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Gene regulation in a cellular environment is a stochastic phenomenon leading to a large variability in mRNAs
and protein numbers that are often produced in bursts. The regulation leading to varied protein dynamics
can be ascribed to transcriptional or post-transcriptional mechanisms. In transcriptional regulation, the gene
dynamically switches between an active and an inactive state, while in the post-transcriptional regulation small
RNAs tune the activity of mRNAs. In either scenario, it is possible to calculate the time-dependent probability
distribution of proteins and address the interesting question pertaining to their first passage time statistics. The
coefficient of variation of first passage time can be considered to be an indicator of efficiency in controlling
regulatory pathways and we show that post-transcriptional regulation performs better than simple transcriptional
regulation for comparable protein yields.
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I. INTRODUCTION

The process of gene expression is an intrinsically stochas-
tic process involving random biochemical reactions govern-
ing transcription and translation. With the advancement of
single-cell experimental techniques it has been observed that
transcription and translation produces mRNAs and proteins,
respectively, with large variation across a cellular population
[1–3]. A generic feature that emerges for a wide range of oper-
ating regimes is that mRNAs and/or proteins are produced in
bursts [4–6]. The experimental findings have been accurately
explained by theoretical models explaining the mRNA and
protein fluctuations [7–10]. In these studies, the transcrip-
tional regulation is modeled as a stochastic process where the
gene switches between an active (ON) and an inactive (OFF)
state exhibiting bursts in mRNAs [11] as well as in protein dy-
namics described by a three-stage model [12]. It has also been
observed that activity levels of mRNAs are varied resulting in
different rates of translation, indicative of a possible existence
of post-transcriptional regulations [13,14]. Recently, a general
mathematical framework of post-transcriptional regulation
mediated by small RNA (sRNA) has been proposed [15–17].
Unlike the gene switching between ON and OFF states, here
transcription produces inactive mRNAs which can switch to
active mRNAs leading to translational bursts as shown in the
schematic in Fig. 1. In the inactive (OFF) state the ribosome
binding site is shielded in the mRNA structure which is
released by the sRNA turning ON the process of translation.
A comprehensive analysis has been done by modeling the
above scenario as stochastic differential equations (SDEs)
and analytical expressions have been obtained for steady-
state protein noise [17]. In this work we set up the post-
transcriptional regulation as a master equation and obtain a
general time-dependent solution of the probability distribution
of proteins. Our analytical results, as compared with an ap-
proximate Gamma distribution, exhibit very good agreement
with numerical results obtained by Gillespie simulation [18].

It will now be possible to obtain the time-dependent mean
and variance of fluctuating protein numbers enabling us to
determine the precision in first passage time (FPT) statistics.

The sequence of biochemical events occurring in devel-
opmental processes and cell-fate decision making necessitate
temporal precision in the underlying cellular processes [19].
In the scenario of gene regulation the time taken by the
expression levels of regulators to attain a certain thresh-
old determines the onset of subsequent events, for example,
microRNA-mediated control of mRNA threshold necessary
for protein production [20,21]. It is thus important to under-
stand the FPT properties of regulatory mechanisms [22]. In
simple transcriptional regulation it has been possible to deter-
mine FPT statistics with a feature that it is inversely propor-
tional to mRNA burst size [23,24]. Incorporating the protein
dynamics it has been shown that timing fluctuations decreases
with transcription rate and are independent of translation
rate [25]. Equipped with our results for post-transcriptional
regulation we estimate FPT coefficient of variation (χT ) and
compare with that of transcriptional regulation. We show that
the timing precision, quantified by χT , is determined by the
competing protein burst size and the steady-state value. If both
models yield comparable protein levels, we find that post-
transcriptional regulation can attain superior timing precision
in gene regulation.

II. POST-TRANSCRIPTIONAL REGULATION

Let Pm,m∗,n(t ) be the probability of finding m number of
mRNAs in the OFF state, m∗ number of mRNAs in the
ON state, and n number of proteins at time t . The average
concentration of sRNA (s̄) switches mRNAs in the OFF
state to the ON state with rate kons̄ while koff is the rate of
switching from OFF to ON. Here we do not consider the
dynamics of sRNA and s̄ is constant, enabling us to rename
kon ≡ kons̄. The transcription and the translation rates are km
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FIG. 1. Schematic representation of (a) post-transcriptional reg-
ulation (b) transcriptional regulation.

and kp, respectively, with γm and γp being the corresponding
degradation rates. The master equation for this model can be
set up as follows:

∂Pm,m∗,n

∂t
= km[Pm−1,m∗,n − Pm,m∗,n]

+ kpm∗[Pm,m∗,n−1 − Pm,m∗,n]

+ kon[(m + 1)Pm+1,m∗−1,n − mPm,m∗,n]

+ koff[(m
∗ + 1)Pm−1,m∗+1,n − m∗Pm,m∗,n]

+ γm[(m + 1)Pm+1,m∗,n − mPm,m∗,n]

+ γm[(m∗ + 1)Pm,m∗+1,n − m∗Pm,m∗,n]

+ γp[(n + 1)Pm,m∗,n+1 − nPm,m∗,n]. (1)

A convenient approach to solve the master equation is to
introduce a generating function

F (x, y, z, t ) =
∑

m,m∗,n

xmym∗
znPm,m∗,n(t ) (2)

and rewrite the master equation as a partial differential equa-
tion (PDE) which can be solved by using the method of
characteristics. It is possible to eliminate the variables (x, y)
and impose the initial condition

F (z, τ = 0) =
∑

Pn(τ = 0)zn

=
∑

δn,0zn = 1. (3)

The detailed calculation is shown in Appendix B and the
final solution can be expressed in a simple form

F (z, τ ) =
[

1 − ξ (z − 1)e−τ

1 − ξz + ξ

]φ

(4)

by introducing the variables ξ quantifying the protein burst
size,

ξ = b
kon + γm

kon + koff + γm
, (5)

where b = kp

γm
and φ = km

γp

kon
kon+γm

. We now consider that
the protein lifetime is much greater than the mRNA life-
time, which is a reasonable assumption, as typical mRNA
degradation rate in E. coli, γm ∼ min−1 and protein degra-
dation rate, γp ∼ hr−1 [26–28]. Thus, in the limit γ =
γm

γp
�1 and timescale τ = tγp > γ −1 from the definition Pn =

FIG. 2. (a) Post-transcriptional regulated protein steady-state
distribution obtained from Gillespie simulation (histogram),
analytical calculation (blue curve), mentioned in Eq. (7). The red
curve is the approximate gamma distribution (8). (b) The mean
protein numbers μn(t ) and their variance is shown as a function
of time. The parameter values are kon = 2 min−1, koff = 10 min−1,
km = 4.88 min−1, kp = 1 min−1, γm = 0.2 min−1, and γp =
0.002 min−1 such that the protein steady-state value nss = 2000.

1
n!

∂n

∂zn F (z, τ )|z=0 we obtain the protein distribution function

Pn(τ ) = 	(φ + n)

	(n + 1)	(φ)

(
ξ

ξ + 1

)n(
ξe−τ + 1

ξ + 1

)φ

× 2F1

(
−n ,−φ, 1 − n − φ;

1 + ξ

ξ + eτ

)
. (6)

In the steady state, τ → ∞, the protein distribution reduces to

Pn = 	(φ + n)

	(n + 1)	(φ)

(
ξ

ξ + 1

)n( 1

ξ + 1

)φ

. (7)

In Fig. 2(a) we show the steady-state protein distribution
Pn obtained from the Gillespie simulation and the analytical
expression in Eq. (7). Note that the agreement is good for a
wide range of parameter values compared with the Gamma
distribution

Pn = n(ã−1)e−n/b̃

	(ã)b̃ã
, (8)

which is an approximation in the limit koff � kon. The expres-
sions of parameters ã, b̃ are given in Appendix C. Compar-
isons of Eq. (7) with Eq. (8) are shown in Fig. 3 for different
parameter values.

III. FIRST PASSAGE TIME COEFFICIENT
OF VARIATION (χT )

From the generating function of protein in Eq. (4) we can
derive the time-dependent moments of the protein distribution
and get the mean μn(t ) and the variance σ 2

n (t ) of the protein
levels as

μn(t ) = nss
(
1 − e−tγp

)
, (9)

σ 2
n (t ) = μn(t )

(
1 + ξ + ξe−tγp

)
. (10)

The steady-state value of the protein is nss =
kmkpkon/[γmγp(koff + kon + γm)]. In Fig. 2(b) we show
the mean and the fluctuations obtained from Gillespie
simulation and the theoretical curves. We are interested
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FIG. 3. For the post-transcription regulation we plot the steady-
state distribution of protein obtained from a Gillespie simulation
(histogram), and analytical calculations from Eq. (7) (blue curve)
and Eq. (C5) (red curve) with parameter values (a) ξ = 0.86,
nss = 41, km = 10 min−1, kp = 1 min−1; (b) ξ = 3.1, nss = 147,
km = 10 min−1, kp = 30 min−1; (c) ξ = 0.45, nss = 151.5, km =
10 min−1, kp = 1 min−1 and we take γm = 0.2 min−1 and γp =
0.01 min−1; (d) ξ = 4.28, nss = 17.8, km = 5 min−1, kp = 20 min−1,
γm = 0.5 min−1, and γp = 0.2 min−1.

in the first passage time i.e., the time T required for
the protein numbers to reach a threshold nc. A typical
trajectory lying in μn(t ) ± σn(t ) cross the threshold
nc at time T ∈ [T − Tl , T + Tr]. Following the simple
geometric argument as in Ref. [25] and outlined in detail in
Appendix D, the coefficient of variation of protein FPT can
be obtained as

χT = σT

T
= 1

T

[(
dμn(t )

dt

)−1

σn(t )

]
T

, (11)

evaluated at mean FPT T 	 − ln(1 − αc)/γp. Using the form
of μn(t ) and σ 2

n (t ) from Eqs. (9) and (10), respectively, we get

χ2
T = αc

nss

1 + ξ (2 − αc)

[(1 − αc) ln(1 − αc)]2
, (12)

where αc = nc/nss. The agreement with Gillespie simulations
is good and χT varies with protein burst per transcript as

√
ξ

and shown in Fig. 4(a). Again a minimum χT is observed as

FIG. 4. (a) χT vs ξ for different values of nss for a fixed αc = 0.5.
(b) χT vs αc for different value of ξ for constant nss = 2000. The pa-
rameter values are kon = 2 min−1, koff = 10 min−1, γm = 0.2 min−1,
γp = 0.002 min−1. The solid lines are obtained from Eq. (12) and the
symbols are obtained from Gillespie simulation.

FIG. 5. Variation of χT with αc for varying sRNA numbers. The
dynamics of sRNAs follows the birth-death process with steady-state
value s̄. For small s̄ (large γs), the Gillespie simulation results agree
with Eq. (12) in the main text.

the threshold αc is varied, indicating an optimum operating
regime Fig. 4(b).

So far we have considered the number of sRNAs to be
constant at steady state s̄. In general, the dynamics of sRNA
can be described by a birth-death process [17] with synthesis
rate ks and degradation rate γs. In the limit γs > γp, sRNAs
equilibrate faster than protein, implying that sRNA can be
considered to remain constant as in the calculation above.
However, for decreasing γs, numerical simulations show that
χT increases but the qualitative behavior is similar to the case
of constant sRNA (Fig. 5).

IV. COMPARISON WITH TRANSCRIPTIONAL
REGULATION

Coefficient of variation of FPT calculated for
post-transcriptional regulation can be compared with
transcriptional regulation models, namely two-stage and
three-stage models [12]. In Ref. [12] the steady-state protein
distribution for transcriptional regulation has already been
obtained and the method can be easily extended to obtain the
time-dependent protein distribution, as shown in Appendix A.
In Table I we show the schematic of the models and provide
expressions for steady states and protein bursts. The two-stage
model is the standard scenario of transcription while in the
three-stage model the gene switches between ON and OFF
states leading to transcriptional as well as translational bursty
dynamics. In the limit γ � 1 the time-dependent mean and
variance in protein numbers are still of the forms given in
Eqs. (9) and (10) with the values of the steady state and burst
parameter given in Table I. The χT for the two-stage model
has already been given in Ref. [25] and we compute that for
the three-stage model from the expressions of moments of
protein as given in Appendix A. Moreover, for all the three
models considered here the expression of χT is generically
given as Eq. (12). The qualitative behavior of χT , for instance,
the variation with respect to threshold, is identical for all three
models showing a minimum Fig. 6(a).

In the limits kon → ∞ or koff → 0, the steady states of
the transcriptional regulation and the post-transcriptional reg-
ulation reduces to kmkp/γmγp as in the two-stage model.
Similarly, the two-stage model χT is the limiting case for
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TABLE I. Description of different gene regulatory networks for the protein synthesis.

both types of regulation. It is important to note that, for
any combination of rate constants, ξ three stage � ξ two stage �
ξ post-transcription. It is evident from Eq. (12) that χ2

T ∝ ξ and
simultaneously χ2

T ∝ 1
nss

for constant threshold αc chosen as a
fraction of the steady state nss. Thus the competition between
the burst size and the steady-state value of the protein will de-
termine the behavior of χT . For example, in the regime of fast
mRNA degradation (γm � 1), the protein burst size is less but
this will also lead to a decrease in the mean protein expression
level. To compare timing precision of different mechanisms
one may choose to impose a constraint of constant protein
yield [22,25]. If we consider fixed protein steady state the
condition

χ
three stage
T � χ

two stage
T � χ

post-transcription
T (13)

is always true for any threshold value, implying that, for the
post-transcriptional regulation, χT is less for a choice of rate
constants satisfying the constraint.

In Fig. 6(b) we show that evaluation of Eq. (12) as well
as Gillespie simulation results confirm that χT for the post-
transcription model is always less for any value of protein

FIG. 6. Comparison of χT for three models in Table I: (a) χT as a
function of the target expression level αc (in units of the steady-state
value) for constant b = 5, (b) χT vs protein burst per transcript, b,
for constant threshold αc = 0.5. The protein numbers are in a steady-
state value, nss = 2000, with other parameter values γm = 0.2 min−1,
γp = 0.002 min−1, koff = 10 min−1 and kon = 2 min−1. (c) Variation
of χ 2

T nss with koff for different values of nss for b = 5 and αc = 0.5.
The solid lines are obtained from Eq. (12) and symbols are obtained
from the Gillespie simulation averaged over 103 realizations.

burst size and constant steady state. We can also check that,
when koff → 0, the value of χT for both the three-stage model
and the post-transcription regulation converges to that of the
two-stage model [Fig. 6(c)]. We have also varied the constant
steady-state values nss over a wide range and scale χ2

T as
χ2

T nss to show that Eq. (13) is a generic feature. Moreover,
as kon increases for either model, χT for the two-stage model
is the limiting case, as shown in Fig. 7.

V. CONCLUSIONS

In post transcriptional regulation a bacterial gene is pos-
itively regulated by sRNAs where transcription produces in-
active mRNAs in which the ribosome binding site (RBS) is
trapped in a strong mRNA structure and is released upon
interaction between the sRNA and mRNA in the active state
[16,17]. This mechanism is in contrast with the transcriptional
three-stage model [12] and in this work we have studied the
coefficient of variation of FPT, χT , in gene-regulation models
under different scenarios: no regulation (two stage), tran-
scriptional regulation (three stage), and post-transcriptional
regulation. A general expression for χT is obtained in the
regime of long protein lifetime γm > γp and matches with
numerical simulations. The generic feature in all three models
is that χT (a) has an optimal level with respect to threshold

FIG. 7. Variation of χT with koff for different valued of kon.
Protein steady state is held constant, nss = 2000, and other pa-
rameters are αc = 0.5, γm = 0.2 min−1, γp = 0.002 min−1 and kp =
0.5 min−1. The solid lines are obtained from Eq. (12) in the main
text and symbols are obtained from the Gillespie simulation averaged
over 103 realizations.
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TABLE II. Parameter values used in Gillespie simulation to
generate the figures.

Parameter
Figure Parameter value (min−1)

γm 0.2
γp 0.002
kon 2

Fig. 2 koff 10 nss = 2000
kp 1 b = 5
km 4.88 ξ = 0.9016

γm 0.2
γp 0.002 nss = {500, 1000, 2000}
kon 2

Fig. 4(a) koff 10 αc = 0.5
kp {0.2 . . . 10}
km {24.4, . . . , 0.488} ξ = {0, . . . , 12}
γm 0.2
γp 0.002
kon 2 nss = 2000

Fig. 4(b) koff 10
kp {1.5, 3.5, 10.5} ξ = {1.3, 3.1, 9.4}
km {3.2, 1.4, 0.46}
γm 0.2
γp 0.002
kon 2

Fig. 6(a) koff 10 nss = 2000
kp 1
km 4.88 b = 5

γm 0.2
γp 0.002 nss = 2000
kon 2

Fig. 6(b) koff 10 αc = 0.5
kp {0.2, . . . , 3}
km {24.4, . . . , 1.74} b = {1, . . . , 14}
γm 0.2
γp 0.002 nss = {50, 500, 1000, 2000}

Fig. 6(c) kon 0.4 αc = 0.5
kp 1 b = 5

the proteins has to attain, and (b) the burstiness of protein
dynamics increases the χT .

It is generically true that post-transcriptional protein burst
size is less than transcriptional protein burst size, for any
choice of rates. However, the same term that reduces the
effective burstiness ξ also reduces the protein steady state
in the post-transcriptional model. To compare the different
regulatory models at equal protein yield, we therefore tuned
the transcription rate km and the translation rate kp because, for
rapidly growing cells, km and kp vary much more from gene
to gene than their corresponding degradation rates [29–32].
Interestingly, with the constraint of fixed nss, our calculations,
supported by numerical simulations, show that χT is always
less in the case of post-transcriptional regulation, and this is
valid for a wide range of parameter values. The parameter
values used in Gillespie simulations to generate the numerical
data presented in the figures are given in Table II.

FIG. 8. Crick space [33].

Since we compare the different regulatory models also at
constant burst size b ∝ kp, the only free parameter that we can
then tune is km. For the two-stage model we have ktwo stage

m =
nssγp

b and we can choose ktwo stage
m : kthree stage

m : kpost-transcription
m =

1 : (1 + koff
kon

) : (1 + koff+γm

kon
). Post-transcriptional regulation re-

quires the largest value of km, implying increased precision but
less economy by virtue of trade-off in the km-kp Crick space
[33] (see Fig. 8). In line with this, we show that χT , repre-
sentative of temporal regulatory precision, requires increasing
values of km. From a theoretical perspective, our study shows
the possible functional role of small RNAs in determining
the signatures of protein dynamics and is consistent with the
finding of fast response to input signals [15]. It is possible
to experimentally measure temporal dynamics of proteins
and determine the timing efficiency in post-transcriptionally
controlled gene regulatory pathways.

APPENDIX A: SOLUTION OF THE MASTER EQUATION
FOR TRANSCRIPTIONAL REGULATION

The steady-state protein distribution of protein for three-
stage model is given by Shahrezaei and Swain [12]. Here
we explicitly show their calculation and also obtain the
time-dependent protein distribution needed for the calculation
of FPT.

Let P(0)
m,n be the probability of having m mRNAs and n pro-

teins when the promoter is inactive and P(1)
m,n be the probability

of having m mRNAs and n proteins when the promoter is
active. We then have two coupled master equations for the
three-stage model:

∂P(0)
m,n

∂τ
= κ1P(1)

m,n − κ0P(0)
m,n + (n + 1)P(0)

m,n+1 − nP(0)
m,n

+ γ
[
(m + 1)P(0)

m+1,n − mP(0)
m,n + bm

(
P(0)

m,n−1 − P(0)
m,n

)]
,

(A1)

∂P(1)
m,n

∂τ
= −κ1P(1)

m,n + κ0P(0)
m,n + (n + 1)P(1)

m,n+1 − nP(1)
m,n

+ a
(
P(1)

m−1,n − P(1)
m,n

) + γ
[
(m + 1)P(1)

m+1,n

− mP(1)
m,n + bm

(
P(1)

m,n−1 − P(1)
m,n

)]
, (A2)
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where b = kp/γm, a = km/γp, γ = γm/γp, τ = tγp, κ1 =
koff/γp, κ0 = kon/γp.

By defining two generating functions

f (0)(y, z) =
∑
m,n

ymznP(0)
m,n, f (1)(y, z) =

∑
m,n

ymznP(1)
m,n,

(A3)
the master equations become

1

v

∂ f (0)

∂τ
= 1

v
[κ1 f (1) − κ0 f (0)] − ∂ f (0)

∂v

+ γ

[
b(1 + u) − u

v

]
∂ f (0)

∂u
, (A4)

1

v

∂ f (1)

∂τ
= 1

v
[−κ1 f (1) + κ0 f (0)] − ∂ f (1)

∂v
+ au

v
f (1)

+ γ

[
b(1 + u) − u

v

]
∂ f (1)

∂u
, (A5)

with u = (y − 1) and v = (z − 1). The characteristic equa-
tions will be

dτ

dr
= 1

v
, (A6)

dv

dr
= 1, (A7)

du

dr
= −γ

[
b(1 + u) − u

v

]
, (A8)

df (0)

dr
= 1

v
[κ1 f (1) − κ0 f (0)], (A9)

df (1)

dr
= 1

v
[−κ1 f (1) + κ0 f (0)] + au

v
f (1). (A10)

Consequently, direct integration of Eqs. (A6) and (A7) implies
r = v = v0eτ and from Eq. (A8) in the limit γ � 1, u(v) 	
bv/(1 − bv). From Eqs. (A9) and (A10) we get

v(bv − 1)
d2 f (0)

dv2
+ [(κ1 + κ0)(bv − 1)

+ bv(1 + a) − 1]
df (0)

dv
+ abκ0 f (0) = 0. (A11)

The solution of the Eq. (A11) is

f (0)(v) = C 2F1(α, β, κ0 + κ1 + 1; bv), (A12)

where 2F1(a, b, c; z) is a hypergeometric function with

α = 1
2 (a + κ0 + κ1 +

√
(a + κ0 + κ1)2 − 4aκ0), (A13)

β = 1
2 (a + κ0 + κ1 −

√
(a + κ0 + κ1)2 − 4aκ0), (A14)

and C is the constant of integration.
The generating function for protein numbers, F (z) =

f (0)(z) + f (1)(z), can be given by using Eqs. (A12)
and (A9) and the relation c(c + 1) 2F1(a, b, c; z) = c(c +

1) 2F1(a, b, c + 1; z) + abz 2F1(a + 1, b + 1, c + 2; z) as

F (z) = κ0 + κ1

κ1
C 2F1{α, β, κ0 + κ1; b(z − 1)}. (A15)

Now the constant of integration C can be obtained from the
initial condition

F (v0) = F (τ = 0) =
∑

Pn(τ = 0)zn =
∑

δn,0zn = 1.

(A16)
By using v0 = ve−τ = (z − 1)e−τ we get the integration con-
stant C as

C = κ1

κ0 + κ1

1

2F1{α, β, κ0 + κ1; b(z − 1)e−τ } . (A17)

By substituting the value of C into Eq. (A15) we get

F (z, τ ) = 2F1{α, β, κ0 + κ1; b(z − 1)}
2F1{α, β, κ0 + κ1; b(z − 1)e−τ } , (A18)

μn(t ) = kmkpkon

γmγp(kon + koff )
(1 − e−γpt ), (A19)

η2
n(t ) = 1

μn(t )
(1 + ξ + ξe−γpt ), (A20)

where

ξ = b

[
1 + kmkoff

(kon + koff )(kon + koff + γp)

]
. (A21)

In the steady state (τ → ∞), μn and η2
n from Eqs. (A19)

and (A20) are

μn = kmkpkon

γmγp(kon + koff )
, (A22)

η2
n = 1

μn
+ γ −1 1

μm
+ γp

kon + koff + γp
η2

D, (A23)

where η2
D = koff

kon
and μm = kmkon

γm (kon+koff )
. The expression of pro-

tein noise and average in steady state is exactly same as that
of Shahrezaei and Swain [12].

APPENDIX B: SOLUTION OF MASTER EQUATION FOR
POST-TRANSCRIPTIONAL REGULATION

The master equation in the continuum limit can be written
as the partial differential equation (PDE)

∂F

∂w
+ 1

w

∂F

∂τ
+ γ

(
u

w
− κ0

wγ
(v − u)

)
∂F

∂u

+ γ

(
v

w
− κ1

wγ
(u − v) − b(v + 1)

)
∂F

∂v
= au

w
F, (B1)

where we have introduced the dimensionless parameters b =
kp/γm, a = km/γp, γ = γm/γp, τ = tγp, κ1 = koff/γp, κ0 =
kon/γp, and the change of variables u = x − 1, v = y − 1,
w = z − 1. The above PDE can be solved by the method of
characteristics, yielding the set of ODEs

dw

dr
= 1, (B2)

dτ

dr
= 1

w
, (B3)

dF

dr
= au

w
F, (B4)
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du

dr
= γ

(
u

w
− κ0

wγ
(v − u)

)
, (B5)

dv

dr
= γ

(
v

w
− κ1

wγ
(u − v) − b(v + 1)

)
. (B6)

From the characteristic equations (B2) and (B3) we get r =
w = w0eτ . The remaining equations are nonlinear but, assum-
ing that the proteins are more stable compared with mRNAs,
we invoke the limit γ � 1. From Eqs. (B5) and (B6) it is now
easy to obtain

u(w) = bwκ0

(κ1 + κ0 + γ ) − wb(γ + κ0)
, (B7)

which on substitution into Eq. (B4) gives

dF

dw
= abκ0

(κ1 + κ0 + γ ) − wb(γ + κ0)
F. (B8)

With the initial condition

F (w0) = F (τ = 0) =
∑

Pn(τ = 0)zn

=
∑

δn,0zn = 1, (B9)

the solution of Eq. (B8) can be given a simple representation

F (z, τ ) =
[

1 − ξ (z − 1)e−τ

1 − ξz + ξ

]φ

(B10)

by introducing the variables

ξ = b
kon + γm

kon + koff + γm
,

φ = aκ0

κ0 + γ
.

APPENDIX C: PROTEIN DISTRIBUTION FOR
POST-TRANSCRIPTIONAL REGULATION

The protein distribution in the steady state is a negative
binomial distribution

Pn = 	(φ + n)

	(n + 1)	(φ)

(
1

1 + 1/ξ

)n( 1

ξ + 1

)φ

(C1)

= 	(φ + n)

	(n + 1)	(φ)

(
1

ξ + 1

)φ
(

1

1 + n
ξ

+ n(n−1)
2ξ 2 + · · ·

)

(C2)

= n(φ+n)

n(n+1)	(φ)

(
1

ξ

)φ(
1

en/ξ

)
(If n � 1 and ξ � 1) (C3)

= n(φ−1)e−n/ξ

	(φ)ξφ
. (C4)

In the limit of large number n of proteins and large burst size
ξ , the negative binomial distribution approaches the Gamma
distribution with mean value μn = ξφ = kmkpkon/γmγp(koff +
kon + γm), Fano factor 	ξ , and η2

n = 1/φ. In Ref. [17] the
protein distribution for the post transcription regulation is
given by

Pn = n(ã−1)e−n/b̃

	(ã)b̃ã
, (C5)

with ã = μmτ , μm = km/γm, τ = τp/(τon + τm + τy), τp =
1/γp, τon = 1/kon, τm = 1/γm, τy = (kon + koff )/kpkon, and
b̃ = 1 + kp/koff + kpkon/γm(kon + koff ).

The Gamma distributions (C4) and (C5) are equivalent
(1) in the limit when koff � kon;
(2) when γm is much smaller than both kon and koff.

APPENDIX D: CALCULATION OF FIRST
PASSAGE TIME FLUCTUATIONS

With an explicit knowledge of the time-dependent mo-
ments from the protein distribution, it is possible to compute
the FPT, as illustrated in Co et al. [25]. Denoting the average
dynamics as μn(t ) as illustrated in Fig. 9, two geometric
relations hold:

σn(T + Tr ) = μn(T + Tr ) − μn(T ),

σn(T − Tl ) = μn(T ) − μn(T − Tl ), (D1)

which on Taylor expansion around the FPT, T , the time to
reach a threshold nc = μn(T ), can be written as

σn(T ) + d

dt
σn(t )

∣∣∣
T

Tr = d

dt
μn(t )

∣∣∣
T

Tr,

σn(T ) − d

dt
σn(t )

∣∣∣
T

Tl = d

dt
μn(t )

∣∣∣
T

Tl . (D2)

The spread in FPT can now be given by

σT 	 Tr + Tl

2

	
⎡
⎣σn(t )

dμn(t )

dt

[(
dμn(t )

dt

)2

−
(

dσn(t )

dt

)2
]−1

⎤
⎦

T

.

(D3)

Assuming that the variability in the protein level is constant in
time, we get further simplification:

σT 	
[
σn(t )

(
dμn(t )

dt

)−1
]

T

, (D4)

from which we can obtain FPT coefficient of variation.

FIG. 9. The mean and variance of protein numbers as a function
of time.
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