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One-dimensional model for chemotaxis with hard-core interactions
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In this paper we consider a biased velocity jump process with excluded-volume interactions for chemotaxis,
where we account for the size of each particle. Starting with a system of N individual hard rod particles in one
dimension, we derive a nonlinear kinetic model using two different approaches. The first approach is a systematic
derivation for small occupied fraction of particles based on the method of matched asymptotic expansions. The
second approach, based on a compression method that exploits the single-file motion of hard core particles,
does not have the limitation of a small occupied fraction but requires constant tumbling rates. We validate
our nonlinear model with numerical simulations, comparing its solutions with the corresponding noninteracting
linear model as well as stochastic simulations of the underlying particle system.
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I. INTRODUCTION

Understanding collective dynamics and self-organization
in the biological sciences has been the subject of much re-
search interest for several decades [1,2]. Mathematical models
describing collective dynamics have been used in the context
of social insects like locusts [3], bacteria [4], cells [5–7],
migratory species [8], and robots [9].

Models for collective dynamics can be broadly classified
into three categories: particle-based models, kinetic models,
and macroscopic models. Particle-based models keep track
of each individual in the system explicitly, describing its
motion and interactions with the others with an equation or
a set of rules. When the number of individuals is large, their
behavior is generally best studied with continuum kinetic and
macroscopic models. Kinetic models consider the evolution
of the density distribution of individuals in the phase space
of position and velocity, whereas macroscopic models focus
on the evolution of the averaged density in position only.
A question of interest is how to connect the different levels
of description for a given system: starting from a particle-
based model, can we obtain the corresponding kinetic and/or
macroscopic model?

A large class of particle-based models in biology are the
so-called velocity-jump processes, consisting of a sequence of
runs and reorientations at randomly distributed times, when
a new velocity is chosen [5]. Velocity-jump processes are
commonly used to model the run-and-tumble dynamics of
flagellated bacteria such as Escherichia coli, which move in a
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more-or-less straight line (a run) interrupted by brief tumbles
[1]. Bacteria use this movement as a searching strategy: the
length of the run increases and the frequency of tumbles
decreases when they are moving in a favorable direction (e.g.,
towards food).

In its simplest form, a velocity-jump process assumes
that particles move at constant speed c and that tumbles or
random changes in the velocity are instantaneous and dis-
tributed according to a Poisson process of constant intensity λ.
This velocity-jump process can be described with the kinetic
equation [5]

∂ p

∂t
+ v · ∇x p = −λ p + λ

∫
V

T (v, u)p(x, u, t ) du, (1)

where p(x, v, t ) is the total population density of particles
located at x ∈ Rd and moving with velocity v ∈ V = {v ∈
Rd , ‖v‖ = c}. Here T (v, u) is the probability of turning from
velocity u to velocity v during a tumble. Several general-
izations of Eq. (1) have been discussed in the literature,
for example, to include resting times [5], account for the
time particles take to turn [9], or consider distributions other
than the Poisson for the random velocity changes [10]. See
also Ref. [11] for a review paper on the applications of (1)
and related random walks in biology. It is well known that,
under certain conditions on the turning kernel T , a parabolic
scaling of space and time in (1) leads to a diffusion equation
[12]. In particular, if the turning kernel is unbiased (meaning
that outgoing velocities are uniformly distributed on the unit
sphere), the limit has isotropic diffusion with a coefficient
D = c2/(λd ) [12].

Equation (1) can be used to describe the motion of a system
of biological organisms such as cells or bacteria if interactions
between them are ignored. However, a key factor that con-
tributes to the emergence of collective behavior in biological
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systems is precisely the interaction between organisms and
their environments [13,14]. In the case of the velocity-jump
process (1), interactions may materialize in the turning rate λ

and/or the turning kernel T . For example, Erban and Othmer
[4] derive a kinetic model for bacterial chemotaxis, where
λ and T depend on a chemotactic signal. In the context of
animal aggregations, Carrillo et al. [8] consider velocity-jump
processes in one and two dimensions, with interactions arising
from different “social forces”: repulsion from nearby neigh-
bors, alignment with individuals at intermediate distances,
and attraction to far-away individuals. The result is kinetic
models of the form (1), but with reorientation terms λ and
T being nonlocal functions of the density of individuals.
Another example of a velocity-jump process with interactions
is considered by Erban and Haskovec in Ref. [3], to model the
collective behavior of locusts. Their model is one-dimensional
and assumes that a locust switches its direction of movement
with a rate that depends on the local average velocity. If most
locusts nearby are moving in the opposite direction, the locust
is more likely to change its direction. In both studies [3,8],
interactions are nonlocal and a mean-field limit approximation
is used to obtain the kinetic models.

The mean-field approach used in Refs. [3,8] is not suitable
for excluded-volume or steric interactions, which are local
by nature. These arise when accounting for the finite size
of organisms and prevent them from overlapping each other.
Because of the challenges that the singular nature of the forces
associated with excluded-volume interactions pose, most of
the work in the literature concerns lattice-based models with
simple exclusion mechanisms. These assume that individ-
ual agents occupy positions on a regular lattice and allow
each lattice site to be occupied by at most a single agent.
Then the lattice spacing is thought of as representing the
diameter of the organism. For example, Treloar et al. [15]
consider a one-dimensional discrete-time unbiased velocity-
jump process where the move of an agent to a new position
is either aborted if it would involve stepping on other agents
or shortened to as far as it can move before colliding with
another agent. By assuming that the probabilities of neigh-
boring sites being occupied are independent and considering
an appropriate limit of the lattice spacing and time step, they
obtain a system of two nonlinear kinetic equations for left-
and right-moving particles. The nonlinearity appears in the
flux terms and is proportional to the free or available space.
Thus, in areas where agents are densely packed, the flux
is reduced. A similar lattice-based velocity-jump process is
considered in Ref. [16] for two hard-core interacting particles.
They obtain an exact expression for the stationary distribution
of the two particles comprising three components: jammed
(particles block each other), attractive (they move together),
and independent at large separations.

A notable exception is the work by Franz et al. [17],
which combines an unbiased off-lattice velocity-jump process
with excluded-volume interactions. In particular, the authors
consider a system of hard-core interacting particles evolving
according to (1), but with additional changes in velocity
whenever two particles collide. They assume collisions are
reflective so that the particles’ speeds remain constant. Start-
ing from the N-particle transport equation and the BBGKY
hierarchy, they derive effective transport equations for the

one-particle density, still of the form (1) but with a density-
dependent turning rate λ. They consider two cases. For very
dilute systems, they use a dilute-gas approximation in which
collisions appear in the equation as a Boltzmann integral, and
for more crowded systems, they use an approximation of the
two-particle density adapted from the result for Brownian hard
sphere particles in Ref. [18]. They then obtain the diffusion
limit in both cases using a moment-closure approximation,
with a corresponding density-dependent collective diffusion
coefficient. Interestingly, they find that the diffusion coeffi-
cient decreases as a result of collisions in the dilute-gas case,
but that it increases in the crowded case for sufficiently large
excluded volumes. This is in agreement with the effective
diffusion coefficient derived for Brownian hard spheres in
Ref. [18].

In this paper we study a one-dimensional biased velocity-
jump process with excluded-volume interactions. As in
Ref. [17] we consider an off-lattice velocity-jump process and
hard-core interacting particles. However, the one-dimensional
problem requires a different analysis from that of the two-
dimensional case studied in Ref. [17] because hard-core in-
teractions in one dimension preserve the ordering of parti-
cles. In contrast with previous works on excluded volume
[15,17], here we consider an external bias on the motion
to model chemotaxis. This is achieved by allowing the
turning rates to depend on the direction of motion and an
external signal and results in a drift term in the diffusive
limit [19].

We present two approaches to coarse-grain the particle-
based model and obtain a kinetic model. The first approach
is based on the method of matched asymptotic expansions,
which was already used in Ref. [18] in the context of Brown-
ian particles. This approach is systematic in the limit of small
volume fraction and allows us to consider spatially dependent
turning rates. The second approach is based on a method
proposed by Rost [20] that exploits the fact that particles
preserve the order in which they were at the initial time and
is therefore heavily reliant on a one-dimensional domain. Its
limitation is that the turning rates must be constant in space.
This method was also used in Ref. [21] in the context of
Brownian particles with interacting potentials containing a
hard core and a repulsive part.

The result is a set of nonlinear hyperbolic equations gov-
erning the dynamics of left- and right-moving particles. We
consider the diffusion limit by taking the standard parabolic
scaling. In that limit, we recover the model for hard-core
Brownian particles in one dimension, known as single-file
diffusion [22]. In order to validate our kinetic model, we
compare it to simulations of the stochastic particle-based
system under different fixed biases, as well as to the diffusion
limit equation.

The article is structured as follows. Section II introduces
the particle-level model and the equivalent N-particle trans-
port equation. Section III is devoted to the derivation of the
population-level kinetic model using the two different ap-
proaches described above. The diffusion limit and stationary
solutions of the effective transport equation are presented in
Sec. IV. In Sec. V we present several numerical examples,
comparing the solutions of our model with stochastic simu-
lations of the particle system under different external signals
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and excluded volume regimes. We conclude in Sec. VI with a
summary and discussion of the results.

II. INDIVIDUAL-BASED MODEL

We begin by describing the individual-based model in
nondimensional form. We consider a group of N identical
hard-core particles with time-dependent positions Xi(t ) and
velocities Vi(t ), i = 1, . . . , N . The particles are hard rods of
length ε � 1 and move along a one-dimensional domain � =
[0, 1] with no-flux boundary conditions and move either to the
left or to the right with a fixed speed c ∈ R+:

Xi(t ) ∈ �, Vi ∈ {−c, c}, dXi

dt
(t ) = Vi(t ). (2)

We assume that the particles occupy a small volume fraction,
so that εN � 1.

The particles undergo a velocity-jump process, where
they switch their velocities to the opposite direction sponta-
neously based on N independent Poisson processes with rates
λ(Xi,Vi ) > 0, where

λ(x, c) = λ+(x), λ(x,−c) = λ−(x). (3)

When λ+ �= λ− this leads to a biased motion to one side of the
domain.

Finally, our model includes hard-core interactions between
particles in the following way. We assume particles switch
their velocities due to collisions between each other. A particle
moving right at position Xi with velocity c collides with a
second particle at Xi + ε and velocity −c. After the collision,
their velocities are reflected: the first particle has velocity −c,
and the second particle moves at velocity c. Similar rules
apply with the domain walls. For example, a particle moving
left with velocity −c will collide with the wall at Xi = 0
and switch its velocity to c after the collision. The collisions
considered are both momentum- and speed-preserving. This
would not be the case in higher dimensions, where there is a
distinction between elastic collisions, which preserve momen-
tum, and reflective collisions, which preserve speed [17].

We note that this is a simple model for chemotaxis with
steric interactions only, and that in general chemotactic cells
and organisms will interact with each other and obstacles in
their environment with a combination of mechanisms. For
example, in the context of bacterial chemotaxis recent exper-
imental studies have shown that cells do not always reverse
their velocities upon collision with each other and boundaries
(tumbling collisions) but can also experience a so-called for-
ward scattering [23]. Our velocity-reversal assumption would
correspond to the former case of tumbling collisions (we
point out that forward scattering is not possible for hard-core
particles in one dimension). An alternative interaction rule,
still accounting for the excluded volume, would have been
to assume that upon collision particles block each other and
remain jammed without moving, until eventually a random
velocity switch frees them. This leads to an effective attrac-
tion between otherwise repulsive particles that, according to
Ref. [16], could potentially explain the mechanism behind
motility-induced phase separation.

Equivalent PDE description

The aim of this paper is to obtain a population-level de-
scription of the system of N interacting particles. To do so, it is
convenient to first write the individual-based model described
above as a partial differential equation in terms of the joint
probability density P(�x, �v, t ) in both space �x = (x1, . . . , xN ) ∈
�N and velocity �v = (v1, . . . , vN ) ∈ V N , where V = {−c, c},
at time t . It satisfies the transport equation

∂P

∂t
+ �v · �∇�xP +

N∑
i=1

[λ(xi, vi )P(�x, �v, t )

− λ(xi,−vi )P(�x, si�v, t )] = 0, (4)

where �∇�x stands for the gradient with respect to the N-particle
position vector �x ∈ �N , and si is the operator that switches the
ith component of �v,

si�v = (v1, . . . ,−vi, . . . , vN ). (5)

Due to the hard-core interactions between particles, (4) is not
defined for �x ∈ �N , but for �x ∈ �N

ε , where

�N
ε = {�x ∈ �N : |xi − x j | > ε, ∀i �= j}. (6)

Equation (4) is complemented with boundary conditions on
∂�N

ε . The boundary condition corresponding to a collision
between particles i and j is

P(�x, �v, t ) = P(�x, sis j �v, t ), at |x j − xi| = ε and viv j < 0.

(7)
The boundary condition with a wall reads

P(�x, �v, t ) = P(�x, s j �v, t ), at x j = 0, 1. (8)

We suppose that the initial positions of the particles are
independent and identically distributed with initial condition

P(�x, �v, 0) = P0(�x, �v). (9)

This implies that P0 is invariant to permutations of the particle
labels and, in turn, due to the form of (4), that P itself
is invariant to particle label permutations for all time. In
particular, this means that particles are indistinguishable and
their ordering (which is fixed by the initial condition due to
the hard-core interactions) is not accessible or available to
us. This is important in our subsequent analysis. Finally, P
satisfies the normalization condition∫

�N
ε ×V N

P(�x, �v, t ) d�x d�v = 1. (10)

III. DERIVATION OF THE KINETIC MODEL

Although linear, Eq. (4) is very high-dimensional (for N
large) and impractical to solve directly. For this reason, we
want to obtain a population-level description of the system,
based on the evolution of the marginal density p of one
particle, say, the first one, defined as

p(x1, v1, t ) =
∫

�N
ε (x1 )×V N−1

P(�x, �v, t ) dx2 · · · dxN dv2 · · · dvN ,

(11)

where �N
ε (x1) denotes the slice of configuration space �N

ε in
(6) for x1 fixed. Since all particles are identical, the particle
choice is not important. We note that, by integrating both sides
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of (11) with respect to x1 and v1 and using (10), we have that
p also has unit mass.

A. Noninteracting particles case

We first consider the simple case on noninteracting par-
ticles with ε = 0, so that there are no interactions between
them. In one dimension one must distinguish between point
particles and noninteracting particles, since point particles
may still interact via hard-core interactions [24]. However,
as we will discuss in Sec. III C, this distinction is relevant
only for systems without invariance of collective properties
under particle relabeling (for example, when interested in
the dynamics of an individual particle or in systems with
nonidentical particles). Noninteracting particles traveling in
opposite directions can pass each other and exchange order,
unlike in the interacting case. Particles are therefore indepen-
dent, and the configuration domain has no holes. Then insert-
ing P(�x, �v, t ) = ∏N

i=1 p(xi, vi, t ) in (4) we find that p(x, v, t )
satisfies

∂ p

∂t
+ v

∂ p

∂x
+ λ(x, v)p − λ(x,−v)p(x,−v, t ) = 0, (12)

with x ∈ � and v ∈ V , together with the boundary condition

p(x, v, t ) = p(x,−v, t ), x = 0, 1, (13)

and initial condition p(x, v, t ) = p0(x, v), where p0 is defined
from P0 using (11). We define the densities of going left
and right as ρ−(x, t ) = p(x,−c, t ) and ρ+(x, t ) = p(x, c, t ),
respectively. They satisfy the following system of equations:

∂ρ+

∂t
+ c

∂ρ+

∂x
+ λ+(x)ρ+ − λ−(x)ρ− = 0, (14a)

∂ρ−

∂t
− c

∂ρ−

∂x
+ λ−(x)ρ− − λ+(x)ρ+ = 0, (14b)

with x ∈ �, boundary conditions ρ+ = ρ− at x = 0, 1, and
initial conditions ρ±(x, 0) = ρ±

0 (x) := p0(x,±c). Using the
normalization of p, we have that

∫
ρ+dx (

∫
ρ−dx) is the

probability that the particle is moving right (left).
We allow for the moment the motion of particles to be

subject to a constant turning rate, that is, λ+ and λ− are
replaced with λ0 in (14). The probability that a particle is at
(x, t ) is ρ(x, t ) = ρ+(x, t ) + ρ−(x, t ). By writing equations
for ρ and the flux j(x, t ) = c(ρ+(x, t ) − ρ−(x, t )), it can be
shown that ρ(x, t ) satisfies the second-order PDE

∂2ρ

∂t2
+ 2λ0

∂ρ

∂t
= c2 ∂2ρ

∂x2
,

with initial conditions ρ(x, 0) = ρ+
0 (x) + ρ−

0 (x) and
∂t p(x, 0) = c∂x[ρ−

0 (x) − ρ+
0 (x)], and boundary conditions

∂xρ = 0 on x = 0, 1. It is known as the telegrapher’s equation,
whose applications are discussed at length in Ref. [25], and
in the context of biological transport in Ref. [5].

B. Interacting particles case via matched asymptotics

When particles have a finite size ε > 0, the internal bound-
aries in �N

ε mean that particles are no longer independent. We
set about the process of deriving a partial differential equation
for the marginal density function p(x1, v1, t ) (11). To this end,
we integrate (4) over the remaining N − 1 particles.

It is convenient to introduce the two-particle density

P2(x1, x2, v1, v2, t )

=
∫

�N
ε (x1,x2 )×V N−2

P(�x, �v, t ) dx3 · · · dxN dv3 · · · dvN ,

(15)

where �N
ε (x1, x2) is the configuration space available to par-

ticles 3, . . . , N when particles 1 and 2 are at x1 and x2,
respectively. Then we can write p as

p(x1, v1, t ) =
∫

�(x1 )
P2(x1, x2, v1,−c, t ) dx2

+
∫

�(x1 )
P2(x1, x2, v1, c, t ) dx2, (16)

where �(x1) the region available to a second particle at x2

when the first particle is at x1. Note that, since the ordering of
particles is unknown, it can be that x2 < x1 or x2 > x1.

Integrating (4) over x2, . . . , xN and v2, . . . , vN yields
exactly

0 = ∂ p

∂t
+ v1

∂ p

∂x1
+ (N − 1)

∑
v2=±c

v1P2

∣∣x2=x1+ε

x2=x1−ε

− (N − 1)
∑

v2=±c

v2P2

∣∣x2=x1+ε

x2=x1−ε
+ λ(x1, v1)p

− λ(x1,−v1)p(x1,−v1, t ), (17)

for x1 ∈ [0, 1]. If x1 is closer to the boundary than ε, then the
corresponding P2 terms are set to zero. The first term comes
from noting that the configuration domain is independent of
time. The second and third terms come from integrating the
transport term v1∂x1 P and using the Leibniz rule of integra-
tion and particle relabeling. The fourth term is obtained by
integrating the terms vi∂xi P for i = 2, . . . , N after relabeling
and using the boundary condition (8) to cancel the boundary
terms at x2 = 0, 1. Finally, the last two terms are the only ones
remaining from the spontaneous turning terms of (4) after
summing vi for i � 2 over {−c, c}. Further details are given
in the Appendix. Rearranging (17) we obtain

0 = ∂ p

∂t
+ v1

∂ p

∂x1
+ 2(N − 1)v1[P2(x1, x1 + ε, v1,−v1, t )

− P2(x1, x1 − ε, v1,−v1, t )]

+ λ(x1, v1)p − λ(x1,−v1)p(x1,−v1, t ). (18)

In Eq. (18) we see that the term involving the two-particle den-
sity P2 is localized at the collision between the two particles.
Below we use the method of matched asymptotic expansions
to evaluate it.

1. Matched asymptotic expansions

In the low-volume fraction regime under consideration
(Nε � 1), three-particle (and higher) interactions are negligi-
ble compared to two-particle interactions. In particular, having
fixed the first particle at x1, the volume in configuration space
occupied by configurations involving particle 1 being at an
order ε distance (the range of the interaction) to another par-
ticle is O(Nε), while the volume of three particles within the
range of interactions is O(N2ε2). In addition, we could have
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the first particle close to a wall and to a second particle, and the
volume of such configurations is O(Nε2). Since we consider
the asymptotic limit Nε � 1, the leading-order contributions
from the interactions are two-particle interactions, and the
latter two will appear at higher order in ε. Mathematically,
this means that when evaluating the collision term in (18),
we consider x1 to be far from the walls and the two-particle
probability density P2(x1, v1, x2, v2, t ) to be governed by the
dynamics of particles 1 and 2 only, independent of the remain-
ing N − 2 particles. For this reason, in the derivation of this
section we assume that P2 satisfies (4) with N = 2.

As discussed above, the domain �(x1) has two disjoint
components, a left subinterval [0, x1 − ε) when x2 < x1 and
a right subinterval (x1 + ε, 1] when x2 > x1. We divide each
subinterval into two regions: an inner region when two parti-
cles are close to each other |x1 − x2| ∼ ε and an outer region
when particles are far apart |x1 − x2| 
 ε. For ease of notation
we drop the subscript 2 in the two-particle density.

In the left and right outer regions, we define Pl (x1, x2, v1,

v2, t ) = P(x1, x2, v1, v2, t ) and Pr (x1, x2, v1, v2, t ) = P(x1,

x2, v1, v2, t ), respectively, and assume particles are indepen-
dent to leading order (omitting the time variable for ease of
notation),

Pl (x1, x2, v1, v2) = q(x1, v1)q(x2, v2)

+ εPl
1(x1, x2, v1, v2) + · · · , (19a)

Pr (x1, x2, v1, v2) = q(x1, v1)q(x2, v2)

+ εPr
1 (x1, x2, v1, v2) + · · · , (19b)

for some functions q, Pl
1, and Pr

1 . Inserting the ansatz (19) into
(4) with N = 2 we find that, as in the interaction-free case, the
leading-order outer q(x1, v1, t ) satisfies (12):

∂q

∂t
+ v1

∂q

∂x1
+ λ(x1, v1)q − λ(x1,−v1)q(x1,−v1, t ) = 0.

(20)
In the inner region we introduce the following change to
inner variables x1 = x̃1 and x2 = x̃1 + εx̃, and we define
P̃(x̃1, x̃, v1, v2, t ) = P(x1, x2, v1, v2, t ). Rewriting (4) with
N = 2 in terms of the inner coordinates gives

0 = ε
∂P̃

∂t
+ εv1

∂P̃

∂ x̃1
+ (v2 − v1)

∂P̃

∂ x̃

+ ε[λ(x̃1, v1) + λ(x̃1 + εx̃, v2)]P̃

− ελ(x̃1,−v1)P̃(x̃1, x̃,−v1, v2)

− ελ(x̃1 + εx̃,−v2)P̃(x̃1, x̃, v1,−v2), (21)

where P̃ is evaluated at (x̃1, x̃, v1, v2, t ) unless explicitly writ-
ten. The boundary condition (7) becomes

P̃(x̃1, x̃, v1, v2) = P̃(x̃1, x̃,−v1,−v2), at x̃ = ±1. (22)

The boundary condition at the walls (8) does not appear in the
inner region because it corresponds to a three-body interaction
as discussed above. Finally, the inner solution P̃ must match
with the outer solution Pl as x̃ → −∞ and Pr as x̃ → ∞.
Expanding (19) in terms of the inner variables, the matching

conditions are

P̃ ∼ q(x̃1, v1)q(x̃1, v2) + εx̃q(x̃1, v1)
∂q

∂ x̃1
(x̃1, v2)

+ εPl
1(x̃1, x̃1, v1, v2), x̃ → −∞, (23a)

P̃ ∼ q(x̃1, v1)q(x̃1, v2) + εx̃q(x̃1, v1)
∂q

∂ x̃1
(x̃1, v2)

+ εPr
1 (x̃1, x̃1, v1, v2), x̃ → ∞. (23b)

We look for a solution of (21), (22), and (23) in the left (x̃ <

−1) and right (x̃ > 1) subdomains in powers of ε, P̃ ∼ P̃0 +
εP̃1 + · · · . The leading-order problem is, in both subdomains,

(v2 − v1)
∂P̃0

∂ x̃
= 0,

P̃0(x̃1, x̃, v1, v2) = P̃0(x̃1, x̃,−v1,−v2), at x̃ = ±1,

P̃0 ∼ q(x̃1, v1)q(x̃1, v2), as |x̃| → ∞.

(24)

Problem (24) is solved, regardless of the sign of v1v2, by

P̃0 = q(x̃1, v1)q(x̃1, v2). (25)

The O(ε) of (21) reads

0 = ∂P̃0

∂t
+v1

∂P̃0

∂ x̃1
+ (v2 − v1)

∂P̃1

∂ x̃
+ [λ(x̃1, v1) + λ(x̃1, v2)]P̃0

− λ(x̃1,−v1)P̃0(x̃1, x̃,−v1, v2)

− λ(x̃1,−v2)P̃0(x̃1, x̃, v1,−v2).

Using that the leading-order inner solution (25) satisfies (20),
the equation above simplifies to

0 = (v2 − v1)

[
∂P̃1

∂ x̃
− q(x̃1, v1)

∂q

∂ x̃1
(x̃1, v2)

]
. (26)

Let us first focus on the solution of P̃1 for x̃ > 1. Integrating
(26) and using the corresponding matching condition (23), we
find that

P̃1 = x̃q(x̃1, v1)
∂q

∂ x̃1
(x̃1, v2) + Pr

1 (x̃1, x̃1, v1, v2). (27)

Equation (27) already satisfies the first-order inner problem
when v1 = v2. When v1 �= v2, the boundary condition (22)
requires that

q(x̃1, v1)
∂q

∂ x̃1
(x̃1,−v1) + Pr

1 (x̃1, x̃1, v1,−v1)

= q(x̃1,−v1)
∂q

∂ x̃1
(x̃1, v1) + Pr

1 (x̃1, x̃1,−v1, v1). (28)

Combining (25) and (27), we find that the inner solution for
x̃ > 1 is, to O(ε),

P̃ ∼ q(x̃1, v1)q(x̃1, v2) + εq(x̃1, v1)x̃
∂q

∂ x̃1
(x̃1, v2)

+ εPr
1 (x̃1, x̃1, v1, v2), (29)

with Pr
1 satisfying (28). Repeating the same argument when

x̃ < −1, we find that the inner solution in the left subdomain
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is given by

P̃ ∼ q(x̃1, v1)q(x̃1, v2) + εq(x̃1, v1)x̃
∂q

∂ x̃1
(x̃1, v2)

+ εPl
1(x̃1, x̃1, v1, v2), (30)

with

Pl
1(x̃1, x̃1,−v1, v1)

= Pl
1(x̃1, x̃1, v1,−v1) + q(x̃1,−v1)∂x̃1 q(x̃1, v1)

− q(x̃1, v1)∂x̃1 q(x̃1,−v1).

Finally, we can relate the left and right first-order outer
solutions, Pl

1 and Pr
1 , respectively, using the fact that particles

are identical and indistinguishable. Suppose that we are in
the right outer region (defined as x2 > x1) and the particles’
velocities are v1 = −c and v2 = c. Then the first order outer is
given by Pr

1 (x1, x2,−c, c). But this same configuration could
be described as a left outer region (so that x2 < x1) with v1 =
c and v2 = −c, so that the first-order outer is Pl

1(x1, x2, c,−c).
More generally, we have the following relation:

Pr
1 (x1, x2, v1, v2) = Pl

1(x1, x2, v2, v1). (31)

2. Evaluation of the collision terms

Now we go back to the integrated equation (18) and use
the inner solution to evaluate the collision terms, as these
correspond exactly to when the two particles are in contact
and thus in the inner region. We find

P2(x1, x1 + ε, v1,−v1) − P2(x1, x1 − ε, v1,−v1)

= P̃(x̃1, 1, v1,−v1) − P̃(x̃1,−1, v1,−v1)

= εq(v1)∂x̃1 q(−v1) + εPr
1 (x̃1, x̃1, v1,−v1)

+ εq(v1)∂x̃1 q(−v1) − εPl
1(x̃1, x̃1, v1,−v1)

= εq(v1)∂x̃1 q(−v1) + εPr
1 (x̃1, x̃1, v1,−v1)

+ εq(v1)∂x̃1 q(−v1) − εPr
1 (x̃1, x̃1,−v1, v1)

= εq(v1)∂x̃1 q(−v1) + εq(v1)∂x̃1 q(−v1)

+ εq(−v1)∂x̃1 q(v1) − εq(v1)∂x̃1 q(−v1)

= ε∂x̃1 [q(−v1)q(v1)], (32)

where we have omitted the x̃1 variable in q for ease of notation
and have written q(x̃1, v1) ≡ q(v1). In the second line we have
used the inner region solutions (29) and (30). In the third line
we have used (31) to write Pl

1 in terms of Pr
1 , and in the fourth

line we have used (28).
Now we use the normalization condition on P2 to determine

the outer function q. We find that q(x1, v1, t ) = p(x1, v1, t ) +
O(ε). Writing (32) in terms of p and inserting it into (18) we
find that the density p(x, v, t ) satisfies, to O(ε), the following
nonlinear kinetic equation:

0 = ∂ p

∂t
+ v

∂ p

∂x
+ 2εv(N − 1)

∂

∂x
[p p(x,−v, t )]

+ λ(x, v)p − λ(x,−v)p(x,−v, t ), (33)

where p = p(x, v, t ) unless explicitly given. Equation (33)
can also be written in terms of the left- and right-moving
densities ρ±(x, t ) (as previously defined in Sec. III A):

0 = ∂ρ+

∂t
+ c

∂

∂x
{[1 + 2ε(N − 1)ρ−]ρ+}

+ λ+(x)ρ+ − λ−(x)ρ−, (34a)

0 = ∂ρ−

∂t
− c

∂

∂x
{[1 + 2ε(N − 1)ρ+]ρ−}

+ λ−(x)ρ− − λ+(x)ρ+. (34b)

In Eq. (34) we have included only the leading-order non-
linear term due to steric effects. There will be correction terms
of O(ε2N ) due to higher-order terms in the two particle inner
solution P̃ ∼ P̃0 + εP̃1 + ε2P̃2 + · · · , as well as new inner
regions where three particles O(ε2N2), or two particles and
the boundary O(ε2N ), are close. The most important of these
corrections is that due to interactions between three (or more)
particles. Because our asymptotic expansion is systematic,
these correction terms could in principle be calculated.

We can compare (34) with the system considered in
Ref. [3], also for left- and right-moving interacting particles in
a one-dimensional domain. While in our system interactions
are due to direct collisions between particles, in Ref. [3]
interactions were introduced in the switching rates so that
particles tend to switch more in the direction of movement of
the ensemble of particles. Accordingly, the resulting system
of PDEs, obtained via a mean-field limit, is nonlinear in the
reaction terms, rather than in the transport term as in (34).
This is also the case of the system considered in Ref. [8].

Another interesting comparison is that of (34) with the
result of Ref. [15], also describing a one-dimensional velocity
jump process with excluded-volume interactions, but on a
lattice. They consider three different cases of interactions, all
of which ensure that a particle cannot move to a new lattice
site if it is already occupied (the particle either aborts the
move or shortens it to avoid other particles). A key difference
with our model is that interactions in Ref. [15] are one-sided:
the particle that attempted the move changes its behavior if
that would lead to a collision with a second particle, but
not vice versa. In contrast, in our model a collision leads to
both particles reversing their directions. The result of this mi-
croscopic difference in the macroscopic model is that, while
both models’ nonlinear flux terms depend on the densities,
in (34) they are increasing functions of the opposite-moving
density, whereas in Ref. [15] they are decreasing functions
of the total density. This is similar to what happens when
comparing lattice and off-lattice based models for diffusion
with excluded-volume interactions: In off-lattice models, the
collective diffusion of a group is enhanced with its density,
whereas self-diffusion (the behavior of a tagged particle)
reduces with density [26]. In the corresponding on-lattice
model (with particles undergoing a simple exclusion process),
the collective diffusion is proportional to the available space,
therefore decreasing with the total density [27].

C. Interacting particles case via compression

In this section we will use an idea by Rost [20] to re-
duce the problem for N hard-core interacting particles into
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FIG. 1. Sketch showing the process of compression (35). Modi-
fied from Ref. [21].

a problem for point noninteracting particles. Rost’s method
was used for a system of Brownian hard-core particles in one
dimension by Bodnar and Velazquez [21]. In one dimension,
the ordering of the particles is fixed by the initial conditions
due to the hard-core collisions, that is, the particles cannot
change order in time (xi < x j at t = 0 implies that xi < x j

for all times). Without loss of generality, in this section we
assume that particles are labeled according to their ordering,
that is, x1 < x2 < · · · < xN−1 < xN . The technique by Rost is
to use a coordinate change to eliminate the excluded regions
between the particles. The collision boundary conditions sim-
ply state that two colliding particles exchange their velocities
when they collide. Thus, a collision in the original system
corresponds to a “label swap” in the new system. Further,
the particles are indistinguishable, so the probability den-
sity functions are invariant with respect to label swaps. The
“compressed” system of particles thus can be modeled as a
system of noninteracting particles. Therefore the dynamics of
a system of identical diffusing hard-core interacting rods that
cannot pass each other (single-file diffusion) can be reduced
to that of a system of independent point particles [20]. We
note that this is not true if particles are distinguishable or if
we are interested in the dynamics of an individual or tagged
particle [24].

We will see that the same idea works for hard rods un-
dergoing a velocity-jump process. In order for this method
to work, we require the number of particles N to be large
(in contrast with the matched asymptotic expansions deriva-
tion in the previous section, where N can be a small quan-
tity), and the tumbling rates to be constants (independent
of space).

We begin by defining the change of variables to the new
system. Recall that � is the domain available to the centers
of the N particles of length ε, xi ∈ � = [0, 1]. Let us consider
the position xi of the ith particle in the original system. We
denote as yi the compressed position, which is related to xi by
(see Fig. 1)

yi = xi − (i − 1)ε, i = 1, . . . , N. (35)

If x1 = 0, then y1 = 0, while if xN = 1, then yN = 1 − (N −
1)ε. Therefore, the domain of the compressed system is
�̂ = [0, 1 − (N − 1)ε]. We denote time as t̂ = t and define
the joint probability density in the compressed system by
P̂(�y, �v, t̂ ). This density takes values in �̂N × V ; note that there
are no “gaps” in this domain now. Inserting the transforma-
tion (35) into (4), and assuming that the switching rates (3) are
independent of the particle’s position, we find that P̂ satisfies

the following equation:

∂P̂

∂ t̂
+ �v · �∇�yP̂ +

N∑
i=1

[λ(vi)P̂(�y, �v, t̂ ) − λ(−vi )P̂(�y, si�v, t̂ )] = 0.

(36)

We now look at how the boundary conditions due to collisions
between particles (7) and with the walls (8) change under the
compression transformation. At the walls we have

P̂(�y, �v, t̂ ) = P̂(�y, si�v, t̂ ), at yi = 0, 1 − (N − 1)ε. (37)

For ease of exposition, we consider how the collision bound-
ary conditions change for N = 2. In the original coordinates,
we have

P(x1, v1, x2,−v1) = P(x1,−v1, x2, v1),

at |x2 − x1| = ε. Under the transformation (35), the above
becomes

P̂(y1, v1, y2,−v1) = P̂(y1,−v1, y2, v1)

= P̂(y2,−v1, y1, v1) at y1 = y2, (38)

where the last equality comes from using that y1 = y2. In
general, in the N-particle system, a collision in the original
system between two particles corresponds to swapping their
labels in the compressed system. In other words, the collision
boundary conditions disappear in the compressed system and
manifest instead as a label swap. In particular, this means that
the compressed system will be much easier to solve since it
is interaction-less, like the case we considered in Sec. III A.
Finally, the initial condition is

P̂(�y, �v, 0) = P(�x, �v, 0). (39)

The problem (36)–(39) is separable. As a result, we can write
its solution as

P̂(�y, �v, t̂ ) =
N∏

i=1

p̂(yi, vi, t̂ ), (40)

where p̂ is the one-particle marginal density, defined analo-
gously to p in (11). Due to the independence of particles in
the compressed domain, p̂(y, v, t̂ ) satisfies the same kinetic
equation as in the interaction-free case (12),

∂ p̂

∂ t̂
+ v

∂ p̂

∂y
+ λ(v) p̂ − λ(−v) p̂(y,−v, t̂ ) = 0, (41)

with (y, v) ∈ �̂ × {−c, c}, together with boundary conditions

p̂(y,−c, t̂ ) = p̂(y, c, t̂ ), x ∈ ∂�̂. (42)

As before, we can define the two subdensities ρ̂± for the
probability of going left and right, ρ̂±(y, t̂ ) = p̂(y,±c, t̂ ).
These satisfy the system of equations

∂ρ̂+

∂ t̂
+ c

∂ρ̂+

∂y
+ λ+ρ̂+ − λ−ρ̂− = 0, (43a)

∂ρ̂−

∂ t̂
− c

∂ρ̂−

∂y
+ λ−ρ̂− − λ+ρ̂+ = 0. (43b)

Finally, the total density of particles (moving either left or
right) is given by ρ̂ = ρ̂+ + ρ̂− and satisfies

∂ρ̂

∂ t̂
+ c

∂

∂y
(ρ̂+ − ρ̂−) = 0. (44)

022419-7



RALPH, TAYLOR, AND BRUNA PHYSICAL REVIEW E 101, 022419 (2020)

Now we go back to the original variables and “decompress”
the system following a procedure similar to Ref. [21]. To this
end, it is convenient introduce the left- and right-moving num-
ber densities n± = Nρ±, n̂± = N ρ̂±, and the total number
densities n = Nρ and n̂ = N ρ̂, where ρ = (ρ+ + ρ−). Since
the macroscopic Eqs. (41) and (43) are linear, the number
densities n̂ and n̂± satisfy exactly the same corresponding
equations. We note also that the number densities in the
compressed system, n̂ and n̂± are larger than the ones in the
uncompressed system, n and n±, because the same number
of particles fit in a smaller region. Let us consider a small
region of length dx � 1. Then assuming that N is large such
that dx � 1/N , the number of particles (moving either left
or right) in the original system in a region of size dx is
n(x, t ) dx [21]. The length in the compressed system where
these particles are is given by

dy = (1 − εn) dx. (45)

Therefore, using that n̂ dy = n dx, we find

n̂ = n dx

dx − εn dx
= n

1 − εn
. (46)

Arguing similarly, we have

n̂± = n±

1 − εn
. (47)

The idea now is to use (45) to transform the equations in
the compressed system to corresponding equations in the
decompressed system. The original variables are related to the
ones in the compressed system by

x = y + ε

∫ y

0
n̂(z, t ′) dz, t = t̂ . (48)

The variable change (48) induces a transformation of
derivatives

∂

∂y
= (1 + εn̂)

∂

∂x
,

∂

∂ t̂
= ∂

∂t
− εc(n̂+ − n̂−)

∂

∂x
, (49)

where to compute ∂t̂ above we have used

∂x

∂ t̂
= ε

∫ y

0

∂ n̂

∂ t̂
dz = −εc(n̂+ − n̂−).

This relation is obtained from (44) and the boundary condition
n̂+(0, t̂ ) = n̂−(0, t̂ ).

Applying the transformation (49) to (43) and inserting (47),
we arrive at a system of equations for the uncompressed
densities n± of the form

A
(

∂t n+
∂t n−

)
+ B

(
∂xn+
∂xn−

)
+ C

(
n+
n−

)
= 0, (50)

where A, B, and C are 2 × 2 matrices that depend on n±,
ε, and λ±. Inverting the matrix A (which is invertible for

εn < 1), we obtain after some algebraic manipulation the
following:

∂n+

∂t
+ c

∂

∂x

[(
1 + 2εn−

1 − εn

)
n+

]
+ λ+n+ − λ−n− = 0, (51a)

∂n−

∂t
− c

∂

∂x

[(
1 + 2εn+

1 − εn

)
n−

]
+ λ−n− − λ+n+ = 0. (51b)

In order to compare with the system obtained in the pre-
vious subsection for small volume fraction using matched
asymptotic expansions, we expand (51) for small ε and
retain all terms up to first order. Recalling that n±(x, t ) =
Nρ±(x, t ) = N p(x,±c, t ), we find

∂ρ+

∂t
+ c

∂

∂x
(ρ+ + 2εNρ+ρ−) + λ+ρ+ − λ−ρ− = 0, (52a)

∂ρ−

∂t
− c

∂

∂x
(ρ− + 2εNρ+ρ−) + λ−ρ− − λ+ρ+ = 0. (52b)

As expected, Eq. (52) derived using Rost’s method, which
assumes N large, agrees with the equation derived using
matched asymptotic expansions (34) in the limit of N large
and when the switching rate λ is independent of position.

In the compressed system, we have seen that, due to the
particles being indistinguishable, they essentially pass through
each other. In the uncompressed system, the particles must
do the same, but each time a pair of particles with opposite
velocities do this they jump a distance ε, the particle diameter.
This increases the probability flux. In particular, in the ab-
sence of any interaction, the probability flux of a right-moving
particle is cρ+(x, t ) because such particles move with velocity
c. However a right-moving particle will pass through ap-
proximately 2cNρ−(x, t ) left-moving particles per unit time,
effectively increasing its speed by an amount 2cεNρ−(x, t ).
Thus the probability flux for right-moving particles is approx-
imately c(1 + 2εNρ−)ρ+, in agreement with (52a).

IV. DIFFUSION LIMIT

In this section we consider the long-time dynamics of the
model by taking the parabolic limit of (34). First, we rewrite
the system in terms of the total density ρ(x, t ) = ρ+(x, t ) +
ρ−(x, t ) and the flux j(x, t ) = c[ρ+(x, t ) − ρ−(x, t )]:

0 = ∂ρ

∂t
+ ∂ j

∂x
, (53a)

0 = ∂ j

∂t
+ c2 ∂ρ

∂x
+ ε(N − 1)

∂

∂x
(c2ρ2 − j2)

+ c(λ+ − λ−)ρ + (λ+ + λ−) j. (53b)

We suppose that the turning rates λ± are of the form

λ± = λ0 ∓ ∂S

∂x
, (54)

where λ0(x) � 0 is the base-line turning frequency and S
represents an external field that affects the behavior of par-
ticles. A typical application is found in bacterial chemotaxis,
where S could represent an extracellular chemical concentra-
tion. Then (54) biases the random walk, so that a particle is
less likely to change direction when moving in a favorable
direction, that is, in the direction of increasing S. We assume

022419-8



ONE-DIMENSIONAL MODEL FOR CHEMOTAXIS WITH … PHYSICAL REVIEW E 101, 022419 (2020)

that |∂xS| < λ0 ∼ 1 so that λ± � 0 for all x. Given the form
of (54), we see that Rost’s method in Sec. III C requires that
∂xS is constant; that is, it is valid only for linear gradients in
the external field.

We now consider the parabolic scaling by rescaling space
and time as x = x∗/δ and t = t∗/δ2 with δ � 1 [8,12]. Then
(53) becomes (dropping the asterisks)

0 = δ
∂ρ

∂t
+ ∂ j

∂x
, (55a)

0 = δ2 ∂ j

∂t
+ δc2 ∂ρ

∂x
+ δε(N − 1)

∂

∂x
(c2ρ2 − j2)

− 2δc
∂S

∂x
ρ + 2λ0 j. (55b)

We look for an asymptotic solution of (55) of the form ρ =
ρ0 + δρ1 + · · · and j = j0 + δ j1 + · · · . The leading order of
(55) is

0 = ∂ j0
∂x

, (56a)

0 = 2λ0 j0, (56b)

with trivial solution j0 = 0. The order δ problem is, using j0,

0 = ∂ρ0

∂t
+ ∂ j1

∂x
, (57a)

0 = c2 ∂ρ0

∂x
+ ε(N − 1)

∂

∂x
(c2ρ2

0 ) − 2c
∂S

∂x
ρ0 + 2λ0 j1. (57b)

Inserting (57b) into (57a) to eliminate j1 we obtain the
following drift-diffusion equation for ρ0:

∂ρ0

∂t
= ∂

∂x

{
c2

2λ0
[1 + 2ε(N − 1)ρ0]

∂ρ0

∂x
− c

λ0

∂S

∂x
ρ0

}
. (58)

Identifying the diffusion coefficient as D = c2/(2λ0) and the
drift as f = (c/λ0)∂xS, Eq. (58) coincides with the nonlinear
diffusion equation for a set of N hard rods of length ε

undergoing a Brownian motion with diffusion D under a bias
f (x) in the limit of a low occupied fraction [see Eq. (20)
in [22]].

The same calculation can be repeated starting from the
kinetic model (51) obtained via compression (setting λ± ≡
λ0), resulting in the diffusive limit

∂n

∂t
= ∂

∂x

[
D

(1 − εn)2

∂n

∂x

]
, (59)

where D = c2/(2λ0) again. This is exactly the equation ob-
tained in Ref. [21] for Brownian hard rods using the same
compression method [see their Eq. (30)] [28]. We note we
could still have considered a linear signal S in (54), leading
to a constant drift term in (59).

The steady-state ρ∞ of (58) can be found by solving

c2

2λ0
[1 + 2ε(N − 1)ρ∞]

∂ρ∞
∂x

= c

λ0

∂S

∂x
ρ∞. (60)

It is the same equation that we would find by setting ∂t = 0
in the kinetic model (34). This is to be expected since the
diffusion model (58) is the long-time limit of the kinetic model
(34), and, in particular, their steady states should coincide.

The closed-form solution of (60) reads

ρ∞(x) = 1

2ε(N − 1)
W

[
2ε(N − 1)

× exp

(
−1

c

{∫ x

0
[λ+(s) − λ−(s)] ds − A

})]
,

(61)

where W (z) is the Lambert W function and A is the constant
for normalization. The turning frequencies λ±(x) are given by
(54). The Lambert W function has an asymptotic power series
expansion about zero, and the W (z) of (61) can be represented
in powers of z. In the power series we let ε → 0 giving the
stationary solution for noninteracting particles

ρ∞(x) = Ã exp

{
−1

c

∫ x

0
[λ+(s) − λ−(s)] ds

}
, (62)

where Ã is the constant for normalization.

V. NUMERICAL EXAMPLES

In order to assess the validity of our model, in this section
we compare it with stochastic simulations of the original
particle model. To test the importance of excluded-volume in-
teractions, we also compare with the corresponding solutions
for noninteracting particles. In all computations we consider
N = 100 individuals in the interval � = [0, 1] moving with
unit speed c = 1.

A. Stationary solutions

We begin by comparing the stationary solution of model
(60) (which is also the stationary solution of the diffusion
limit) with the solution of the microscopic process. We as-
sume the turning rates are of the form (54) and consider two
cases for the base rate λ0 and signal function S:

Case 1: We take λ0 = 2.5 and consider the signal [see
Fig. 2(a)]

S1(x) = 1 − 2|x − 0.5|. (63)

Case 2: We take λ0 = 16 and the signal function [see
Fig. 2(b)]

S2(x) = 4.77 e−50 (x − 0.5)2 − 3.58 e−25 (x − 0.5)2
. (64)

This signal is a simple example of a simple domain where
toxins occupy the negative regions of S and nutrients are to be
found in the positive regions of S.

We compare the stationary densities ρ∞ predicted by (61)
and (62) with simulations of the particle system using the
Metropolis-Hastings (MH) algorithm [29]. This algorithm
allows us to sample directly from the N-dimensional micro-
scopic density, which is of the Boltzmann form C exp[−E (�x)],
where C is the normalization constant and E is the energy,
which depends on the position of all the particles. In each step,
one particle i ∈ {1, N} is chosen at random, and a local move
from its current position xi to a new position x′

i is attempted,
where x′

i = xi + δξ , ξ ∼ N (0, 1), and δ is tuned to optimize
the convergence to the equilibrium distribution. The move is
accepted with probability min[1, exp(−	E )], where 	E is
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FIG. 2. External signals S used in the numerical simulations: (a) S1(x) in (63), (b) S2(x) in (64).

the change in energy due to the attempted move:

	E (�x, x′
i )=

{
(c/λ0)[S(xi ) − S(x′

i )], |x′
i − x j | � ε, j �= i,

+∞, otherwise.

In this way, a move is always accepted if it does not increase
the energy of the system, and always rejected if it leads to two
particles overlapping. We use 106 steps of the MH algorithm
for noninteracting particles and 107 steps for the hard rods to
generate histograms of the stationary densities. The domain is
divided into 40 bins to generate the histograms.

In Fig. 3 we show the results for both noninteracting
particles and hard-core particles with the turning rates of cases
1 and 2. In Fig. 3(a) the rods are of size ε = 0.002. With
N = 100 particles, this corresponds to an occupied fraction
of 20%. As expected, we observe that particles aggregate
around the maximum of the signal function in the center of the

domain. The interaction-free solutions within Fig. 3 become
the points of reference in allowing one to see the competition
between the most favorable signal environment and the steric
repulsion in finite size particles. The particle density around
the peak of the signal functions is reduced for finite-size
particles in comparison to that of noninteracting particles.
This is because not all particles can be in and around the point
of the maximum signal, since they would overlap each other;
a redistribution occurs. In Fig. 3(b) we use instead rods of
size ε = 0.001 (10% occupied fraction) with the parameters
of Case 2. We observe the same effect as in the previous
case, namely, that noninteracting particles aggregate in the
center of the domain where the maximum of the signal is,
and to a lesser extent in the case of hard rods. Despite having
only half of the occupied fraction in Fig. 3(b) relative to
Fig. 3(a), the difference between the density profiles between
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FIG. 3. Stationary solutions of the kinetic model for noninteracting particles (62) (dashed red lines) and for hard rods (61) (solid blue lines),
and results of the MH simulation for noninteracting particles (red triangles) and hard rod particles (blue circles). (a) N = 100 particles with
ε = 0.002 and signal S1. MH parameter δ = 0.1. (b) N = 100 particles with ε = 0.001 and signal S2. We used 106 MH steps for noninteracting
particles and 107 for hard rods, and steps of mean size δ = 0.1 (a) and δ = 0.2 (b).
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noninteracting particles and rods in Case 2 is greater than in
Case 1 in the central part of the domain. This is because the
gradients of S2 are steeper near the center than that of S1, and
so in the absence of interactions particles tend to aggregate in
a smaller region. Finally, we note there is a good agreement
between the model predictions and the stochastic simulations
in Fig. 3.

B. Time-dependent simulations

For all the computations in this subsection, we consider a
set of N = 100 particles and the initial condition

ρ+
0 (x) = (55/100)1[0.1287,0.3762](x),

(65)
ρ−

0 (x) = (45/100)1[0.6238,0.8713](x).

All individual-based simulations are performed using
an event-based kinetic Monte Carlo (KMC) simulation of
velocity-jump processes [30,31]. The main idea of this al-
gorithm is that one can jump directly from one event to the
other without missing events. For the simulations we divide
the domain into 40 bins. At the start of each realization
we generate random initial positions for the two groups of
left- and right-moving particles in the corresponding intervals
given by (65). To avoid the overlap of finite-size particles we
exploit Rost’s idea of switching to the compressed domain
as seen in Fig. 1. We generate uniformly and independently
distributed initial conditions Yi(0) in the compressed intervals
and use (35) to establish the initial conditions Xi(0) for the
hard rods in the decompressed state.

We solve the linear kinetic system (14) using the method of
characteristics on the transport part of the equations in tandem
with integrating the source terms via the midpoint rule. We
solve the nonlinear kinetic system (34) using the second-order
Nessyahu-Tadmor (NT) central scheme [32] with fixed time
step 	t = 0.0005 and domain divided into 404 computational
cells. Part of the central scheme developed in Ref. [32] uses
a generalized minmod limiter that includes a parameter θ ,
which has the following range 1 � θ � 2. This parameter
can be used to control the amount of numerical viscosity
present in the resulting scheme. In all the numerical examples
below, θ = 1.9 is used. Comparisons against simulations on
finer grids and using the Chebfun PDE solver pde23t [33]
showed that the simulations were sufficiently well resolved to
accurately capture the wave propagation.

1. Transient solutions without tumbling and bias

We begin with a simple case where λ± ≡ 0, that is, no
random changes in the velocities of particles. This allows us to
validate the numerical methods. In particular, the solution of
(14) for noninteracting particles is simply ρ±(x, t ) = ρ±

0 (x ∓
ct ), that is, waves traveling at constant speed right and left for
ρ+ and ρ−, respectively. Since the only changes in velocity
are due to collisions, we expect the nonlinear system (34)
for hard rods to behave like the noninteracting particles linear
system up to the point when the two fronts collide.

It is also possible to obtain an exact solution of the
nonlinear kinetic model (51) that we derived using Rost’s
method for the case λ± ≡ 0. The system (51) was obtained
by decompressing the coordinate system from a compressed

system in which the model was linear. We exploit the same
transformation to solve the nonlinear system. To do this,
we start by using Eq. (45) and the initial number densities
n±

0 (x) = Nρ±
0 (x) to compress the coordinate system at time

t = 0. The initial data for the linear system are computed
using (46). After obtaining the exact solution of the linear
system, the solution-dependent coordinate system is decom-
pressed using (48), and the solution values are obtained by
inverting the relationships (46).

We plot the results of the simple nontumbling case in
Figs. 4 and 5 for 10% and 20% occupied fraction, respectively.
We run it up to time t = 0.5 and plot the densities ρ+, ρ−
and ρ corresponding to noninteracting and hard-core particles
at times t = 0, 0.1, . . . , 0.5. As expected, the solutions of the
linear system (14) are nondissipative and move at a constant
speed (as seen in the evolution of the means plotted in Fig 6).
The solutions of the nonlinear system via matched asymptotic
expansions (34) or Rost’s methods (51) are identical to the
linear case up to t = 0.1 (second row in Fig. 4), since the two
waves have just met. The collision of the waves occurs around
t = 0.2 (third row in Fig. 4), and we observe a deformation
of the waves corresponding to hard rods. Interestingly, after
the waves have bounced off each other (from t = 0.3) they
recover the original shape and speed as precollision, albeit
they are shifted outwards by a small amount. We further
comment on this shift, due to the finite size of particles, in
the next section.

2. Wave velocities and shifts

To check the speed of the waves and the effect that
excluded-volume interactions have, we next compute the cen-
ter of mass 〈ρ±〉(t ) of each wave at times t = 0, 0.1, . . . , 0.5
and plot the results in Fig. 6. For the linear system (red dashed
lines) these are straight lines with slope c = 1 as expected. In
the case of rods of length ε, each collision causes a “shift”
of ε (the distance between two particles at collision), so we
expect the left- and right-moving waves to shift (N − 1)ε with
respect to the noninteracting case. This is confirmed when
computing the means from the KMC simulation data (see
blue circles in Fig. 6). We find that the Rost solution (yellow
dot-dashed lines) is in perfect agreement with the simulations,
even at the higher 20% occupied fraction [Fig. 6(b)]. As we
increase the occupied fraction from 10 to 20%, the model for
rods (34) via matched asymptotic expansions (blue solid lines)
does not agree so well with simulations, since it takes into
account only the first correction in volume fraction. Another
contributing factor may be numerical errors with the NT
scheme due to the discontinuities in the data [32].

We can also gain an understanding of these shifts by
considering wave speeds. For the case of λ± ≡ 0 under con-
sideration, all three kinetic models, noninteracting particles
(14), hard rods via matched asymptotic expansions (34), and
hard rods via Rost’s method (51) (using n± = N ρ±) can be
represented as a hyperbolic system

∂ �ρ
∂t

+ cM
∂ �ρ
∂x

= �0, x ∈ R, t > 0,

�ρ(x, 0) = �ρ0(x),
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FIG. 4. Transient solutions of the kinetic models for noninteracting particles (14) (dashed red lines) and hard rods via matched asymptotic
expansions (34) (solid blue lines) and Rost’s method (51) (dot-dashed yellow lines). Particle KMC simulations (blue circles) obtained from
2.5 × 103 realizations. We used the initial condition (65), λ± = 0, N = 100, ε = 0.001, c = 1.

where �ρ = (ρ+, ρ−)� and M is a 2 × 2 matrix. For the
noninteracting case, M = diag(1,−1) and the equations are
uncoupled with traveling wave solutions ρ+(x, t ) = ρ+

0 (x −
ct ) and ρ−(x, t ) = ρ−

0 (x + ct ), each moving with speed c.
These traveling wave solutions are plotted in Fig. 4 as dashed
red lines.

The systems (34) and (51) do not decouple, but distur-
bances move along the characteristic curves of these equations
at speeds given by the eigenvalues of M [34]. For the model
obtained by matched asymptotic expansions (34),

M =
(

1 + 2δρ− 2δρ+
−2δρ− −(1 + 2δρ+)

)
,

where δ = (N − 1)ε. In this case, the eigenvalues of the
matrix M are

�1(�ρ) = a +
√

b > �2(�ρ) = a −
√

b,

where

a = δ(ρ− − ρ+), b = 1 + 2δ(ρ+ + ρ−) + δ2(ρ+ − ρ−)2.

Expanding these in powers of δ, we find that

�1(�ρ) ∼ 1 + 2δρ− − 2δ2ρ−ρ+, (66a)

�2(�ρ) ∼ −1 − 2δρ+ + 2δ2ρ−ρ+. (66b)

Although the solutions obtained by the matched asymptotic
expansion are expected to be accurate up to first order in δ,
we have included O(δ2) terms in these expressions for com-
parison with the eigenvalues obtained with the Rost method
below. As expected, the O(δ) terms in these equations indicate
that the speeds of particles moving to the right and to the
left are increased by the presence of particles moving in the
opposite direction.

For the model (51) obtained using Rost’s method, we
have that

M =
(

1 + ∂Z
∂ρ+

∂Z
∂ρ−

− ∂Z
∂ρ+ −1 − ∂Z

∂ρ−

)
,

where

Z = 2Nερ+ρ−

1 − Nερ
.
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FIG. 5. Transient solutions of the kinetic models for noninteracting particles (14) (dashed red lines) and hard rods via matched asymptotic
expansions (34) (solid blue lines) and Rost’s method (51) (dot-dashed yellow lines). Particle KMC simulations (blue circles) obtained from
2.5 × 103 realizations. We used the initial condition (65), λ± = 0, N = 100, ε = 0.002, c = 1.

In this case, the eigenvalues take a remarkably simple form:

�1(�ρ) = 1 + εNρ− − Nερ+

1 − Nερ
>

�2(�ρ) = −
(

1 + εNρ+ − Nερ−

1 − Nερ

)
. (67)

In order to compare with (66), we use εN ∼ δ (for large N)
in (67) and expand in powers of δ to find that

�1(�ρ) ∼ 1 + 2δρ− + δ2ρ−ρ, (68a)

�2(�ρ) ∼ −1 − 2δρ+ − δ2ρ+ρ. (68b)

Thus the wave speeds (68) obtained by Rost’s method,
which was based on the assumption that N is large but
with no restrictions on δ, have both O(δ) and O(δ2) terms
that contribute to speeds greater than those of the linear
noninteracting particles system. The eigenvalues (66) of the
system obtained by matched asymptotic expansion were de-
rived on the assumption that δ is small, and only terms up
to O(δ) are valid. Indeed, the O(δ2) contributions to (66)
cause a decrease in the predicted wave speeds, in contrast

to the effect predicted by (68). This is a further explanation
for the qualitative differences in wave shifts observed in
Fig. 6.

We note that, since Rost’s model (51) is exact for any δ in
the limit of N → ∞ and space-independent turning rates λ±,
we can use its solution and metrics derived from it, such as
the speed of the waves (67) as benchmarks to compare to our
matched asymptotics approximation. We know that the latter
is valid for δ small, but how far can we push it? For example,
comparing (66) with (68) we can quantify the error in the
speed of the waves of the asymptotic approximation to be
3δ2ρ−ρ+ + O(δ3). Although the benchmark Rost’s solution
is not valid for the general case of varying turning rates or
smaller population sizes, we expect these effects to be less
important than the occupancy δ.

3. Transient solutions with tumbling and bias

We now present two examples of transient solutions with
biased turning rates that depend on the spatial coordinate.
Since the kinetic model for rods via Rost’s method requires
constant turning rates, in this section we use only the nonlinear
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FIG. 6. Center of mass of ρ±(t ) as a function of time for the solutions in (a) Fig. 4 and (b) Fig. 5.

kinetic model via matched asymptotic expansions (34) to
compare with the particle system. Figure 7 shows the results
for Case 1 parameters in (63) with an excluded fraction of
10%, and Fig. 8 corresponds to Case 2 (64) with an excluded
fraction of 20%. In both figures we plot the right-moving,
left-moving, and total densities ρ+, ρ−, and ρ, respectively,
at three instances in time. As in the previous figures, we
compare the PDE solutions for noninteracting (red dashed
lines) and hard-core particles (solid blue lines), together with
the simulations of the particle system (blue circles).

In both examples we see a good match between the
nonlinear kinetic model (solid blue lines) and the particle
simulations (blue circles) even with a filled fraction of 20%
(see Fig. 8). A slight discrepancy between the two can be
seen in Fig. 8 for times t � 0.3 in the center of the domain.
Here the signal gradient is high and that results in a local
occupied fraction much greater than 20%, and therefore the
kinetic model does not perform as well. In principle we could
go back to the method of matched asymptotic expansions
and consider higher order terms. This could lead to another
correction term being added to (34). The solutions of this
augmented kinetic model might come more into line with the
simulations apparent at time t = 0.8 [Fig. 8(i)]. Regarding the
effect of the interactions, we notice that in the noninteracting
particles case the solutions preserve the discontinuities of the
initial condition, whereas the solutions of the nonlinear model
appear to smoothed out in time (see in particular the middle
and right columns in Fig. 7). In other words, the excluded-
volume interactions seem to act as a diffusion term, which
also competes with the external bias (as seen with a reduced
peak around the maximum of the signal S).

We comment on the closeness of the PDE solutions for
noninteracting (red dashed lines) and finite-size particles (blue
solid lines) for the initial time t = 0.1 in Figs. 7 and 8.
Considering that 10% and 20%, respectively, of the domain
is occupied by particles of a finite size one could expect
the difference to be greater. We can explain the closeness
in this manner: in the beginning there is a train of particles
coming in from the left and another train coming in from
the right. Whether the particle has a finite size or not they

are still subject to the same Poisson processes with rates
λ(xi, vi ). Before the two trains collide roughly at the center
of the domain this is the dominating process that dictates
the behavior of the particles. In addition to this there would
be a number of instances in time where a finite-size particle
after having previously jumped back independently may again
switch velocity only after colliding with a neighbor (since the
random walk is biased towards the center jump back collisions
are less likely to occur). Up until the two trains meet this can
be viewed like a secondary effect, the overall group velocities
would be close to c and −c, respectively. Only after the
two trains meet at the center does the switching of velocities
due to collisions between finite-size particles become more
significant. The overall group velocities become disrupted and
the difference between the linear and nonlinear PDE solutions
become more noticeable (see, for example, the middle column
in Fig. 7).

In the second example, by time t = 0.3 the kinetic model
has already moved into the diffusion mode (middle column
in Fig. 8). This has come about because the relatively high
baseline turning frequency λ0 = 16 is to a certain extent
mimicking Brownian motion. This is contrary to the first case,
where the relatively low λ0 = 2.5 allows the kinetic waves
to continue for times t � 0.3 (see Fig. 7). Yet, by t = 0.5 in
the first example we observe that the kinetic model begins to
converge to the stationary solution [compare Fig. 7(i) with
Fig. 3(a)]. In the second example, in contrast to the linear
model, the nonlinear kinetic model is already very close to
the stationary solution at time t = 0.3, since we see little
change in the solution between times t = 0.3 and t = 0.8 [see
Figs. 8(h) and 8(i)]. The reason for this is that the collisions
between hard-core particles accelerate the convergence to the
diffusive regime and the stationary solution, which is consis-
tent with the enhanced diffusion coefficient of the diffusion
limit (58).

VI. SUMMARY AND DISCUSSION

In this paper we have considered a velocity jump pro-
cess with excluded-volume interactions. In particular, starting
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FIG. 7. Transient marginal densities ρ(x, t ) and ρ± at various times t > 0, corresponding to S1. Dotted gray line the initial traveling bands
t = 0 with uniformly distributed initial data and N = 100 total. Dashed red line is solution ρ(x, t ) and ρ± of (14) for noninteracting particles
(ε = 0). Solid blue line is solution ρ(x, t ) and ρ± of (34) for hard rod particles (ε = 0.001). Blue circles for ε = 0.001 computed from
2.5 × 103 realizations of the KMC method.

with a system of N hard-core rod particles that switch their
velocities with elastic collisions in one dimension while
the constant speed is always preserved, we have derived a
nonlinear kinetic model using two different approaches. The
first approach, based on matched asymptotic expansions, is
systematic and hence does not rely on a closure assumption.
It is valid in the limit of small but finite particle occupied
fraction and in the presence of external signals (leading to a
bias in the tumbling rates). The second method, based on a
compression method by Rost [20], does not have the limitation
of a small occupied fraction but assumes that the tumbling
rates are constant (independent of the spatial variable). There-
fore the latter can capture only linear chemical gradients.
By considering a parabolic scaling, we have obtained the
diffusive limit of the kinetic model and have seen it agrees
with the single-file diffusion model that one obtains starting
from a set of Brownian hard rods [22].

Excluded-volume interactions emerge in the kinetic model
as a nonlinear transport term, proportional to the density of
particles moving in the opposite direction. We have validated
our nonlinear model with numerical simulations, comparing
its solutions with the corresponding noninteracting linear
model as well as stochastic simulations of the underlying
particle system. We have considered transient and station-
ary solutions under different tumbling, external bias, and
excluded-volume scenarios.

The method of matched asymptotic expansions had pre-
viously been used in the context of Brownian particles or
parabolic PDEs. Here we have shown it also generalizes to
hyperbolic systems (we note that in Ref. [17] the method
had been quoted in the context of a velocity-jump process
for hard disks, but it was not actually used to solve the two-
particle density problem). It would be interesting to see if the
method can be used in higher dimensions to derive the kinetic
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FIG. 8. Transient marginal densities ρ(x, t ) and ρ± at various times t > 0, corresponding to S2. Dotted gray line the initial traveling bands
t = 0 with uniformly distributed initial data and N = 100 total. Dashed red line is solution ρ(x, t ) and ρ± of (14) for noninteracting particles
(ε = 0). Solid blue line is solution ρ(x, t ) and ρ± of (34) for hard rod particles (ε = 0.002). Blue circles for ε = 0.002 computed from 102

realizations of the KMC method.

model in a systematic way and compare it with the results in
Ref. [17].

The method was implemented here in its simplest setting,
hard-core identical rods influenced by a fixed signal in the
domain similar to an external potential. If the signal is thought
of as a chemotactic signal, a natural extension would be
to consider a more realistic chemotaxis model to study the
interplay between the signal concentration and the finite-size
effects. In the context of Brownian hard-core particles, this
was considered in Ref. [35].

Another interesting direction would be to generalise the
interactions between particles and consider either a mixed
hard and soft interacting potential between particles (similar
to the ones considered in Ref. [21]), which may be more
realistic in the context of biological applications than a bare
hard-core interaction, or a softer interaction that allows parti-
cles to overlap each other.

Finally, an important aspect when modeling cell biology
is to allow for multiple subpopulations and/or changing
numbers of particles to account for processes such as cell
growth, proliferation, and phenotypic switching. Models for
cell growth incorporate the cell size as a variable, and the
total number of cells is also a variable due to death and birth
events (see, for example, Ref. [36] and references therein).
One could incorporate such ideas to include cell movement
in the context of our work, keeping in mind that cell growth
implies that the total excluded volume would also become
a variable. This makes the derivation more complicated but
also potentially more interesting, because keeping track of
excluded volume interactions explicitly would mean that at
some point growth and proliferation are not possible anymore
(in a similar way that models for cell chemotaxis that ignore
excluded volume can result in finite-time blow up, something
that can be prevented when incorporating excluded-volume
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FIG. 9. Sketch of �3
ε (x1) and the excluded regions.

interactions into the model [37]). It would be also interesting
to see if the problems associated with lattice based models of
cell movement with proliferation [38] can be avoided with an
off-lattice approach.
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APPENDIX: INTEGRATED EQUATION

Here we detail the steps to arrive at the integrated equation
(17) from the original transport equation (4). We first assume
that N = 3, and so (4) reads

∂P

∂t
+ v1

∂P

∂x1
+ v2

∂P

∂x2
+ v3

∂P

∂x3

+
3∑

i=1

[λ(xi, vi )P(�x, �v, t ) − λ(xi,−vi )P(�x, si�v, t )] = 0.

(A1)

To obtain an equation for the marginal density function
p(x1, v1, t ) (16), we need to integrate (A1) in the spatial
domain available for x2 and x3 given that the first particle is
at position x1. This is given by (see Fig. 9)

�3
ε (x1) = {(x2, x3) ∈ �2 : |x1 − x2|

� ε, |x1 − x3| � ε, |x2 − x3| � ε}. (A2)

�3
ε (x1) has six disconnected regions provided that 2ε < x1 <

1 − 2ε, four if x1 is between ε and 2ε away from a wall, and
two if it is closer than ε from a wall.

The integral of the first term in (A1) is ∂t p(x1, t ) from (16)
noting that �3

ε (x1) is independent of time. The only terms
remaining after integrating the fifth term in (A1) are those
corresponding to i = 1; the rest cancel out after summing vi

for i � 2 over {−c, c}.
The third and fourth terms in (A1) will give the same by

the symmetry of �3
ε (x1) with respect to x2 and x3. Therefore

they give two copies of∫
�3

ε (x1 )×V 2
v2

∂P

∂x2
dx2 dv2 dx3 dv3

=
∫

�3
ε (x1 )×V

∑
v2=±c

v2
∂P

∂x2
dx2 dx3 dv3

=
∫

�3
ε (x1,x2 )×V

∑
v2=±c

v2
[
P
∣∣x2=1
x2=x1+ε

+ P
∣∣x2=x1−ε

x2=0

]
dx3 dv3

=
∑

v2=±c

v2

∫
�3

ε (x1,x2 )×V

[ − P
∣∣
x2=x1+ε

+ P
∣∣
x2=x1−ε

]
dx3 dv3

= −
∑

v2=±c

v2P2

∣∣x2=x1+ε

x2=x1−ε
.

In the last two lines we assume that ε < x1 < 1 − ε so that
the red cross in Fig. 9 is inside �2; otherwise the terms that
would evaluate x2 /∈ � are dropped. The terms in the second
line above evaluated at x2 = 0, 1 vanish using the boundary
condition (8). Finally, the last equality comes from using the
definition of P2 (15).

We are left with the second term in (A1), which requires
care since the domain of integration does depend on x1. The
integrals of the regions above and below the diagonal x2 = x3

are equal by symmetry, so we focus on the upper part. The
Leibniz rule reads

∂x1

∫
�3

ε (x1 )
Pdx2 dx3 =

∫
�3

ε (x1 )
∂x1 P dx2 dx3

+
∫

∂�3
ε (x1 )

P(u · n̂) ds,

where u is the “velocity” of the boundary with respect to
x1 and n̂ is the unit outward normal vector to the bound-
ary ∂�3

ε (x1) (these are two-dimensional vectors in the x2x3

plane). The only boundaries of �3
ε (x1) that move with x1 are

the vertical and horizontal lines x2 = x1 ± ε and x3 = x1 ± ε

(depicted in red in Fig. 9), for which u = (1, 0) and u = (0, 1)
respectively. Using this, for example, to integrate in the area
marked as a in Fig. 9,

∫
∂a

P(u · n̂) ds =
∫ x1−ε

0
P(x1, x2, x1 + ε, �v, t )(−1) dx2

+
∫ 1

x1+ε

P(x1, x1 − ε, x3, �v, t )(+1) dx3

=
∫ x1−ε

0
P(x1, x1 + ε, x3, �v, t )(−1) dx3

+
∫ 1

x1+ε

P(x1, x1 − ε, x3, �v, t )(+1) dx3,
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by relabeling invariance. The other two regions b and c give∫
∂b

P(u · n̂) ds =
∫ x1−2ε

0
P(x1, x2, x1 − ε, �v, t )(+1)dx2

=
∫ x1−2ε

0
P(x1, x1 − ε, x3, �v, t )(+1) dx3,

∫
∂c

P(u · n̂) ds =
∫ 1

x1+2ε

P(x1, x1 + ε, x3, �v, t )(−1) dx3.

Again, some of these regions might be empty depending
on how close x1 is to the boundary. As x1 moves away
from the boundary the excluded area |�3

ε (x1)| increases as
“new boundary” is created, but the expressions above remain

valid as long as P is nonsingular in the vicinity of the new
boundaries. Combining these we have

1

2

∫
∂�3

ε (x1 )
P(u · n̂) ds

=
∫

�3
ε (x1,x1−ε)

P(x1, x1 − ε, x3, �v, t ) dx3

−
∫

�3
ε (x1,x1+ε)

P(x1, x1 + ε, x3, �v, t ) dx3,

where we recall that �3
ε (x1, x2) is the interval in � available

to the third particle if the first and second particles are at x1

and x2, respectively. Therefore,

∫
�3

ε (x1 )×V 2
v1

∂P

∂x1
dx2 dx3 dv2 dv3 = v1∂x1

∫
�3

ε (x1 )×V 2
P dx2 dx3 dv2 dv3 − v1

∫
V 2

∫
∂�3

ε (x1 )
P(u · n̂) ds dv2 dv3

= v1∂x1 p − 2v1

∑
v2=±c

∫
�3

ε (x1,x1−ε)×V
P(x1, x1 − ε, x3, �v, t ) dx3 dv3 + 2v1

∑
v2=±c

∫
�3

ε (x1,x1+ε)×V
P(x1, x1 + ε, x3, �v, t ) dx3 dv3

= v1∂x1 p + 2v1

∑
v2=±c

P2

∣∣x2=x1+ε

x2=x1−ε
.

Adding all the terms we obtain (17) with N = 3. The general
N case is obtained by noting that adding further dimensions

reduces to copies of the terms involving P2 (by using the
invariance of label permutations to relabel).
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