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Response of glassy liquids to thermal gradients
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The Soret effect, i.e., the flow of matter caused by a temperature gradient, is studied in a glass-forming binary
Lennard-Jones (LJ) mixture, using nonequilibrium molecular dynamics computer simulation. The transport
processes associated with this effect are thermal diffusion and interdiffusion. While interdiffusion processes
exhibit a drastic slowing down when approaching the glass transition, thermal diffusion appears to be a fast
process even in the glass. We show that the Soret effect becomes more pronounced in the vicinity of the glass
transition, due to the decoupling between thermal diffusion and interdiffusion as well as the chemical ordering
in the considered LJ mixture. This is reflected in the occurrence of large concentration gradients, nonlinear
concentration profiles, and long-lived nonstationary structures.
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I. INTRODUCTION

Many glass-forming liquids are intrinsically polydisperse
or multicomponent in their constituent properties [1], via
which crystallization is kinetically suppressed and thus
glasses are formed. Multicomponent glasses, in various form,
are ubiquitous in diverse applications or natural phenomena
and in many such cases the nonequilibrium response of such
systems to external stimuli, e.g., heat or mechanical load,
is of significance. However, from a microscopic perspective,
the response to externally imposed temperature gradients,
especially even of binary glass-forming liquids, is not well
understood. Here, we focus on this issue using nonequilibrium
molecular dynamics (MD) simulations.

When a temperature gradient is applied to any mixture,
there is a resultant flux of matter. This is known as the
Ludwig-Soret effect [2–4], which has been extensively stud-
ied [5–11] in fluid mixtures under “normal conditions,” i.e.,
far away from the glass transition. In the linear response
regime, for a binary mixture with an asymmetry, e.g., in
size, charge, mass, or interaction energy, this effect is char-
acterized by the Soret coefficient, defined as ST = DT /DAB

with DAB the interdiffusion coefficient and DT the thermal
diffusion coefficient. While DT is a measure of the cross-
correlations between thermal and mass fluxes, DAB is as-
sociated with the mass transport induced by concentration
gradients. Thus, ST measures the relative strength of the latter
processes.

For glassy materials, inhomogeneous thermal conditions
are encountered under diverse circumstances, e.g., during the
formation of the glass from the supercooled melt via cooling
[12–15], via densification [16], or in cases where the material
is heated nonuniformly [17–19]. During the glass formation,
there is a fundamental difference between the transport of
heat and processes such as interdiffusion which are associated
with the mass transport. Structural relaxation becomes in-
creasingly slow as the glass transition is approached, and, as a

consequence, a drastic slowing down and eventually a dynam-
ical arrest of the interdiffusive transport takes place. The heat
flux, however, remains a fast process in the supercooled liquid
and even in the glass state [20–23].

Our objective is to investigate the coupling between ther-
mal diffusion and interdiffusion processes, as the ambient
temperatures are varied from the supercooled to the glassy
regime. In the vicinity of the glass transition, one may expect
a strong nonlinear coupling of the two transport processes as
well as long-lived nonstationary structures, at least in regions
where the local temperature is below the glass transition
temperature.

Using extensive MD simulations, we investigate the re-
sponse of a model glass-forming liquid to an applied ther-
mal gradient. We show that with decreasing temperature the
concentration gradients increase and the nonlinear response
sets in at smaller thermal gradients. However, in the glass
state, the prohibitively slow dynamics suppresses the onset
of such concentration inhomogeneities in response to the
thermal gradient. Here, local melting in zones above the glass
transition temperature leads to various anomalies, including
history-dependent responses. Below, we show that our ob-
servations are due to the negative mixing enthalpy of the
considered glass-forming mixture as well as the decoupling
in the dynamical behavior of the constituent species.

The paper is organized in the following way. In Sec. II, we
describe the details of the model glass former that is used for
the MD simulations, as well as the numerical method used for
probing the nonequilibrium response of the system. In Sec. III,
we discuss the findings of our paper, and then we provide a
concluding discussion in Sec. IV.

II. MODEL AND METHOD

For our paper, we consider the well-studied glass-forming
Kob-Andersen 80:20 binary AB Lennard-Jones (LJ) mixture,
originally proposed to model amorphous Ni80P20 [24]. The
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interaction between two constituent particles has the form

Vαβ (r) = uαβ (r) − uαβ (Rc) − (r − Rc)
duαβ

dr

∣∣∣∣
r=Rc

,

uαβ (r) = 4εαβ [(σαβ/r)12 − (σαβ/r)6], (1)

for r < Rc, with α, β = A, B. Following Ref. [24], we have
chosen εAA = 1.0, εAB = 1.5εAA, and εBB = 0.5εAA for the
parameters with units of energy and σAA = 1.0, σAB =
0.8σAA, and σBB = 0.88σAA for those with units of length.
The range of the interactions is set to Rc = 2.5σAA. All
particles have the same mass m = 1. All measured quantities
are expressed in LJ units, whereby lengths and energies are
expressed in units of σAA and εAA, respectively. The unit of
time is

√
mσ 2

AA/εAA.
For this model, the mode-coupling temperature, below

which equilibrium dynamics is difficult to observe, occurs
around TMCT = 0.435 and the glass transition is estimated at
TVFT ≈ 0.3. Note that the majority A species and the minority
B species have a size asymmetry, σAA/σBB ≈ 1.14, and the
choice of the energy parameters in the LJ model, εAB/εAA =
1.5 and εAB/εBB = 3.0, provides a negative mixing enthalpy
and a strong stability against fluid-fluid demixing [25–27].

In our paper, we consider a system of N = 22 500 particles
in a rectangular box of dimension Lx = Ly = 14.12 and Lz =
94.10, with periodic boundary conditions. The MD simula-
tions are carried out by numerically integrating the equations
of motion of the N particles via the velocity Verlet algorithm,
with a time step of δt = 0.005, using LAMMPS [28].

Both in the equilibrium and nonequilibrium simulations,
respective global and local temperatures are maintained via
Langevin thermostat, using a dissipation timescale of τd =
0.5. At temperatures where this model system behaves as an
equilibrium liquid, we first equilibrate it by coupling it to the
thermostat to maintain the desired temperature Tm. To study
the response to a thermal gradient, we locally thermostat a
region of width Lz/10 in the middle at lower temperature
Tc [marked “Cold” in the schematic diagram, Fig. 1(a)] and
another two regions of width Lz/20 at the two extreme ends at
higher temperature Th [marked “Hot” in Fig. 1(a)] [5]. Th and
Tc are chosen symmetrically about the mean temperature Tm.
The intermediate regions adapt to these thermal baths, and we
thereby study the response to the applied gradient.

All measurements are averaged over 30–65 independent
trajectories, by separately quenching high-temperature liquid
(T = 3.0) states to different target temperatures (Tm) in the
supercooled regime, followed by a sufficiently long run to
reach equilibrium, in respective trajectories, at that tempera-
ture. The well-equilibrated configurations are prepared for the
temperatures 1.0, 0.9, 0.8, 0.7, 0.6, 0.55, and 0.5, and their
number varies, e.g., 65 for Tm = 0.5 and 30 for Tm = 1.0.
Similarly, around 65 independent glassy states at Tm = 0.2 are
prepared by quenching high-temperature liquid states to this
temperature, and then each configuration is aged for a period
of tage = 104.

In the nonequilibrium simulations, after imposing the tem-
perature gradient to the prepared states, spatial profiles of dif-
ferent quantities like heat flux, concentration, density, etc., are
measured using 80 bins along Lz. In the supercooled regime,
measurements are done when the system reaches the steady

FIG. 1. (a) Schematic of the simulation setup. (b) Typical spatial
profile of temperature along z direction, shown for Tm = 0.5, 1.0. (c)
Corresponding spatial profiles of the heat current along the x, y, z
direction.

state (as described below), while measurements for glassy
states are done during the transient regime, since steady state
in terms of spatial variation of concentration is not reached.
The total length of runs, after switching on the gradient, has
been done for 6 × 108 time steps for lower temperatures like
Tm = 0.5 and 3 × 108 time steps for higher temperatures like
Tm = 1.0. In the case of Tm = 0.2, the glass samples have been
exposed to a thermal gradient for 108 time steps.

III. RESULTS

A. Response in the supercooled regime

We first consider the case where the mean temperature
Tm resides at temperatures in the supercooled liquid regime.
Figure 1(b) shows examples of the linear temperature profiles
that are set up, keeping Th = Tm + 0.5	T and Tc = Tm −
0.5	T between the hot and cold ends, respectively. Corre-
spondingly, there is a finite heat current, Jz(z), that develops
in the z direction, and no currents in the orthogonal directions,
as is shown in Fig. 1(c). The measurement of heat current
density in a bin is done via the following expression: Jα =∑

l Jα
l = 1

V

∑
l [

∑
β∈{x,y,z}(elδαβ − Sαβ

l )vβ

l ], where Jα is one
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FIG. 2. Top: Spatial concentration profiles of A and B particles,
xA(z) and xB(z), respectively, for Tm = 1.00, 0.90, 0.80, 0.70, 0.60,
0.55, 0.50. Bottom: Variation of corresponding Soret coefficient ST

(absolute value) with Tm.

of the components of the heat current density, l is summed
over the number of particles in the bin with volume V , and el ,
v

β

l , and Sαβ

l are the total energy (here, the sum of kinetic and
potential energy), component of the velocity, and component
of the stress tensor associated with the lth particle in the bin,
respectively.

As expected in the steady state, the heat current constantly
flows while the mass flux stops and stationary concentration
profiles develop; we show these profiles, viz., xA(z) and xB(z),
respectively, for A and B particles in Fig. 2 (top panel) [29].
The concentration of A species is defined as xA(z) = ρA(z)

ρ(z) ,
ρ and ρA being, respectively, the total number density and
the density of A species; the concentration of B species is
similarly defined. We observe that the concentration of the

FIG. 3. Top: MSD of the center of mass of A population,
〈δr2(t )〉int , for different temperatures (as indicated) using equilibrium
simulations. Bottom: Corresponding temperature variation of inter-
diffusion coefficient DAB (shown with red squares), which behaves
as ≈(T − T ∗)β with T ∗ = 0.427 and β = 1.8 (shown with dashed
line). Also shown is the estimate of thermal diffusivity DT (shown
with green circles), using the relationship DT = ST DAB.

majority species is higher near the hot end. In steady state,
the absolute value of the Soret coefficient has the form ST =
| − 1

xA(1−xA ) ( ∂xA
∂z )( ∂T

∂z )−1| [2,6]. Using this definition, we have
computed ST by doing a straight line fit, locally, to the concen-
tration and temperature profiles, T (z) and xA(z), respectively,
to obtain the local gradients ∂xA

∂z and ∂T
∂z . For xA(z), the fit is

done around xA = 0.8 across data points from 20 bins and
for T (z), near Tm. We measure the Soret coefficient for the
different temperatures, as shown in Fig. 2 (bottom panel),
and we observe that its magnitude increases with decreasing
temperature. Note that, in our case, the sign of the coefficient
is negative for A species, and consequently positive for the B
species.

From the temperature dependence of the Soret coefficient,
ST = DT /DAB, we can infer that the thermal diffusivity be-
comes more dominant (ST > 1) as we approach the glassy
regime. Using equilibrium simulations, it is possible to mea-
sure the interdiffusion coefficient DAB by tracking the center
of mass trajectory of the A species, RA(t ) = 1

NA

∑NA
j=1 rA

j (t ),
and computing the corresponding mean squared displace-
ment, 〈δr2(t )〉int = 〈[RA(t ) − RA(0)]2〉, the data for which are
shown in the top panel of Fig. 3 for the range of temperatures
explored. The interdiffusion coefficient can then be computed
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[30] via the “Einstein relation”:

DAB = lim
t→∞

[
1 + xA

xB

]2

�NxAxB
〈δr2(t )〉int

6t
,

where � is the thermodynamic factor, defined as
� = xAxB/Scc(q = 0), Scc(q) being the concentration-
concentration structure factor, computed using the partial
structural factors SAA(q), SBB(q), and SAB(q) via the
expression Scc(q) = (1 − xA)2SAA(q) + x2

ASBB(q) − 2xA(1 −
xA)SAB(q). In the limit of q → ∞, Scc(q) → xA(1 − xA). For
the Kob-Andersen binary LJ mixture, � does not vary much
within the temperature regime of our interest, and is ≈2.55.

The temperature dependence of the measured DAB is shown
in Fig. 3 (bottom panel) and we demonstrate that the data
can be fitted by DAB ∼ (T − T ∗)β , with T ∗ = 0.427 and the
effective exponent β = 1.8. Thus, in the vicinity of TMCT there
is a drastic slowing down of this process and DAB would
eventually vanish below the glass transition (≈TVFT). So we
can infer from the behavior of the obtained Soret coefficient
that DT , which characterizes the cross-correlation between
thermal and mass flux, exhibits a slower decrease than the
interdiffusive process, near TMCT as we show in the bottom
panel of Fig. 3. However, it also couples to the slow structural
relaxation and thus one expects that DT vanishes below the
glass transition temperature. In contrast, even when the super-
cooled liquid transforms to a glass, the thermal flux and thus
the thermal conductivity is finite and decreases continuously
[20,21].

The spatial variation in concentration is associated with a
variation of the density of each species, as shown in Fig. 4
(middle) and Fig. 4 (bottom) in terms of normalized den-
sity profiles of each species, ρ̃A(z) ≡ ρA(z)/ρ̄A and ρ̃B(z) ≡
ρB(z)/ρ̄B, respectively, with ρ̄A and ρ̄B the total densities of A
and B particles. For both species, the local density is higher at
regions where the temperature is lower, and similar is the case
with the overall density [see Fig. 4 (top)] which is in agree-
ment with previous observations for a one-component fluid
[31]. However, there is also a difference in the response of the
two species, such that the enhanced migration of the minority
B species to the cold region results in the minimization of the
system’s total energy and the enhancement of chemical order
[32]. This is evidenced in Fig. 5: the emergent concentration
profile is such that local equilibrium is satisfied, i.e., for the
obtained combination of local xA and T (z), the local energy
measured from nonequilibrium simulations matches with the
equilibrium value. The concentration gradient increases when
Tm approaches TMCT, while maintaining local equilibrium, as
demonstrated via the comparative behavior for Tm = 0.6 and
0.7 in Fig. 5, with the decrease in local temperature leading to
lower local energies and a wider range of xA, via an increased
affinity between the A and B species. This is manifested
in the increasing density variation, locally, of the minority
B species, with decreasing Tm [Fig. 4 (bottom)], while the
spatial variation of A species almost remains the same [Fig. 4
(middle)].

We note here that the timescales for the migration of
particles over large length scales leading to the emergence of
the steady-state density profiles, and thereby the concentration
profiles, strongly increase, as local temperatures approach the

FIG. 4. For different values of Tm (as marked), normalized den-
sity profiles (defined in text) for all particles (top) of A species
(middle) and B species (bottom).

glassy regime. Thus, for all temperatures in the vicinity of
TMCT, steady-state conditions for the concentration profiles
become difficult to attain, which we discuss below. This
slowness contrasts the fast onset of the steady thermal current,
which results in anomalies, as further elucidated later.

B. Supercooled liquid: Nonlinear response

We now explore the question of how the concentration
profiles change when the applied thermal gradient, dT/dz,
is varied. In Figs. 6(a)–6(e), we illustrate the case for Tm =
0.7. For all considered values of dT/dz, a linear temper-
ature profile [Fig. 6(a)] and a linear dependence of the
corresponding heat current on dT/dz [see Fig. 7 (top)] im-
ply that the thermal response is within the linear regime.
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FIG. 5. Local energy vs local concentration, shown for Tm = 0.6
(cyan) and 0.7 (pink), superposed on corresponding equilibrium
energy vs concentration isotherms shown for a range of temperatures.

However, the corresponding concentration profiles for A par-
ticles, xA(z), are linear at small dT/dz and become more
and more nonlinear as dT/dz increases [Fig. 6(d)]. This is
evident from the spatial profiles of the concentration gra-
dient, dxA/dz, as shown in Fig. 6(e)—constant for small
gradients and otherwise with increasing gradient. We em-
phasize that these profiles are observed in the steady state
and do not reflect any transient behavior. The departure from
the linear response is also seen in the dependence of the
Soret coefficient (the local slope is calculated over seven
bins) with increasing thermal gradient in Fig. 7 (bottom).
While it is constant at sufficiently small values of dT/dz,
it starts to increase at a gradient of about dT/dz ≈ 5 ×
10−3. Microscopically, the nonlinear response is associated
with a stronger enrichment of the B species at the colder
region [cf. the difference in response of density profiles of
A and B species with increasing gradient; see Figs. 6(b)
and 6(c)].

From the behavior of dxA/dz, we chart out the transition
from linear to nonlinear response for the various Tm in the
supercooled liquid in Fig. 8. Here, the important finding is
that the linear response regime breaks down at smaller and
smaller thermal gradients with decreasing temperature. Such
temperature dependence of nonlinearities is reminiscent of the
mechanical response of supercooled liquids [33,34], where
similar nonlinear effects are observed at increasingly smaller
forcing with decreasing ambient temperature.

We note that in the vicinity of TMCT, with increasing gra-
dient, local temperatures in the cold region start to fall below
TMCT. We show one such example in Fig. 9, where for Tm =
0.5 and the largest applied gradient the local temperature goes
below TMCT = 0.435 and consequently steady-state behavior
is not obtained within the observed time window.

C. Response at Tm < TVFT

Having so far explored the response of supercooled liquids,
we now consider the case Tm = 0.2 which is below TVFT ≈
0.3, i.e., in the glassy regime where relaxation processes
are very slow or nearly arrested. If we impose 	T = 0.05,
very soon, a linear temperature profile sets in, and there is
a finite heat current between the hot and cold regions; see

FIG. 6. Tm = 0.7: (a) Temperature profiles, T (z), for in-
creasing applied thermal gradient, shown for (dT/dz)103 =
1.33, 1.86, 2.66, 3.45, 3.99, 5.31, 6.64, 7.97. (b) Corresponding nor-
malized density profiles of A species, and B species (c). (d) Con-
centration profiles of A particles. (e) Gradient of the concentration
profiles shown in (d).
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FIG. 7. Tm = 0.7. Top: Variation of heat flux Jz with changing
imposed temperature gradient (dT/dz): linearity is maintained over
the entire range of applied gradients. ST is computed from the
temperature and concentration profiles shown in Figs. 6(a) and 6(d).
Bottom: The dashed line corresponds to the average value of ST in
the linear response regime.

Fig. 10 (left). Note that for the applied 	T all local regions
are in the glassy state. Here, unlike the liquid regime, the
concentration profile shows no spatial dependence and, for
all waiting times after application of the thermal gradient,
it is nearly indistinguishable from the one measured for the
quiescent aging glass [Fig. 10 (right bottom)]. Thus, for the

FIG. 8. State diagram in the {Tm, dT/dz} plane, indicating where
the transition from linear response (light-green area) to nonlinear
response (dark-green area) sets in.

glass, under applied thermal gradient, the local concentration
remains intact, under applied thermal gradient, i.e., the Soret
effect is not observed. The density profiles of each species
[see Fig. 10 (right top and right middle)] evidence that the
majority component, i.e., the A particles, do respond to the
thermal gradient, albeit with very small changes in local
density due to a local expansion of the volume. In contrast,
over the time scale of the observation, the B particles are
nearly unresponsive. In other words, the reorganization of
the minority species, that is necessary for any concentration
variation to happen, as demonstrated earlier, is not induced
via the applied thermal gradient, where locally all regions are
in the glassy regime.

FIG. 9. Tm = 0.5. Left: Profiles of temperature (top) and concentration of A particles (bottom), for increasing applied gradient (dT/dz).
Right: Corresponding profiles of local density of A (top) and B (bottom) particles, normalized with the respective global density.
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FIG. 10. Tm = 0.2, 	T = 0.1. Left: Spatial profile of applied thermal gradient (top) and corresponding heat current that develops (bottom).
Right: Evolution of the spatial profile of normalized density of A species (top), B species (middle), and concentration of A species (bottom),
shown for different time windows 	t/105 = 0–1 (blue) and 4–5 (green). Corresponding data for unperturbed system at T = 0.2 are shown as
dashed lines.

D. Response to a thermal gradient “pulse”

Finally, we consider the following thought experiment for
a glass sample, where initially both thermostatted regions
are maintained at T = 0.2 [regime BG in Fig. 11(a)] and
aged under this homogeneous thermal condition for tage =
104, after a thermal quench from the high-temperature liquid
phase. Under such conditions, there is no spatial variation
in xB, ρ̃B, ρ̃A, as should be the case [see Figs. 11(c), 11(f)
and 11(i)]. It is, then, suddenly exposed to a thermal gradi-
ent [regime DG in Fig. 11(a)], with Th = 0.5 and Tc = 0.2,
whereby one end of the system is above TMCT, while the
other end is much below. Then, the current becomes finite and
steady, very soon, and a steady temperature profile is obtained
[Fig. 11(b)]. For the A particles, the density profile becomes

marginally nonuniform and reaches a steady state [Fig. 11(g)],
corresponding to a local thermal expansion, as discussed
above. For the B particles, however, the density profile and
consequently the concentration profile starts to evolve with
time—the local density becomes smaller at the hotter end, as
should be the case, and a compaction front slowly propagates
towards the cooler end [see Figs. 11(d) and 11(j) for xB and ρ̃B,
respectively]. Within the window over which the temperature
gradient is on (	t1 = 5 × 105), we clearly do not reach a
steady state in ρ̃B and thus xB. Then, the gradient is switched
off, i.e., both thermostats are again at T = 0.2 [regime AG
in Fig. 11(a)]. While again the thermal current quickly goes
to zero and the marginal density variation in A largely wears
off [Fig. 11(h)], after the switch-off, the situation is very

FIG. 11. Response to a thermal gradient pulse with Th = 0.5 and Tc = 0.2. (a) Schematic of the protocol (see text). (b) Spatial temperature
profile during the protocol. Lower panels: Time evolution of the spatial profiles, during BG, DG, and AG (from left to right) for (c)–(e)
concentration of B particles, (f)–(h) density of A particles, and (i)–(k) density of B particles. In panels (d), (g), and (j), the curves are shown
for 	t/104 = 0–5 (blue), 5–10 (cyan), and 45–50 (magenta). Similarly, in panels (e), (h), and (k), the curves are shown for 	t/104 = 4–5
(orange) and 49–50 (green).
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different for the B particles. For them, the density profiles
remain almost nonevolving over 	t2/104 = 50 [Fig. 11(k)],
and thereby whatever spatial variation in concentration had
occurred with the gradient switched on remains nearly locked
in, spatially, under the recovered glassy ambience [Fig. 11(e)].

IV. CONCLUSIONS

We have studied the response of a glass-forming LJ mix-
ture to an applied thermal gradient, in order to explore the
interplay of heat transport and interdiffusive processes, as the
mean ambient temperature is lowered from the supercooled
regime towards the glass transition. Unlike the fast heat trans-
port, structural relaxations and consequently interdiffusion
exhibit a drastic slowing down with decreasing temperature.
In combination with chemical ordering effects, this results in
increased concentration gradients and thereby larger Soret co-
efficients. Due to the divergence of structural relaxation time
scales, such features get suppressed in the glass. Moreover,
the linear coupling between heat transport and interdiffusion
breaks down when the thermal gradient is large, and the
lower bound for this breakdown decreases while approaching
the glassy regime. By applying a thermal gradient which
leads to local melting of the glass, and then switching it off,

we demonstrate that it is possible to freeze in concentration
inhomogeneities in a glass. Such a protocol thus provides a
possible route to design amorphous solids with specific con-
centration profiles. More such time-dependent protocols need
further exploration to achieve needed functionalities, as well
as to understand current practices in different applications,
e.g., laser-induced melting or welding. Similarly, controlled
experiments using simple glass formers are also necessary
to support such computational studies. A recent study using
x-ray radiography of an Al-Ni mixture [35] has demonstrated
that it is possible to obtain accurate experimental values of the
Soret coefficient for real systems with similar properties as
the LJ model, considered in this paper. On the theoretical side
of understanding such phenomena, limited explorations have
occurred from a microscopic perspective, especially in the
approach to glass transition, and our paper aims at motivating
further studies in this direction.

ACKNOWLEDGMENTS

We thank J.-L. Barrat, C. Dasgupta, F. Bresme, R. Mandal,
and P. Bhuyan for useful discussions, and also the high per-
formance computing facilities at the Institute of Mathematical
Sciences for providing computing hours.

[1] K. Binder and W. Kob, Glassy Materials and Disordered Solids:
An Introduction to Their Statistical Mechanics, Revised Edition
(World Scientific, Singapore, 2011).

[2] S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics
(Dover, New York, 1984).

[3] C. Ludwig, Sitzungsber. Akad. Wiss. Wien Math.- Naturwiss.
Kl. 20, 539 (1856).

[4] C. Soret, Arch. Sci. Phys. Nat. Genève 3, 48 (1879).
[5] T. Ikeshoji and B. Hafskjold, Mol. Phys. 81, 251 (1994).
[6] D. Reith and F. Müller-Plathe, J. Chem. Phys. 112, 2436 (2000).
[7] P.-A. Artola and B. Rousseau, Phys. Rev. Lett. 98, 125901

(2007).
[8] J. K. Platten, J. Appl. Mech. 73, 5 (2006).
[9] W. Köhler and K. I. Morozov, J. Non-Equilib. Thermodyn. 41,

151 (2016).
[10] J. Armstrong and F. Bresme, Phys. Chem. Chem. Phys. 16,

12307 (2014).
[11] S. Bonella, M. Ferrario, and G. Ciccotti, Langmuir 33, 11281

(2017).
[12] C. A. Angell, Solid State Ionics 18, 72 (1986).
[13] Y. Liu, C. T. Liu, E. P. George, and X. Z. Wang, Appl. Phys.

Lett. 89, 051919 (2006).
[14] D. Clever and J. Lang, Optimal Control Appl. Meth. 33, 157

(2012).
[15] M. D. Ediger, J. Chem. Phys. 147, 210901 (2017)
[16] J. Rauch and W. Köhler, Phys. Rev. Lett. 88, 185901

(2002).
[17] D. Castelvecchi, Physics 5, 18 (2012).
[18] D. J. Lacks, G. Goel, C. J. Bopp IV, J. A. Van Orman, C. E.

Lesher, and C. C. Lundstrom, Phys. Rev. Lett. 108, 065901
(2012).

[19] Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y.
Shimotsuma, K. Miura, and K. Hirao, Opt. Lett. 36, 2161
(2011).

[20] P. J. Bhuyan, R. Mandal, P. Chaudhuri, A. Dhar, and C.
Dasgupta, arXiv:1703.04494.

[21] H. Mizuno, S. Mossa, and J.-L. Barrat, Europhys. Lett. 104,
56001 (2013).

[22] W. Götze and A. Latz, J. Phys.: Condens. Matter 1, 4169 (1989).
[23] P. Scheidler, W. Kob, A. Latz, J. Horbach, and K. Binder, Phys.

Rev. B 63, 104204 (2001).
[24] W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994).
[25] S. Toxvaerd, U. R. Pedersen, T. B. Schroder, and J. C. Dyre,

J. Chem. Phys. 130, 224501 (2009).
[26] U. R. Pedersen, T. B. Schroder, and J. C. Dyre, Phys. Rev. Lett.

120, 165501 (2018).
[27] S. Amore, J. Horbach, and I. Egry, J. Chem. Phys. 134, 044515

(2011).
[28] S. Plimpton, J. Comp. Phys. 117, 1 (1995).
[29] For T > TMCT, profiles are averaged over the two zones between

the hot and cold ends, apart from ensemble averaging.
[30] J. Horbach, S. K. Das, A. Griesche, M.-P. Macht, G. Frohberg,

and A. Meyer, Phys. Rev. B 75, 174304 (2007).
[31] A. Baranyai, Phys. Rev. E 54, 6911 (1996).
[32] C. S. Cargill III and F. Spaepen, J. Non-Cryst. Solids 43, 91

(1981)
[33] L. Berthier and J.-L. Barrat, J. Chem. Phys. 116, 6228 (2002).
[34] J. Zausch, J. Horbach, M. Laurati, S. U. Egelhaaf, J. M. Brader,

T. Voigtmann, and M. Fuchs, J. Phys.: Condens. Matter 20,
404210 (2008).

[35] E. Sondermann, F. Kargl, and A. Meyer, Phys. Rev. Lett. 123,
255902 (2019).

022605-8

https://doi.org/10.1080/00268979400100171
https://doi.org/10.1080/00268979400100171
https://doi.org/10.1080/00268979400100171
https://doi.org/10.1080/00268979400100171
https://doi.org/10.1063/1.480809
https://doi.org/10.1063/1.480809
https://doi.org/10.1063/1.480809
https://doi.org/10.1063/1.480809
https://doi.org/10.1103/PhysRevLett.98.125901
https://doi.org/10.1103/PhysRevLett.98.125901
https://doi.org/10.1103/PhysRevLett.98.125901
https://doi.org/10.1103/PhysRevLett.98.125901
https://doi.org/10.1115/1.1992517
https://doi.org/10.1115/1.1992517
https://doi.org/10.1115/1.1992517
https://doi.org/10.1115/1.1992517
https://doi.org/10.1515/jnet-2016-0024
https://doi.org/10.1515/jnet-2016-0024
https://doi.org/10.1515/jnet-2016-0024
https://doi.org/10.1515/jnet-2016-0024
https://doi.org/10.1039/c4cp00818a
https://doi.org/10.1039/c4cp00818a
https://doi.org/10.1039/c4cp00818a
https://doi.org/10.1039/c4cp00818a
https://doi.org/10.1021/acs.langmuir.7b02565
https://doi.org/10.1021/acs.langmuir.7b02565
https://doi.org/10.1021/acs.langmuir.7b02565
https://doi.org/10.1021/acs.langmuir.7b02565
https://doi.org/10.1016/0167-2738(86)90091-3
https://doi.org/10.1016/0167-2738(86)90091-3
https://doi.org/10.1016/0167-2738(86)90091-3
https://doi.org/10.1016/0167-2738(86)90091-3
https://doi.org/10.1063/1.2335380
https://doi.org/10.1063/1.2335380
https://doi.org/10.1063/1.2335380
https://doi.org/10.1063/1.2335380
https://doi.org/10.1002/oca.984
https://doi.org/10.1002/oca.984
https://doi.org/10.1002/oca.984
https://doi.org/10.1002/oca.984
https://doi.org/10.1063/1.5006265
https://doi.org/10.1063/1.5006265
https://doi.org/10.1063/1.5006265
https://doi.org/10.1063/1.5006265
https://doi.org/10.1103/PhysRevLett.88.185901
https://doi.org/10.1103/PhysRevLett.88.185901
https://doi.org/10.1103/PhysRevLett.88.185901
https://doi.org/10.1103/PhysRevLett.88.185901
https://doi.org/10.1103/Physics.5.18
https://doi.org/10.1103/Physics.5.18
https://doi.org/10.1103/Physics.5.18
https://doi.org/10.1103/Physics.5.18
https://doi.org/10.1103/PhysRevLett.108.065901
https://doi.org/10.1103/PhysRevLett.108.065901
https://doi.org/10.1103/PhysRevLett.108.065901
https://doi.org/10.1103/PhysRevLett.108.065901
https://doi.org/10.1364/OL.36.002161
https://doi.org/10.1364/OL.36.002161
https://doi.org/10.1364/OL.36.002161
https://doi.org/10.1364/OL.36.002161
http://arxiv.org/abs/arXiv:1703.04494
https://doi.org/10.1209/0295-5075/104/56001
https://doi.org/10.1209/0295-5075/104/56001
https://doi.org/10.1209/0295-5075/104/56001
https://doi.org/10.1209/0295-5075/104/56001
https://doi.org/10.1088/0953-8984/1/26/013
https://doi.org/10.1088/0953-8984/1/26/013
https://doi.org/10.1088/0953-8984/1/26/013
https://doi.org/10.1088/0953-8984/1/26/013
https://doi.org/10.1103/PhysRevB.63.104204
https://doi.org/10.1103/PhysRevB.63.104204
https://doi.org/10.1103/PhysRevB.63.104204
https://doi.org/10.1103/PhysRevB.63.104204
https://doi.org/10.1103/PhysRevLett.73.1376
https://doi.org/10.1103/PhysRevLett.73.1376
https://doi.org/10.1103/PhysRevLett.73.1376
https://doi.org/10.1103/PhysRevLett.73.1376
https://doi.org/10.1063/1.3144049
https://doi.org/10.1063/1.3144049
https://doi.org/10.1063/1.3144049
https://doi.org/10.1063/1.3144049
https://doi.org/10.1103/PhysRevLett.120.165501
https://doi.org/10.1103/PhysRevLett.120.165501
https://doi.org/10.1103/PhysRevLett.120.165501
https://doi.org/10.1103/PhysRevLett.120.165501
https://doi.org/10.1063/1.3528217
https://doi.org/10.1063/1.3528217
https://doi.org/10.1063/1.3528217
https://doi.org/10.1063/1.3528217
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1103/PhysRevB.75.174304
https://doi.org/10.1103/PhysRevB.75.174304
https://doi.org/10.1103/PhysRevB.75.174304
https://doi.org/10.1103/PhysRevB.75.174304
https://doi.org/10.1103/PhysRevE.54.6911
https://doi.org/10.1103/PhysRevE.54.6911
https://doi.org/10.1103/PhysRevE.54.6911
https://doi.org/10.1103/PhysRevE.54.6911
https://doi.org/10.1016/0022-3093(81)90174-5
https://doi.org/10.1016/0022-3093(81)90174-5
https://doi.org/10.1016/0022-3093(81)90174-5
https://doi.org/10.1016/0022-3093(81)90174-5
https://doi.org/10.1063/1.1460862
https://doi.org/10.1063/1.1460862
https://doi.org/10.1063/1.1460862
https://doi.org/10.1063/1.1460862
https://doi.org/10.1088/0953-8984/20/40/404210
https://doi.org/10.1088/0953-8984/20/40/404210
https://doi.org/10.1088/0953-8984/20/40/404210
https://doi.org/10.1088/0953-8984/20/40/404210
https://doi.org/10.1103/PhysRevLett.123.255902
https://doi.org/10.1103/PhysRevLett.123.255902
https://doi.org/10.1103/PhysRevLett.123.255902
https://doi.org/10.1103/PhysRevLett.123.255902

