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Kinetic model of two-monomer polymerization
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We propose a kinetic gelation model of polymer growth with two monomeric types that have distinct
functionalities (reaction sites), and can polymerize using different reaction types. The heterotypic aggregation of
two monomer types is modeled using a moment generating function approach by tracking the temporal evolution
of a closed system of moment equations up until gelation. We investigate several scenarios of polymerization
with two distinct monomers that differ in the types of reactions that can occur. We determine numerical and
analytical conditions for finite time blow-up (the emergence of an oligomer of infinite size) that depend on initial
conditions, reaction rates, and number of reaction sites per monomer.
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I. INTRODUCTION

General condensation processes have been extensively
studied for several decades, and many review papers and
books have examined polymerization with gelation [1,2].
Polymerization models with only a single monomer type
have previously been studied using statistical [3,4], kinetic
[5–8], and probabilistic [9,10] approaches that aim to describe
polymerization based on the famous Smoluchowski equation
[11]. In the statistical literature, gelation is defined to be the
blow-up of the weight-average molecular weight of polymers
and is interpreted as a transition of the polymer solution to
a gel. It is defined similarly in the kinetic gelation literature
and the critical time at which blow-up occurs is called the gel
time tgel.

In this paper, we examine the behavior of a system of two
types of monomer, type A and type B, with three possible reac-
tions: A−A, A−B, and B−B. We are motivated by our interest
in fibrin polymerization during blood clotting. In that process,
soluble fibrinogen molecules in the blood plasma are con-
verted into fibrin monomers, which then polymerize to form a
gel that is a major structural component of a blood clot [12].
We have previously modeled aspects of fibrin polymerization
[13,14], but in these models, we did not account for the fact
that fibrinogen can bind with fibrin but not directly with other
fibrinogen molecules. Oligomers of mixtures of fibrinogen
and fibrin have been observed experimentally [12,15–17], and
these experiments suggest that this additional type of reaction
affects the kinetics of the overall fibrin gelation process. With
the ultimate goal of modeling the fibrin-fibrinogen system,
here we look at a simplified model, in the belief that our study
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of it will usefully inform our analysis of the actual biological
system.

Others have considered polymerization with mixtures of
two monomer types. Goldstein and Perelson [18] considered a
two-monomer polymerization system at equilibrium, allowing
for binding and unbinding. The authors derived conditions for
gelation and discussed how their model applies to experimen-
tal results involving basophils and histamine release. A kinetic
polymerization system consisting of two distinct monomeric
species A and B was introduced by Lushnikov in [19], and
subsequent results from this system include oligomer compo-
sition distributions and finding exact sol-gel transition times
[20,21].

The Smoluchowski equation for the two-monomer conden-
sation system can be written generally as

dcm,n

dt
=

∑
k+p=m

∑
l+q=n

K (k, l; p, q)ck,l (t )cp,q(t )

−
∑
k,l

K (k, l; m, n)cm,n(t )ck,l (t ), (1)

where cp,q denotes the concentration of oligomers with p
monomers of type A and q monomers of type B. Here, the
coagulation kernel K (k, l; p, q) is the reaction rate between
a (k, l )-mer, containing k monomers of type A and l-type B
monomers, and a (p, q)-mer. In his work, Lushnikov took
K (k, l; m, n) to be constant [19] or the product of the masses
of the coalescing particles [20,21]. He also assumed that only
heterotypic reactions occur, so reaction sites of the same type
do not interact [19].

In the current paper, we assume that reactions between
different oligomers occur based on every free binding site
having equal probability of reacting with each available bind-
ing site on a different oligomer. We also look at situations
in which binding sites can participate in multiple types of
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reactions, both homotypic and heterotypic reactions with rates
that can be different for different types of reactions. With these
assumptions, our coagulation kernel depends on the types of
reactions allowed, and on the number and type of free binding
sites available and so is very different from those considered
earlier [11,18,19,22].

In this paper, we present a kinetic gelation model with
a kernel that allows for reactions of different types among
monomers of types A and B with reaction rates that depend on
the concentrations of available reactive sites of each type on
the oligomers. The reaction rates are influenced by the func-
tionality (number of reaction sites) of each type of monomer.
We vary the composition of the initial mixture of monomers,
the monomeric functionality, and the rate constants for the
different types of reactions and determine reaction conditions
(i.e., combinations of initial composition, functionalities, and
reaction rates) that lead to gelation. We explore how the gel
time changes, or no longer exists, as the reaction conditions
are varied.

Our model is a generalization of the kinetic gelation model
presented by Ziff and Stell [5,6] to study reactions involving a
single type of monomer. The Ziff model tracks concentrations
ck of oligomers made up of k identical monomers (k-mers)
each with functionality f using an infinite system of ordinary
differential equations for ck , k = 1, 2, 3, . . . . Binding sites
on one oligomer can bind with sites on other oligomers to
form larger molecules. In this setting, gelation occurs when∑

k k2ck → ∞, which happens for any nonzero initial con-
centration of monomer if and only if f > 2.

We extend the modeling approach from [5] to a poly-
merization system that involves oligomers comprised of
monomers of two types of monomer, A and B, with fA reaction
sites of type A and fB reaction sites of type B, respectively. An
oligomer Ci jk consists of i total monomers with j free reaction
sites of type A and k free reaction sites of type B. For example,
the monomers of types A and B are denoted C1, fA,0 and C1,0, fB ,
respectively.

The model allows for three types of reactions: those be-
tween A sites on two different oligomers, B sites on two
different oligomers, and an A site on one oligomer with a
B site on another oligomer. Reaction sites both on the same

oligomer are not allowed to react. The rates at which reactions
of each type occur depend on the concentrations of free
reactive sites of the type involved in that particular reaction.
The reactions lead to an infinite set of ordinary differential
equations that track the evolution of the concentrations of
oligomers of type Ci jk , denoted ci jk .

Following [5,6], we introduce a moment generating func-
tion g, derive a partial differential equation for g from the
infinite set of ODEs for the concentrations ci jk , and then use g
to derive a set of ordinary differential equations for various
moments of the oligomer distribution. As we show below,
a closed system of equations involving the zeroth, first, and
second moments is obtained. From these moments we derive
expressions for the total concentration of monomers and
the average oligomer size, among other interesting physical
quantities, and use the small system of ODEs satisfied by the
low moments to study if and when gelation occurs.

II. GENERAL TWO-MONOMER POLYMERIZATION

We consider an aggregation system which involves two
monomer types: type A monomers, each with fA reaction sites,
and type B monomers, each with fB reaction sites. Three
possible reactions are considered: Binding of a type A site
to another type A site, binding of a type A site to a type B
site, and binding of a type B site to another type B site. In all
cases, the two reacting sites must be on different oligomers,
that is, no loops or cycles are allowed to form. The three
biomolecular reactions convert two oligomers into a single
larger oligomer as shown in Eqs. (2)–(4). As indicated, the
respective reactions have (second-order) rate constants kAA,
kAB, and kBB,

Ci1, j1,k1 + Ci2, j2,k2

kAA−→ Ci1+i2, j1+ j2−2,k1+k2 , (2)

Ci1, j1,k1 + Ci2, j2,k2

kAB−→ Ci1+i2, j1+ j2−1,k1+k2−1, (3)

Ci1, j1,k1 + Ci2, j2,k2

kBB−→ Ci1+i2, j1+ j2,k1+k2−2. (4)

Taking into account the three possible reactions, we as-
sume that the oligomer concentrations ci jk (t ) satisfy the fol-
lowing system of ordinary differential equations:

dci jk

dt
= kAA

2

⎛
⎜⎜⎜⎜⎜⎝

∑
i1 + i2 = i

j1 + j2 = j + 2
k1 + k2 = k

j1 j2ci1 j1k1 ci2 j2k2

⎞
⎟⎟⎟⎟⎟⎠ − kAA jci jkRA

︸ ︷︷ ︸
A−A reactions

+ kAB

⎛
⎜⎜⎜⎜⎜⎝

∑
i1 + i2 = i

j1 + j2 = j + 1
k1 + k2 = k + 1

j1k2ci1 j1k1 ci2 j2k2

⎞
⎟⎟⎟⎟⎟⎠ − kAB(kci jkRA + jci jkRB)

︸ ︷︷ ︸
A−B reactions

+ kBB

2

⎛
⎜⎜⎜⎜⎜⎝

∑
i1 + i2 = i
j1 + j2 = j

k1 + k2 = k + 2

k1k2ci1 j1k1 ci2 j2k2

⎞
⎟⎟⎟⎟⎟⎠ − kBBkci jkRB

︸ ︷︷ ︸
B−B reactions

. (5)
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In this equation, RA and RB denote the total concentrations
of free type A reaction sites and free type B reaction sites,
respectively:

RA =
∑
i, j,k

jci jk, (6)

and

RB =
∑
i, j,k

kci jk . (7)

In Eq. (5), the first two terms on the right-hand side
describe A−A reactions, the next three terms describe A−B
reactions, and the final two terms describe B−B reactions.
There are more terms describing A−B reactions because two
oligomers can form an A−B bond in two different ways.

There are a number of other quantities of physical interest
that we would like to track. These include the total concentra-
tion of monomer,

M =
∑
i, j,k

ici jk, (8)

and the average number of total monomers in an oligomer or
cluster, the average cluster size, defined by

C̄ = 1

M

∑
i, j,k

i2ci jk . (9)

To explain why this expression is called the average cluster
size, we rewrite it as

C̄ =
∑
i, j,k

i

(
ici jk

M

)
. (10)

Noting that
∑

i jk ( ici jk

M ) = 1, we see that the expression
in parentheses can be interpreted as the probability that a
randomly selected monomer will be part of an i-mer, so C̄
is the average cluster size. We say that gelation occurs at time
tgel if

lim
t→t−

gel

C̄ → ∞. (11)

We interpret this event as the appearance of an infinite sized
cluster.

To aid in the analysis of Eqs. (5), we introduce a generating
function similar to Ziff and Stell,

g(t, x, y, z) =
∑
i, j,k

xiy jzkci jk (t ). (12)

Using this definition and Eqs. (5), it is straightforward to show
that g satisfies the partial differential equation,

∂g

∂t
= kAA

2

(
∂g

∂y

)2

− kAAy
∂g

∂y
RA + kAB

(
∂g

∂y

)(
∂g

∂z

)

− kAB

(
y
∂g

∂y
RB + z

∂g

∂z
RA

)
+ kBB

2

(
∂g

∂z

)2

− kBBz
∂g

∂z
RB.

(13)

Using the generating function g, we define moments Mi jk

by the expressions

Mi jk = ∂ i+ j+kg

∂xi ∂y j ∂zk

∣∣∣∣
x=1,y=1,z=1

. (14)

In terms of these moments, RA = M010, RB = M001, M =
M100, and

C̄ = M200 + M100

M100
. (15)

Using Eqs. (13) and (14), we can derive ordinary differen-
tial equations for the low moments. Setting x = y = z = 1 in
Eq. (13),

dM000

dt
= −kAA

2
R2

A − kABRARB − kBB

2
R2

B. (16)

Differentiating all terms in Eq. (13) with respect to y and then
setting x = y = z = 1 in the result gives the equation

dRA

dt
= dM010

dt
= −kAAR2

A − kABRARB, (17)

while differentiating Eq. (13) with respect to z and setting x =
y = z = 1 in the result yields

dRB

dt
= dM001

dt
= −kBBR2

B − kABRARB. (18)

Similarly, differentiating Eq. (13) with respect to x and setting
x = y = z = 1 in the result yields the equation

dM

dt
= dM100

dt
= 0, (19)

which ensures conservation of total monomer mass. By com-
puting the appropriate higher partial derivatives of Eq. (13)
and setting x = y = z = 1, we find differential equations for
the second moments,

dM110

dt
= kAA(M020 − RA)M110 + kAB[M110(M011 − RB)

+ M101M020] + kBBM101M011, (20)

dM011

dt
= kAA(M020 − RA)M011

+ kAB
[
M2

011 + M020M002 − M011(RA + RB)
]

+ kBB(M002 − RB)M011, (21)

dM101

dt
= kAAM110M011

+ kAB[(M011 − RA)M101 + M110M002]

+ kBB(M002 − RB)M101, (22)

dM200

dt
= kAAM2

110 + 2kABM110M101 + kBBM2
101, (23)

dM020

dt
= kAA[(M020 − 2RA)M020]

+ 2kAB(M011 − RB)M020 + kBBM2
011, (24)

dM002

dt
= kAAM2

011 + 2kAB(M011 − RA)M002

+ kBB(M002 − 2RB)M002. (25)
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From the differential equations for the non-negative quanti-
ties M000, RA, and RB, we see that these quantities are bounded
functions of time. Recall that we defined the gelation to occur
at time tgel if C̄(t ) → ∞ as t → t−

gel . We see that gelation oc-
curs if and only if M200 → ∞ at finite time tgel . From Eq. (23)
we see that for M200 to become unbounded in finite time, at
least one of M011, M020, or M002 must become unbounded in
finite time. Hence, we are interested in determining conditions
under which one or more of M011, M020, or M002 blow up
in finite time. Note that the equations for RA, RB, M011,
M020, and M002 form a closed system. We study the behavior
of this system for the initial conditions RA(0) = fAc1 fA0(0),
RB(0) = fBc10 fB (0), M011(0) = 0, M020(0) = ( fA − 1)RA(0),
and M002(0) = ( fB − 1)RB(0) corresponding to initial con-
centrations c1 fA0 and c10 fB of type A and type B monomers,
respectively.

For the remainder of this paper, we consider nondimen-
sionalized versions of Eqs. (17), (18), (21), (24), and (25). Let
RT (0) = RA(0) + RB(0) denote the total initial concentration
of free reaction sites. We define the nondimensional time
τ as τ = t[kABRT (0)], and nondimensional moments mi jk =
Mi jk/RT (0). We define nondimensional the A−A and B−B
binding rates as κAA = kAA/kAB and κBB = kBB/kAB, and a
nondimensional initial composition variable

φ = RA(0)

RT (0)
. (26)

The nondimensional ODEs are

drA

dτ
= −κAAr2

A − rArB, (27)

drB

dτ
= −rArB − κBBr2

B, (28)

dm011

dτ
= κAA(m020 − rA)m011

+ m2
011 + m020m002 − m011(rA + rB)

+ κBB(m002 − rB)m011, (29)

dm020

dτ
= κAA(m020 − 2rA)m020

+ 2(m011 − rB)m020 + κBBm2
011, (30)

dm002

dτ
= κAAm2

011 + 2(m011 − rA)m002

+ κBB(m002 − 2rB)m002, (31)

with initial conditions

m020(0) = ( fA − 1)rA(0), m002(0) = ( fB − 1)rB(0), (32)

rA(0) = φ, rB(0) = 1 − φ, m011(0) = 0. (33)

Throughout the paper, we investigate Eqs. (27)–(31) with
different values for the initial conditions and with different re-
action rates to determine if and when gelation occurs. Figure 1
illustrates the region of (κAA, κBB, φ) space that we explore.
We first consider the the case in which we set κAA = 0 and
κBB = 0 which we refer to as scenario 1 corresponding to a
portion of the φ axis in Fig. 1 (also see Table I). For this case,

κAA

κBB

φ

1
Scenario 1 

Scenario 2 

Scenario  3

κAA

κBB

κAA = 1
κBB = 1

FIG. 1. Schematic of parameter space explored. Scenario 1 cor-
responds to the vertical φ axis (black) up to 1. Scenario 2 involves
exploring the (κAA, φ) plane (yellow) for 0 � φ � 1. The orange
plane (scenario 3) explores (κAA, κBB) parameter space for 0 � φ �
1. A special case of scenario 3 is shown as the grey arrow, when
κAA = κBB = 1.

we derive analytically inequalities that φ must satisfy in order
for a gel to form and an analytical formula for the gel time.

We then allow κAA to be nonzero but keep κBB = 0 in
scenario 2, corresponding to the red plane in Fig. 1. In this
case, we present numerical results on gel occurrence and gel
times, using a numerical method described in the next section.
Finally, we allow both reaction rates to be nonzero in scenario
3. We present numerical results for the general case in which
κAA �= 0 and κBB �= 0 (the blue plane in Fig. 1, and analytical
results for the special case κAA = κBB = 1 (grey arrow in
Fig. 1).

For some conditions, we derive analytic results. For others,
we solve the system numerically until finite-time blow-up
occurs using a numerical method described in the next section.

III. RESULTS: SCENARIO 1 (κAA = κBB = 0)

In a polymerization system with one monomer type with
functionality f , gelation is guaranteed to occur in finite time,

t ziff
gel = 1

k f ( f − 2)c1(0)
, (34)

where free sites react at rate k and c1(0) denotes the initial
concentration of monomers [5]. For our two-monomer poly-
merization system, we first consider the scenario where the
only reaction allowed is the heterotypic binding of A sites to B

TABLE I. Reactions involving monomers of type A and B al-
lowed in each scenario.

A bind to A A bind to B B bind to B

Scenario 1 X
Scenario 2 X X
Scenario 3 X X X

022501-4
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0 0.2 0.4 0.6 0.8 1
10 -1

10 0

10 1

10 2

(a)

0 0.2 0.4 0.6 0.8 1
10 -1

10 0

10 1

10 2

(b)

FIG. 2. Scenario 1 (κAA = κBB = 0): (a) Analytical gel time τ
(1)
gel and (b) numerical gel time τ num

gel gel time as functions of φ and for various
functionality combinations: fA = 3 (orange), fA = 4 (yellow), fB = 2 (dashed), fB = 3 (dot-dashed), fB = 4 (dotted). Vertical lines correspond
to lower and upper bounds found in Eq. (46).

sites, thus κAA = κBB = 0. Under these conditions, Eqs. (27)–
(31) reduce to

drA

dτ
= −rArB, (35)

drB

dτ
= −rArB, (36)

dm011

dτ
= m2

011 + m020m002 − m011(rA + rB), (37)

dm020

dτ
= 2(m011 − rB)m020, (38)

dm002

dτ
= 2(m011 − rA)m002. (39)

We derive conditions on φ necessary for gelation to occur
in the scenario. Let w = m011 − rB + √

m020m002 + γ0

2 , where

γ0 = RB(0) − RA(0)

RT (0)
= 1 − 2φ. (40)

From the definition of gelation, w will blow up in finite time if
and only at least one of m011, m020, and m002 blow up. Note if
m011 is bounded then by the form of Eqs. (38) and (39), m020

and m002 cannot go to zero in finite time. Then

dw

dτ
= w2 − γ 2

0

4
, (41)

and

w(0) =
√

( fA − 1)( fB − 1)φ(1 − φ) − 1
2 . (42)

Note that Eq. (41) is separable and

w(τ ) = γ0

2

(
1 + Deτγ0

1 − Deτγ0

)
, (43)

where

D =
∣∣∣∣2w(0) − γ0

2w(0) + γ0

∣∣∣∣. (44)

To find the analytic gel time, we set the denominator of
Eq. (43) equal to zero and find

τ
(1)
gel = ln (2w(0) + γ0) − ln (2w(0) − γ0)

γ0
. (45)

Note that τ
(1)
gel is defined only if both 2w(0) + γ0 > 0 and

2w(0) − γ0 > 0, which implies

1

( fA − 1)( fB − 1) + 1
< φ <

( fA − 1)( fB − 1)

( fA − 1)( fB − 1) + 1
. (46)

The bounds in Eq. (46) require either fA > 2 or fB > 2,
which is the same requirement needed for the system to gel
in [5]. In order to gel in finite time, it must also be true that
fA > 1, fB > 1. If a monomer has functionality less than 2,
one can intuitively consider that monomer to be an “inhibitor”
of the system, where it binds to an available free site and
removes it from the system. However, if both monomers have
functionality greater than 2 there still exists an upper and
lower in φ for gelation to occur. Since type A monomers can
bind only to type B monomers, the gelation properties of the
polymerization system depend not only on the functionalities
but also on the relative initial concentrations of free reac-
tion sites of the two types. Figure 2(a) shows how the gel
time given in Eq. (45) varies with φ, the fraction of initial
reaction sites that are type A, for various combinations of
functionalities.

Reflecting the bounds in Eq. (46), we see that there
are combinations of functionalities and initial conditions for
which gelation (i.e., finite-time blow up of C̄) does not occur
in the case in which only heterogeneous A−B binding occurs.
For each pair of functionalities, gelation does not occur if
there is excess of either monomer type. For example, if fA = 3
and fB = 2, gelation happens only for 1/3 < φ < 2/3. If
either reaction site type initially comprises more than 2/3
of the total initial reaction sites, gelation does not occur.
For larger functionalities, the interval of φ values for which
gelation occurs becomes larger, as expected, but for each
functionality pair, the interval has a left-end greater than 0 and
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Type 

(a) (b)

(c)

B

Type A

Type B

Type A

Type B

Type A

FIG. 3. Typical oligomers for various parameter combinations
for scenario 2, with fA = 3, fB = 2. (a) κAA � 1, φ ≈ 1. (b) κAA � 1,
φ � 1. (c) κAA ≈ 1, φ intermediate.

a right-end less than 1. In addition, for a given value of φ, τ
(1)
gel

decreases implying that gelation occurs earlier.
For the other scenarios listed in Table I, we are unable to

find analytic bounds on φ that ensure gelation nor an analytic
formula for the gel time, and so we evaluate the time evolution
of the moment system Eqs. (27)–(31) numerically. We define
“numerical blow-up” to occur if the sum of the moments m020,
m002, and m011 becomes larger than 107, and we define the
“numerical gel time” to be the time at which this occurs,
denoted as τ num

gel . The moment equations are solved up to
τend = 106 if numerical blow-up does not occur, and in that
case we set τgel = τend. Figure 2(b) shows the results of using
this numerical approach to determining gelation properties in
scenario 1. Comparing the results with the analytic ones in
Fig. 2(a), we see excellent agreement, thus validating the use
of this numerical approach in scenarios 2 and 3.

IV. RESULTS: SCENARIO 2 (κBB = 0)

In this section we set κAA > 0 while keeping κBB = 0
in order to explore the behavior of the moment equations
in the case that A−A binding is allowed in addition to the
A−B binding considered in scenario 1. Typical oligomers for
various parameter ranges are shown in Fig. 3.

Since introducing the additional type of binding changes
the structure of the moment equations, the gel time given in
Eq. (45) is no longer applicable. Instead, we present numer-
ical results obtained with the numerical finite-time blow-up
approach described at the end of Sec. III. The nondimensional
moment equations for scenario 2 are Eqs. (27)–(31) with

0 0.2 0.4 0.6 0.8 1
10 -1

10 0

10 1

10 2

FIG. 4. Scenario 2 (κBB = 0): Numerical gel time as a function
of φ for κAA = 1 and various functionality combinations: fA = 2
(black), fA = 3 (orange), fA = 4 (yellow), fB = 1 (solid), fB = 2
(dashed), fB = 3 (dot-dashed), fB = 4 (dotted).

κBB = 0:

drA

dτ
= −κAAr2

A − rArB, (47)

drB

dτ
= −rArB, (48)

dm011

dτ
= κAA(m020 − rA)m011 + m2

011

+ m020m002 − m011(rA + rB), (49)

dm020

dτ
= κAA[(m020 − 2rA)m020] + 2(m011 − rB)m020, (50)

dm002

dτ
= κAAm2

011 + 2(m011 − rA)m002. (51)

Figure 4 shows how the numerical gel time varies with φ

for various pairs of functionalities when κAA = 1 and κBB = 0.
As before, line colors black, blue, and red correspond to
fA = 2, fA = 3, and fA = 4, respectively, and the dashed,
dot-dashed, and dotted line styles represent fB = 2, fB = 3,
and fBB = 4, respectively. For the cases in which fA > 2, as
φ → 1, the computed gel time approaches that found in [5]
for gelation with a single type of monomer. When φ = 1,
there is only type A monomer in our system. For fA = 2, the
numerical gel time approaches infinity, indicating that no gel
forms, consistent with the necessary condition that monomer
functionality be larger than 2 in the single monomer type
situation [5]. For each of the functionality pairs depicted in
Fig. 4, there is a lower bound such that when φ is lower than
this bound, gelation does not occur. The lower bounds are
close to but not the same as those found in scenario 1, e.g.,
for fA = 3 and fB = 2, the approximate lower bound here is
φ = 0.3193, while that in scenario 1 is φ = 1

3 .
Figure 5 illustrates how numerical gel time changes with

the reaction rate κAA and the initial available binding com-
position φ. In order to demonstrate what would occur if a
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FIG. 5. Scenario 2 (κBB = 0): Numerical gel time as a function of
φ and κAA. The functionalities are fixed ( fA = 3, fB = 2). The color
bar indicates when finite time blow-up occurred.

monomer that can gel on its own was added to a system
that cannot gel, we let fA = 3 and fB = 2. This choice is
also motivated by the polymerization of fibrin and fibrin-
fibrinogen interactions. The white region in Fig. 5 corresponds
to parameter values that have no finite time blow-up and the
colored area corresponds to parameter values that lead to the
formation of a gel. Note that when κAA = 0 (corresponding
to the x axis), a lower and upper bound for gelation in φ

exists, given in Eq. (46). The upper bound in φ exists only
for κAA = 0. Assuming fA > 2, type A monomers can bind to
other type A monomers for even small κAA, which eventually
lead to the formation of a gel. A relative deficiency in type B
reaction sites (φ ≈ 1) does not inhibit gelation in this case.

We compare the theoretical gel time from Ziff [5] with the
numerical gel time for scenario 2 to determine if adding an ad-
ditional monomer and reaction type hinders or helps gelation.
Let τ ziff

gel be the theoretical Ziff gel time. Figure 6 shows τ num
gel

curves (solid curves) for various κAA values, corresponding to
horizontal slices of Fig. 5, and τ ziff

gel gel times (dashed curves)
with one monomer, functionality f = 3, polymerizing [5]. For
large κAA (orange), τ num

gel is monotonically decreasing in φ

while for small κAA (yellow), τ num
gel is nonmonotonic in φ. For

φ = 1, τ num
gel = τ ziff

gel .
Numerical gel times for large κAA are longer than the

theoretical Ziff gel time for φ < 1, indicating that for large
κAA, adding an additional monomer and reaction causes the
system to gel more slowly. In Fig. 6, for each κAA value, there
is a lower bound for φ, below which the numerical gel time,
τ num

gel , indicates that no gelation has occurred. For κAA small
(red) then for large and intermediate values of φ, τ num

gel <

τ ziff
gel implying that the A−B reactions speed up gelation. For

low φ values, τ num
gel > τ ziff

gel implying that the A−B reactions
hinder gelation, or prevent it all together. Hence, compared
to gelation in a pure type A system, the presence of type B
monomers and A−B reactions can either hinder or accelerate
gelation when κAA is small.

0 0.2 0.4 0.6 0.8 1
10 -1

10 0

10 1

10 2

10 3

10 4

FIG. 6. Scenario 2 (κBB = 0): τ num
gel (solid curves) as a function of

φ with varying κAA ( fA = 3, fB = 2) with τ ziff
gel , for f = 3 functional-

ity [5]. Yellow curves indicate κAA < 1 and orange curves indicate
κAA � 1. From bottom to top, solid curves are for κAA = 10, 8, 4, 2,
1, 0.5, 0.1, 0.01, 0.001, and 0.

In Fig. 5, there is a clear boundary, or separatrix, indicated
in black, separating values of (φ, κAA) for which a gel forms
or for which a gel does not form. We show in Fig. 7 how the
location of the boundary curve changes as the functionalities
of fA and fB are altered. For the ( fA, fB) combination for
which gelation would occur in a pure type A system ( fA � 3),
the minimum level of φ needed for gelation decreases as κAA

increases, i.e., gelation occurs for a wider range of initial
compositions. For fA = 2, fB = 3, the lower bound on φ

increases as κAA increases, so gelation occurs for a narrower
range of initial compositions. We also see that fixing one
functionality ( fA or fB), the range of compositions allowing
gelation increases as the other functionality is increased.

V. RESULTS: SCENARIO 3 (ALL REACTIONS ALLOWED)

The final scenario discussed is that in which κAA and κBB

are both nonzero so type A−A, type A−B, and type B−B
reactions can all occur. We investigate two cases, the first in
which κAA = κBB = 1 so all reaction rates are equal, or the
general case where κAA and κBB can be any non-negative value.
Thus, we investigate the original nondimensional moment
equations (27)–(31).

A. Reaction rates equal (κAA = κBB = 1)

We assume that the three types of reactions occur at the
same rate, thus κAA = κBB = 1 in Eqs. (27)–(31). Since the
reaction rates are all equal, the reactivities of monomer types
A and B depend only on their functionalities, fA and fB,
respectively. Letting v(t ) = m020 + m002 + 2m011 − rA − rB,
it follows from Eqs. (27)–(31), that

dv

dτ
= v2. (52)
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FIG. 7. Scenario 2 (κBB = 0): Gel-no gel boundaries similar to Fig. 5 for fixed fA (a) and fB (b) functionality. To the left of each curve,
gelation does not occur and to the right of the curve, gelation occurs for given (φ, κAA).

Solving this equation yields

v(τ ) = v(0)

1 − v(0)τ
, (53)

where v(0) = ( fA − 2)rA(0) + ( fB − 2)rB(0). A gel appears
if v → ∞, which occurs at time

τ
(3)
gel = 1

( fA − 2)rA(0) + ( fB − 2)rB(0)
, (54)

provided this quantity is positive. If fA = fB = f , then
rA(0) = rB(0) = f c̃(0) where c̃(0) = c1, fA,0 + c1, fB,0 is the
total initial concentration of the two types of monomers in
the system. Using these in Eq. (54), we obtain

τ ziff
gel = 1

f ( f − 2)c̃(0)
, (55)

which is the gelation time from the Ziff-Stell model [5]. Note
in particular that if fA = fB = 2, a gel does not form. We next
investigate the effect of varying fA and fB on τ

(3)
gel given in

Eq. (54). We again let φ = rA(0), and write the expression in
Eq. (54) as

τ
(3)
gel = 1

fB − 2 + ( fA − fB)φ
. (56)

Figure 8 shows how τ
(3)
gel varies with φ for several fA, fB

combinations. For each pair of fA, fB values, with fA > fB,
τ

(3)
gel decreases as φ increases to 1, while τ

(3)
gel increases as

φ increases to 1 if fA < fB. No gel forms for fA = fB = 2
(not shown) or for φ = 0 and fB = 2. When fB = 1, Eq. (56)
becomes

τ
(3)
gel = 1

( fA − 1)φ − 1
. (57)

Since τ
(3)
gel < 0 is impossible, we must have that

φ >
1

fA − 1
(58)

for gelation to occur in this case.

From Fig. 8 we see that τ
(3)
gel depends on both monomer

functionalities. If fA �= fB, then an increase in either value
results in faster gelation. For example, with fA = 3, fB = 2,
and φ = 0.5, τ

(3)
gel ≈ 2, but for the same φ value and fA = 4,

fB = 2, τ
(3)
gel ≈ 1. The solid curves in Fig. 8 ( fB = 1) reflect

the gel times when the inequality in Eq. (58) (vertical) must
hold. From Eq. (55), if fA = 2 or fB = 2 and the other func-
tionality is greater than 2, τ

(3)
gel does not depend on monomer

A or monomer B, respectively, and τ
(3)
gel = τ ziff

gel . The situation
corresponds to the dashed curves and the black curves in
Fig. 8. If fA = fB then type A and type B monomers are
indistinguishable since all reaction rates are equal, thus the
gel time does not depend on φ (flat curves in Fig. 8). This

0 0.2 0.4 0.6 0.8 1
10 -1

10 0

10 1

10 2

FIG. 8. Analytical gel time τ
(3)
gel as a function of φ with various

functionality combinations: fA = 2 (black), fA = 3 (orange), fA = 4
(yellow), fB = 1 (solid), fB = 2 (dashed), fB = 3 (dot-dashed), fB =
4 (dotted). Flat curves ( fA = fB) are equivalent to τ ziff

gel .
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FIG. 9. Scenario 3 (κAA �= κBB ): Numerical gel time for fA =
4, fB = 3. Heat map of gel times as a function of κAA, κBB for φ =
0.3, τend = 106. Black data point corresponds to parameter values
found in Fig. 10.

particular gel time is equivalent to that from Eq. (55) for
c̃(0) = 1.

It is clear that the gel time depends on the initial compo-
sition variable φ. Figure 8 illustrates that for any function-
ality combination in which fA > 2, as φ increases to 1, τ

(3)
gel

approaches the gel time τ ziff
gel from Eq. (55) for the single-

monomer system with functionality fA and initial concentra-
tion c̃(0) = 1 [5]. For functionality combinations in which
gelation can occur for 0 � φ � 1, gel time curves begin at
the τ ziff

gel for functionality fB and end at τ ziff
gel time for fA. For

example, when fA = 4, fB = 3 (yellow, dot-dashed curve), at
φ = 0 the gel time corresponds to τ ziff

gel with functionality fB =
3 and at φ = 1 the gel time is equal to τ ziff

gel with functionality
fA = 4.

B. General case

We next investigate scenario 3 with reaction rates κAA and
κBB set to arbitrary positive values. No analytic formula for the
gel time is available, so we solve Eqs. (27)–(31) numerically
until finite-time blow-up occurs using the method described
for scenario 1. With all reaction rates positive, a gel forms
in finite time if fA > 2 or fB > 2. Figure 9 shows τ

(3)
gel as a

function of κAA and κBB for fA = 4, fB = 3, and φ = 0.2. Note
that the maximum gel time is order 10, indicating that a gel
always forms quickly (relative to gel times found in scenarios
1 and 2) and the slowest gel formation occurs when both κAA

and κBB are small.
Figure 10 shows how the gel time depends on φ with κAA =

10−1 and κBB = 10−4. The figure also shows τ ziff
gel for function-

ality f = 3 and rate constant k = 10−4 and for functionality
f = 4 and rate constant k = 10−1, as well as the gel time
τ

(1)
gel from scenario 1 (when κAA = κBB = 0). Note that a gel

forms for both φ = 0 and φ = 1, and that τ num
gel equals the τ ziff

gel

value. In these cases f = 3, k = 10−4 and f = 4, k = 10−1,
respectively.

0 0.2 0.4 0.6 0.8 1
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100

101

102

103

104

105

FIG. 10. Scenario 3 (κAA �= κBB): Numerical gel time as a func-
tion of φ for κAA = 10−1, κBB = 10−4 for fA = 4, fB = 3. Vertical
lines indicate gelation bounds from scenario 1. Black curves indicate
theoretical Ziff times for f = 4 and f = 3.

The sizes of κAA and κBB influence how close the numerical
gel time for scenario 3B is to the analytical gel time for
scenario 1. Since κAA is far from zero, the blue curve does
not hug the dashed curve in Fig. 10. With κBB = 10−4, the
numerical gel time for scenario 3 agrees with the scenario 1
gel time for intermediate φ. Since there are more free B sites
and κBB is relatively closer to zero, we see good agreement for
1
3 < φ < 1

2 . As φ increases, this agreement no longer holds as
there are more A sites available and κAA is far from zero.

We next look at the specific case fA = 3 and fB = 2,
in which monomer B on its own cannot form a gel, and
determine the conditions under which a gel can form in the
two-monomer system. Figure 11 shows τ num

gel as a function of

10-5 100 105

BB

10-5

100

105

A
A

10-4

10-2

100

102

104

FIG. 11. Gel times for polymerization system with fA = 3, fB =
2, varying reaction rates, and φ = 0.2. (a)–(c) on plot marks scenario
1, scenario 2, and theoretical Ziff times for φ = 0.2, respectively.
Transitions from scenarios are marked 1–6.
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FIG. 12. Curves of numerical gel time as a function of φ for fA = 3, fB = 2 with dashed curves showing transitions as κAA and κBB vary
along paths 1–6 in Fig. 11.

κAA and κBB for φ = 0.2. Point (a) shows the (approximate)
parameter values for scenario 1, point (c) shows the parameter
values for scenario 3A, and point (b) shows the parameter
values for scenario 2 with κAA = 1. To understand how τ num

gel
changes as parameter value variations move the system be-
tween the different scenarios listed in Table I, we perform sets
of simulations using parameter values from points along the
numbered paths in Fig. 10. For each parameter point, the gel
time τ num

gel is computed as a function of the initial composition
variable φ.

Gel time vs φ curves from points along the transition paths
1–6 are shown in Fig. 12. Figure 12(a) illustrates the transition
between scenarios 1 and 2 along path 1 where κBB = 0 and κAA

increases from 0 to 1, and between scenarios 2 and 3 along
path 2 where κAA = 1 and κBB increases from 0 to 1. The solid
black curve shows τ num

gel (φ) for scenario 1 in which κBB = 0
and κAA = 0 showing that gelation occurs only for 1/3 < φ <

2/3 in this case. As κAA increases from 0 to 1 along path 1, the
dashed red curves show how gel time decreases substantially
for φ > 2/3, moderately for 1/3 < φ < 2/3, and how the
lower bound on gel formation moves increasing but always
small steps to the left. The limiting solid red curve for κAA = 1
and κBB = 0 for scenario 2 shows that the lower bound from

scenario 1 persists at a slightly smaller value for scenario
2. The dashed blue curves show how the gel time decreases
for φ < 1/3 for parameter values along path 2 as the system
moves between scenario 2 and scenario 3A.

Similar curves are shown in Fig. 12(b). Again, the solid
black curve refers to τ num

gel (φ) for scenario 1. The dashed red
curves indicate how the gel time changes as κAA increases
from 0 to 1 along path 3. The upper bound for gelation moves
to the left, while the lower bound decreases considerably for
φ < 1/3 and moderately for 1/3 < φ < 2/3. The solid red
curve for κBB = 1, κAA = 0 illustrates that the upper bound
persists, although for a smaller value of φ than in scenario
1. Gel times along path 4 are indicated by dashed blue
lines, where gel times decrease for φ > 2/3, and as κBB

approaches 1, we obtain the gel time found in scenario 3A
(solid blue).

Figure 12(c) shows how gel times change along paths 4
and 5. The dashed red curves reveal how gel time changes as
we set κAA = 0 and vary 1 < κBB < 105. Note that in the limit
when κBB � 1, no gelation can occur since the functionality
of monomer B is 2. As κBB decreases from 105, the upper
φ bound for gelation increases substantially to the same red
curve found in Fig. 12(b). Path 4 curves shown in Fig. 12(c)
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are identical to those in Fig. 12(b) and show how gel times
approach scenario 3A as we increase κAA to 1.

Path 6 illustrates how the gel times transition from κAA =
0, κBB = 105 (solid black) to κAA = 1, κBB = 105. As κAA is
varied and increases towards 1, the system gels more quickly
(dashed grey). When κAA = 1, κBB = 105, the dashed grey
curve lies on top of the τ ziff

gel curve. Since fB = 2, increasing
κBB > 1 does not change the gel time of the system.

VI. DISCUSSION

We have presented a two-monomer polymerization system
with a coagulation kernel based on the number of available
binding sites and on the types of reactions each binding site
can participate in. We assumed no intramolecular reactions
thus no cycles can form on oligomers. Several authors have
proposed polymerization systems with intramolecular reac-
tions involving one- [7,23,24] or two- [25] monomer species,
and find that cycle formation affects the sol-gel transition
time.

Without allowing cycles, the reactions we allow the system
to participate in are incorporated into a kinetic gelation model
that is comprised of an infinite set of concentrations ci jk , one
for each oligomer with a specific total number of oligomers,
free reaction sites of type A, and free reaction sites of type B.
Using an approach similar to that of Ziff and Stell in [5], we
found a closed system of low order moment equations that can
be analyzed up until gelation with varying possible reaction
rates, monomer functionalities, and initial concentration of
available reaction sites.

When all reaction rates are equal, we derived an analytical
gelation time that was numerically validated by solving the
closed system until finite-time blow-up occurs. The analytical
gel time depended on the functionality of each monomer type
and on the initial concentration of free binding sites available.
A gel formed in all cases except when at least one of the
monomer functionalities is equal to 1. If a given monomer
has only one binding site, it binds to a free binding site and
occupies it, thus removing a free site from the system. If

initially there is monomer with fB = 1 in excess, no gel forms.
Therefore, there exists a lower bound on φ, the ratio of initial
concentration of free type A binding sites to the total initial
binding site concentration, for finite-time blow-up for only
one functionality value, fB = 1.

We numerically investigated the polymerization system
where no B−B reactions occur. For each fA, fB combination,
gelation does not occur for small φ values so a minimum φ ex-
ists for gelation to occur. As fA and fB increases, this threshold
in φ decreases so fewer A monomers are required to gel.

For a system in which only heterogeneous reactions can
occur (kAA = kBB = 0), if there are too few reaction sites of
type A, gelation cannot occur since B cannot react with B.
Similarly, if there are too many reactions sites of type A, gela-
tion cannot occur. An analytical gel time was obtained for this
scenario, and upper and lower bounds in φ for gelation were
found and confirmed using numerical simulations. The case
allowing only heterogeneous reactions has been investigated
previously using a probabilistic approach based on branching
processes [9,10], where the authors obtain similar results for
the case fB = 2.

Based on the results presented, it is clear that gelation
depends not only on the amount of monomer initially present,
but also on the functionality of each monomer in the poly-
merization system. In the multicomponent gelation literature,
previous work has studied systems that react according to the
mass of monomers present in oligomer, and does not include
the functionality of monomers. Gelation is not possible if both
monomers have only two free reaction sites, so it is critical
to incorporate monomeric functionality into any mathematical
model.
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