate). In the firstcase, T(k = 1, g) ~ 0
for all g, that is, there is no net nonlocal energy transfer
from the driven scales to the largest scales. In contrast, in
the second case, T(k = 1, g) has a clear maximum around
q = kmax = 40, hence, energy is transferred from the driven
scales into the condensate bypassing the intermediate scales.
The data for PCV-A26 also show a forward transfer from
the k =1 shell into the ¢ =2 shell, as T(k =1, ¢q) has a
distinctive minimum at ¢ = 2 and is negative.

VI. FOUR-SCALE MODEL

Some of the qualitative features of the transition can be
captured in a four-scale model. The main motivation for the
construction of which is to try to understand if a nonlo-
cal coupling between the driven scales and the condensate
reproduces the observations from the DNS parameter scan.
From the shell-to-shell transfers calculated for two example
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cases discussed in the previous section, we know that energy
is transferred nonlocally between the condensate and the
driven scales, however, we cannot deduce if and how such
nonlocal couplings are responsible for the phenomenology of
the transition.

Let Ers be the energy content at the intermediate wave
numbers | < k < kui, and Esg the energy content at k > k-
Then, one can consider the interaction of the four quantities
El, ElNa ELs, and Ess:

El = — 2U0k12E| + C3E11/2ELS
+ 20(E| — E10)(E1 — E10)*E, (43)
Eis = — 2vokigELs + ClELlézEIN - C3E11/2EL87 (44)
Ein =2vikiyEn — ClELlézElN - C4E31§2E1N
— 20(E1 — Evo)(E1 — E19)'*Ey,  (45)
: 2 172
Ess = — 2vykigEss + caEgg N, (46)
where 6 is the Heaviside step function, ¢; > Ofori =1,...,4

parametrize the coupling terms, and k; = 1, kis, kN, and ksg
are effective wave numbers in the corresponding ranges. In
terms of energy transfers, the coupling terms represent

Ewy — Eis: ¢ ELEn, (47)
En — Ei:  B(E, — E1o)(Er — E19)'*En, (48)
Eis — Ei:  cEEys, (49)
En —> Ess:  c4EM B, (50)

where the coupling between Ejy and E; is modeled such
that a nonlocal energy transfer from the driven wave number
range into the largest resolved scales only takes place once
a condensate is emerging. The coupling parameters c; can be
obtained from DNS data through calculations of shell-to-shell
nonlinear transfers. Once they are known, a parameter scan
in v; can be carried out for different values of the threshold
energy Ej o in order to compare the results from the model
with the DNS data. However, before doing so, we derive
predictions from the model equations for two asymptotic
cases:

(i) presence of a condensate E; > E; o, corresponding to
the upper branch in Fig. 6,

(ii) absence of a condensate E; < E| j, corresponding to
the lower branch in Fig. 6.

In what follows, the small-scale dissipation is neglected, as
this enables us to focus on the main points. We will come back
to an analysis of the full model in Sec. VI A.

Case (i): E; > E;o. For E; > E;( we approximate the
coupling term between Ejy and E; as

125~ 1/2
c0(E) — Eo)(Er — E10)"ENn ~ 02E""EN, (5D
and we neglect the coupling term C3E11/ 2ELS that describes
a local energy transfer from the intermediate scales into the
condensate. The latter is introduced to model the nonlocal
contribution to the inverse energy transfer in presence of a
condensate as discussed in Sec. V B. Equations (43)—(45) then

simplify to
. > 1/2 172
EIN = ZVIkINEIN — CIELS EIN - C2E1 EIN» (52)
. 2 1/2
ELS = —zvokLsELS + CIELS EIN7 (53)
: 2 1/2
Ei = —2vok{E| + c2E|"E, 54)

which result in the following expressions for Eqy, Ers, and E;
in steady state:

2V1k[2NEIN = ClEﬁézE[N + C2E11/2E[N

= ClEII‘é2 + 62E11/2 = —2v1k12N, (55)
2v0k]%SELS = C]EﬁézEIN
2
c
= Eis = <—2EIN> , (56)
ZUQkLs
2ka%E1 = CzEll/zEIN
C 2
1 (2‘)0](% IN) (57
Solving for Epy as a function of v, one obtains
4.9
2 2
2v1k12N = ClEﬁéz + CzEll/2 = Zkl“Sv—ZklElN
0
U1V0k12N
= By = —4—— 1%, (58)

2 a3
that is, E;y ~ v and E; ~ 1)12, in qualitative agreement with
the data presented in Fig. 3 of Ref. [36] for v; > vy qit,
respectively.

Case (ii): E; < Ej. In this case, there is no nonlocal
coupling between E| and Eyn, hence, Egs. (43)—(45) become

Ein = 2vikiENn — ClELIé2E1N, (59)
Eis = —2wkisEis + 0B\ En — ¢;E\Eis. (60)
Ei = —20k?E) + 3E,Eys, (61)
which leads the following expressions in steady state:
ZVIkIZNEIN = C]EﬁézE[N
20ikA\°
= Eis = (ﬂ) : (62)
1
2V0k[2‘SELS = ClEliézEIN — C3E1]/2ELS
1
= En = a(2u0kﬁs +aEPES,  (63)
21)()]{12E1 = C3E11/2ELS
SE=(-2_F ’ (64)
1= o k% Ls | -
Solving for Epy as a function of vy, one obtains
V1V csvk3 0\’
1Y0,2 2 3VIAMN
En =4—ki| ko + , 65
IN C% 1N|: LS <c1v0k1> :| (65)

while E; ~ v{.
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Comparing the energy content in the driven wave number
range between cases (i) and (ii) given in Egs. (58) and (65),
respectively, we find

2
ES — 4 V1 Vokiy
N g g
ks 'k
2 2
Vivo 5 | o c3Vikiy R
< d—kiy| ks + =E. (66)
c% IN [ ALs 1ok IN

We point out that this comparison is only justified close to
the critical point, as in principle the different cases imply
different ranges of v;: case (i) is applicable for v; > vy i
and case (ii) for v; < v . However, in the vicinity of vj i,
Eq. (66) predicts a sudden drop in Eyn and therefore of ey =
2v1k12NE1N as a function of v, which is indeed observed in the
DNS data as shown in Fig. 6(b). In summary, the asymptotics
of the model predicts qualitative features of the transition
which are in agreement with the DNS results. For further
quantitative results, we evaluate the model numerically.

Parameter scan for 151

The results of the previous sections demonstrate that the
four-scale model is able to qualitatively reproduce the features
of flow states above and below the critical value of v;. In order
to obtain the properties of the transition to a condensate in the
model system, we now proceed with a parameter scan. The
full model given by Eqgs. (43)—(46) is integrated numerically
for each value of v;. The values of the coefficients c;, for 1 <
i < 4, have been chosen based on the values of shell-to-shell
transfers [31,54] from DNS data above and below the critical
point,

T(k=kis,p=kn,q k)
VELSEN
T(k=ky,p=hkn,q=>kn)

VE EN
oy = T(k =k, p=kis,q = kis)
VE ELs
h = T (k = kss, p = kin, g = ki)
VEssEN

where k; = 1, ks = 5, kiv = 12, and kss = 20. The qualita-
tive behavior of the model, which we discuss in what follows,
does not depend on the value of E; or on the values of
ci,...,cq4aslongas all ¢; # 0. A change in parameters would
locate the transition at a different value of v,. Here, we choose
a cutoff value E; o = 0.05, which results in a transition in the
interval 0 < v < 1.

A sharp transition must occur in the four-scale model as the
dynamics change at the threshold value E; o whose qualitative
features are remarkably similar to the transition in the full
system. Figure 11 presents the results of the parameter scan
for E; [Figs. 11(a) and 11(c)] and ey [Figs. 11(b) and 11(d)]
as functions of v; [Figs. 11(a) and 11(b)] and Ejy [Figs. 11(c)
and 11(d)]. As in the full system, £; shows a sudden jump at
a critical value of v, and thereafter increases quadratically in

=0.037, (67)

Cr =

=0.043, (68)

= 0.0031, (69)

=084, (70

20.0 60
175 (a) 50 (b)
15.0
12.5 40
= 10.0 <
NS W ;O
50 20
25 10
0.0 (
0.00.10.20.30.40.50.60.7 000T020304050607
14 V]
100
40
(c) sof (d)
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c (%)
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FIG. 11. E; (left) and ey (right) as functions of v, (top row) and
En (bottom row) calculated from a parameter scan of Egs. (43)—(46)
and for E; o = 0.05.

v1, while Ejy drops suddenly as predicted for the asymptotic
cases in Secs. VI 1 and VI 2.

Furthermore, different states of the model system may be
realized at the same value of v;, as can be seen Figs. 11(b)
and 11(d), where E| and ¢ are presented as functions of Ej.
The sharp transition is present in form of a discontinuity
in the data along a critical line, and for both E; and ¢ we
observe S-shaped curves with upper and lower branches and
an unstable region in-between. This is qualitatively similar to
the behavior of the full system, as can be seen by comparison
with Fig. 6(a), which presents the corresponding DNS data for
E1(v1/vo) and with Fig. 3 of Ref. [36] that presents £(v;/vy).
We point out that the model system is not able to track the
second, continuous, transition from absolute equilibrium to
viscously damped nonlinear transfers described in Ref. [36],
which occurs in the full system at the continuous inflection
point of the lower branch ¢~. Such an inflection point is
not present in the corresponding model data presented in
Fig. 11(d). This is not surprising as the four-scale model is
by construction not able to produce equipartition of energy
between all degrees of freedom at k < kp;p.

In summary, the model system adequately reproduces the
qualitative features of the transition. More precisely, we can
(1) understand the nonmonotonic behavior of the energy con-
tent at the driven scales, (ii) understand the scaling of E;
with v; on the upper branch, and (iii) clearly distinguish
the transition to condensate formation from the onset of an
inverse energy transfer through postulating a threshold value
for E;. The transition is present in the model by construction,
where the model dynamics becomes nonlocal if a threshold
energy at the largest scale is reached. As such, we suggest
that the transition in the full system also happens through a
similar nonlocal coupling scenario: Energy increases at the
largest scales through the classical inverse energy cascade and
once a threshold energy is crossed, these emerging large-scale
fluctuations couple directly to the energy injection range and
a condensate forms.
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VII. CONCLUSIONS

Active suspensions can be described by a class of one-
fluid models that resemble the Navier-Stokes equation supple-
mented by active driving provided by small-scale instabilities
originating from active stresses exerted on the fluid by the
microswimmers. Here, we provided a justification of the one-
fluid approach for the two-dimensional case by relating the
solvent’s velocity field nonlocally to the coarse-grained po-
larization field of the active constituents. The resulting model
is very similar in structure to solvent models postulated on
phenomenological grounds [30,32]. The justification relies on
two main assumptions: the system must be two-dimensional
at least to a good approximation and the bacterial concentra-
tion must remain constant. That is, it is applicable to dense
suspensions in thin layers.

Numerical simulations of a variant of these models showed
that a sharp transition occurs between the formation of a
steady-state condensate at the largest length scale in the
system and a steady-state inverse transfer which is damped
by viscous dissipation before reaching the condensate [36].
The in-depth investigation carried out here supplements the
results of Ref. [36], the system is bistable and shows hys-
teresis. That is, 2D active matter turbulence and 2D hy-
drodynamic turbulence with a condensate are two nonequi-
librium steady states that can coexist in certain param-
eter ranges and that are connected through a subcritical
transition.

The condensate was found to couple directly to the velocity
field fluctuations at the driven scales. This observation led
to the introduction of a low-dimensional model that includes
such a direct nonlinear coupling once a threshold energy at the
largest scales is reached. Analytical and numerical evaluations
of the model resulted in a good qualitative agreement with
DNS results concerning the main features of the transition.
As such, we suggest that the nature of the transition is re-
lated to correlations between small- and large-scale velocity
fluctuations.

Concerning the nature of the transition, we point out that
in systems where the energy input depends on the amount of
energy at the driving scales, a reduction in input occurs at the
critical point. The latter would not be the case for Gaussian-
distributed and §-in-time correlated random forces as the
time-averaged energy input is known a priori. In that case,
preliminary results suggest the occurrence of a supercritical
transition (work in progress). This suggests that the transition
to developed 2D turbulence is highly nonuniversal: depending
on the type of forcing there may be no transition, or it may be
subcritical or supercritical. Similar situations occur in rotating
flows [57-59]. Subcritical transitions also occur in thin fluid
layers as a function of the aspect ratio [60].

Several aspects of our results merit further investigation.
First and foremost, it would be of interest to study transitional
behavior experimentally. The Reynolds number necessary for
the transition that we found here is at least an order of magni-
tude larger than those describing mesoscale vortices in dense
bacterial suspensions. Hence, a further increase of swimming
speed, a decrease in viscosity, or a larger driving scale are
required to trigger the transition. All three possibilities present
considerable difficulty. The most promising approach may
be through the use of nonbiological microswimmers such as
Janus particles, camphor boats, or magnetic rotors. Second,
the effect of friction with a substrate, which is present not
only in experiments of active suspensions but also in the
Newtonian case, on the location of the critical point needs to
be quantified.
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