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Symmetry of membrane protein polyhedra with heterogeneous protein size
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In experiments on membrane protein polyhedral nanoparticles (MPPNs) [Basta et al., Proc. Natl. Acad. Sci.
USA 111, 670 (2014)], it has been observed that membrane proteins and lipids can self-assemble into closed
lipid bilayer vesicles with a polyhedral arrangement of membrane proteins. In particular, MPPNs formed from
the mechanosensitive channel of small conductance (MscS) were found to have the symmetry of the snub
cube—a chiral, Archimedean solid—with one MscS protein located at each one of the 24 vertices of the snub
cube. It is currently unknown whether MPPNs with heterogeneous protein composition maintain a high degree
of symmetry. Inspired by previous work on viral capsid symmetry, we employ here computational modeling
to study the symmetry of MPPNs with heterogeneous protein size. We focus on MPPNs formed from MscS
proteins, which can exist in closed or open conformational states with distinct sizes. We find that, as an increasing
number of closed-state MscS proteins transitions to the open conformational state of MscS, the minimum-energy
MscS arrangement in MPPNs follows a strikingly regular pattern, with the dominant MPPN symmetry always
being provided by the snub cube. Our results suggest that MPPNs with heterogeneous protein size can be highly
symmetric, with a well-defined polyhedral ordering of membrane proteins of different sizes.
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I. INTRODUCTION

Self-assembly of proteins into ordered two-dimensional
(2D) structures provides a general design principle for biolog-
ical systems [1–5]. Prominent examples of regular 2D protein
assemblies are viral capsid shells [4–8] and membrane protein
lattices in cell membranes [9–13]. Such 2D protein assemblies
can, for instance, serve as protective barriers [7] and allow
cooperative signaling [14]. The symmetry of viral capsids is
affected crucially by topological constraints arising from the
spherical surface shape [1,4–8]. In contrast, the basic archi-
tecture of membrane protein lattices can often be understood
from local interactions between proteins [15–21]. Membrane
protein polyhedral nanoparticles (MPPNs) [22] provide an
interesting example of a system that combines some of the key
physical principles governing viral capsid and membrane pro-
tein lattice symmetry. MPPNs are closed lipid bilayer vesicles
composed of lipids and membrane proteins. Experiments on
MPPNs [22,23] formed from the mechanosensitive channel
of small conductance (MscS) [24] found a dominant MPPN
diameter ≈20 nm at the bilayer midplane, with each MPPN
containing 24 MscS proteins arranged at the vertices of a snub
cube. MPPNs are thus—akin to membrane protein lattices—
composed of membrane proteins embedded in a lipid bilayer
but show—akin to viral capsids—polyhedral symmetry.

Experiments on MPPNs have so far [22,23] focused on
MPPNs with homogeneous protein composition. A mean-
field model of MPPN self-assembly and shape [25,26] suc-
cessfully predicts how the observed symmetry and size of

*Present address: R & D Center, Arcelik A.S., Tuzla, Istanbul,
34950, Turkey.

MPPNs with homogeneous protein composition emerge from
the interplay of protein-induced lipid bilayer deformations,
topological defects in protein packing, and thermal effects.
Intriguingly, the closed surface of MPPNs permits chemical
or voltage gradients across the MPPN membrane, which could
allow trapping of membrane proteins in distinct, physiolog-
ically relevant conformational states [22]. Such transitions
in protein conformational state are generally accompanied
by changes in protein size: For instance, mechanosensitive
ion channels often have a larger size, when viewed perpen-
dicularly to the cell membrane, in the open than the closed
state [27]. Provided MPPNs with heterogeneous protein size
show an ordered arrangement of proteins, MPPNs could be
employed to elucidate membrane protein structures stabilized
by transmembrane gradients [22]. It is, however, unknown
how heterogeneity in protein size affects MPPN symmetry.
The purpose of this article is to explore the symmetry of
MPPNs with heterogeneous protein size. We thereby use as
our benchmark previous experiments on MPPNs containing
24 MscS proteins [22,23], but allow for open-state as well
as closed-state MscS [28–30] with a fixed total number of
proteins in MPPNs.

In MPPNs with heterogeneous protein size, not all proteins
are equivalent. We therefore do not use a mean-field approach
to study MPPNs with heterogeneous protein size. Previous
work in physical virology has shown that the symmetry of
viral capsids can be captured through a minimal molecular
model in which individual capsid subunits are represented by
Lennard-Jones particles [4,7,31,32]. For a given number of
proteins per MPPN, a similar approach can also be used to
successfully predict the symmetry of MPPNs with homoge-
neous protein size [25]. Here we generalize this approach to
model the symmetry of MPPNs with heterogeneous protein
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size. In Sec. II, we provide a detailed description of our model-
ing approach, the simulated annealing Monte Carlo (MC) sim-
ulations we employ to obtain energetically favorable MPPN
configurations, and the methods used here for quantifying
MPPN symmetry. In Sec. III, we survey the minimum-energy
protein configurations in MPPNs with heterogeneous protein
size. Based on previous experiments on MPPNs composed
of MscS proteins [22,23], we thereby focus on MPPNs with
24 proteins corresponding to closed-state or open-state MscS
proteins [28–30]. We find that, as an increasing number of
closed-state MscS transitions to the open state, the minimum-
energy MscS arrangement in MPPNs follows a strikingly reg-
ular pattern, with the dominant MPPN symmetry always being
provided by the snub cube. Finally, in Sec. IV we provide a
summary and conclusions of the work described here.

II. MODELING MPPN SYMMETRY

Proceeding in analogy to previous work on viral capsid
symmetry [4,31], MPPN symmetry can be described through
a simple particle-based model [25] in which lipids and MscS
proteins are represented by differently sized disks on the
surface of a sphere. In this section, we first review this
previous model of MPPN symmetry [25], which we term
the lipid-protein (LP) model (see Sec. II A). In Sec. II B,
we formulate the composite particle (CP) model of MPPN
symmetry, which is the primary focus of this article and which
provides a simplified, coarse-grained representation of the
LP model. In the CP model, each membrane protein and its
surrounding lipid environment are represented by a single disk
on the surface of a sphere. We use simulated annealing MC
simulations [33,34] to find the minimum-energy states im-
plied by the LP and CP models. We summarize the pertinent
computational methods in Sec. II C. Finally, in Sec. II D, we
describe the mathematical approaches used here to quantify
MPPN symmetry. Throughout this article, we denote the total
number of MscS proteins per MPPN by N and the number
of open-state MscS proteins per MPPN by no, such that the
number of closed-state MscS proteins per MPPN is given by
N − no.

A. Lipid-protein (LP) model

As described previously [25], MPPN symmetry can be
captured by a minimal molecular model—the LP model—in
which proteins and lipids are represented by distinct particles
moving on the surface of a sphere. We take this spherical
surface to correspond to the outer membrane leaflet of MPPNs
[see Figs. 1(a) and 1(b)] and denote its radius by R. In the
LP model, lipids interact with other lipids as well as proteins
through Lennard-Jones potentials,

V (LP)
i, j (r) = εk

[(
r̄i, j

r

)12

− 2

(
r̄i, j

r

)6
]

, (1)

where we use the notation (i, j) = (l, l ), (l, c), and (l, o)
to denote interactions between lipids, lipids and closed-state
MscS, and lipids and open-state MscS, respectively, the index
k = 1, 2 denotes lipid-lipid and lipid-protein interactions, r is
the Euclidean particle separation in three-dimensional (3D)
space, and the r̄i, j denote the energetically most favorable

FIG. 1. Minimum-energy MPPN configurations obtained from
simulated annealing MC simulations of the LP model in Sec. II A
with (a) 24 closed-state MscS proteins and (b) one MscS in the
open state and 23 closed-state MscS. The small and large disks
represent the lipids in a diC14:0 lipid bilayer [39] and MscS proteins
[29,30], respectively, with closed-state MscS corresponding to the
large gray disks and open-state MscS to the large yellow disk. The
closed-state MscS, open-state MscS, and lipid disk sizes are given by
rc, ro, and rl , respectively (see Sec. II A). [(c), (d)] Minimum-energy
MPPN configurations obtained as in panels (a) and (b), respectively,
but using the coarse-grained CP model in Sec. II B. Particles cor-
responding to closed-state and open-state MscS are illustrated by
blue and red disks, respectively. For ease of visualization, the radii
of these disks were decreased by some fixed-scale factor relative to
the disk radii implied by r′

o and r′
c (see Sec. II B). The green lines in

panels (a)–(d) are obtained by connecting the centers of neighboring
proteins. (e) 3D (left panel) and net (right panel) representations of a
snub cube.

particle separations implied by the Lennard-Jones potentials
in Eq. (1). MscS proteins are not expected to aggregate in
the absence of lipids, and are therefore assumed here [25]
to interact with other MscS proteins only through hardcore
steric constraints so that all MscS-MscS separations r > rm,n,
where the indices (m, n) = (c, c), (c, o), and (o, o) denote
pairs of closed-state, closed-state and open-state, and open-
state MscS, respectively.
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The parameters εk in Eq. (1) set the energy scale of
lipid-lipid and lipid-protein interactions and can be viewed
as the energy penalty for exposing lipids or membrane pro-
teins to an aqueous environment. Experiments and previous
calculations [35–37] suggest [25] ε1 ≈ 10 kBT and ε2 ≈
20 kBT for the diC14:0 lipids and MscS proteins used in
experiments on MPPNs [22,23], where kB is Boltzmann’s
constant and T is the room temperature. We employ these
values of εk throughout this article. It was found previously
[25,38] that the minimum-energy MPPN configurations im-
plied by the LP model are robust with respect to the values
of εk . Approximating the shapes of lipids and proteins by
disks that are tangent to the spherical MPPN surface, we can
estimate the values of r̄i, j in Eq. (1) from the lipid radius
rl , the closed-state MscS radius rc, and the open-state MscS
radius ro. Assuming that, in their energetically most favorable
configuration, lipid and protein disks touch each other but do
not overlap, we have

r̄i, j = 2R sin

[
1

2

(
arctan

ri

R
+ arctan

r j

R

)]
. (2)

Experiments on the diC14:0 lipids used for MPPNs formed
from MscS [22,23] give rl ≈ 0.45 nm [39] while structural
studies of MscS yield rc ≈ 4.0 nm and ro ≈ 4.5 nm [29,30]
for the outer membrane leaflet of MPPNs, respectively.

In experiments on MPPNs formed from 24 MscS proteins,
each MPPN was found to be composed of approximately 1700
lipids [22], which corresponds to approximately 1200 lipids in
the outer membrane leaflet of MPPNs [38,40]. To be consis-
tent with these previous experiments on MPPNs [22,23], we
therefore use here a fixed lipid-protein ratio 1200 : 24. Note
that lipids are much more abundant in MPPNs than proteins.
As a result, while the protein configuration in MPPNs is of
primary interest, MC simulations of the LP model devote
considerable computational resources to updating the lipid
configuration, which can make it computationally challenging
to escape from local energy minima in the particle configura-
tion. This issue becomes particularly significant for MPPNs
with heterogeneous protein composition. In Sec. II B, we thus
develop a simplified model of MPPN symmetry.

B. Composite particle (CP) model

The LP model successfully predicts the dominant symme-
try of MPPNs composed solely of closed-state MscS proteins
[25]. However, as pointed out in Sec. II A, the explicit repre-
sentation of lipids in the LP model leads to difficulties when
simulating MPPNs with heterogeneous protein size. Indeed,
most of the degrees of freedom in the LP model correspond
to lipid positions, which are not of primary interest. In both
the LP model [25] and experiments [22], MscS proteins tend
to be surrounded by an annulus of lipids. This motivates us to
formulate the CP model, which provides a simplified, coarse-
grained description of MPPN symmetry. In the CP model, we
take each particle on the MPPN surface to be composed of one
protein surrounded by an annulus of lipids [see Figs. 1(c) and
1(d)]. Similarly as in Sec. II A, we let these particles interact

with each other via Lennard-Jones potentials,

V (CP)
i, j (r) = ε

[(
r̄′

i, j

r

)12

− 2

(
r̄′

i, j

r

)6
]

, (3)

where the parameter ε sets the energy scale of particle in-
teractions and, in analogy to Sec. II A, we use the notation
(i, j) = (c, c), (c, o), and (o, o) to denote interactions between
particles corresponding to two closed-state MscS, one closed-
and one open-state MscS, and two open-state MscS, respec-
tively. We take here each MscS protein to be surrounded by
one layer of lipids. The values of r̄′

i, j in Eq. (3) are then fixed
via an expression analogous to Eq. (2), but using the effective
particle radii r′

c = rc + 2rl ≈ 4.9 nm and r′
o = ro + 2rl ≈ 5.4

nm instead of rl , rc, or ro in Eq. (2). We use here ε =
20 kBT for the energy scale in Eq. (3), but the minimum-
energy MPPN configurations implied by the CP model are
independent of the value of ε. From a practical standpoint,
the central advantage of the CP model over the LP model is
that the CP model focuses on the protein configuration, which
is what defines the MPPN symmetry, and does not allow for
any additional degrees of freedom.

C. Simulated annealing MC simulations

For a given set of values of (N, no), we employ simu-
lated annealing MC simulations [33,41] with linear cooling
to numerically determine the minimum-energy configurations
associated with the LP and CP models described in Secs. II A
and II B [25]. For the LP model with no = 0, we generate
the initial conditions for our MC simulations from a random,
uniform distribution of lipids and proteins on the MPPN
surface with no overlap of proteins. For the CP model with
no = 0 we employ a uniform, random distribution of CPs with
no constraints on the relative particle positions.

In our simulated annealing MC simulations [33,41] of the
LP and CP models we randomly pick, in each MC step, one
of the particles on the MPPN surface as the target particle for
this MC step. In particular, in the LP model we first randomly
decide whether to update the position of a lipid or protein
particle (with probabilities 0.8 and 0.2, respectively) and then
pick with equal probability a lipid or protein particle among
all lipid or protein particles on the MPPN surface. In the CP
model, we choose the target particle with equal probability
among all particles. Next, we generate a unit vector with its
initial point at the MPPN center and a target point that is
chosen randomly from a uniform angular distribution. We
update the MPPN configuration by rotating the target particle
about the axis defined by this unit vector through an angular
step size δθ = 0.005 rad. The MC move is accepted with
probability

p = min
(
1, e−�G/kBTsys

)
, (4)

where Tsys is the system temperature and �G is the difference
in MPPN energy between the MPPN configurations after and
before the attempted MC move. The maximum strength of the
interaction potentials in Eqs. (1) and (3) is set by ε2 and ε.
As discussed in Secs. II A and II B, we use here ε2 = ε =
20 kBT . In our simulated annealing MC simulations of the
LP and CP models, we therefore evolve, for the first 105 MC
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FIG. 2. Illustrative MC trajectories of the CP model for five
independent MC simulations showing the total MPPN energy cal-
culated from Eq. (3) vs number of MC steps. We set (N, no) =
(24, 2), start from random initial conditions, and use our standard
MC simulation procedure for the CP model including swapping
moves (see Sec. II C). The inset shows the MPPN energy associated
with the random initial conditions used for the five independent MC
simulations. In the main panel, the curves leading to the first data
point shown overlap for the five independent MC trajectories.

steps, the MPPN configurations using a system temperature
that is increased 20-fold compared to the room temperature,
Tsys = 20T , so as to allow thermal fluctuations to compete
with the Lennard-Jones interactions considered here. To ac-
cess minimum-energy MPPN configurations, we then linearly
decrease Tsys from Tsys = 20T to Tsys = 0 over 105 additional
MC steps. Finally, we let the system evolve for 104 further
MC steps with Tsys = 0, accepting only MC steps that result
in a lower-energy MPPN configuration.

Figure 2 illustrates the MC cooling procedure outlined
above for the CP model. In particular, Fig. 2 shows the total
MPPN energy as a function of MC steps for five represen-
tative MC simulations of the CP model at (N, no) = (24, 2).
As illustrated in Fig. 2, our MC trajectories show a rapid
transition from the random initial conditions to energetically
more favorable protein configurations. Over the first 105 MC
steps, we find large fluctuations in the MPPN energy, with
substantial overlap in the energy fluctuations for the five repre-
sentative MC trajectories shown in Fig. 2. This illustrates that
Tsys = 20T is large enough for the system to explore different
energetically favorable protein configurations irrespective of
the initial conditions used. Once the linear cooling process is
started (after 105 MC steps), the MC trajectories converge to
the same minimum-energy MPPN configuration with, within
numerical accuracy, the same MPPN energy. This conver-
gence of different MC trajectories illustrates that our cooling
process is slow enough to allow distinct MC trajectories to
“find” the same energy minimum.

For both the LP and CP models, we repeat the above
simulated annealing MC procedure for a range of MPPN radii
R to find the optimal MPPN radius R∗ minimizing the MPPN
energy. The value of R∗ depends on (N, no) as well as the
model under consideration. For the LP model with N = 24

FIG. 3. Square of the optimal MPPN radius, (R∗)2, vs number of
open-state MscS proteins, n0, for N = 24 obtained from simulated
annealing MC simulations of the CP model and the estimate in
Eq. (5). For the MC simulations, we used our standard MC simu-
lation procedure including swapping moves (see Sec. II C).

we find, in agreement with previous work [25,38], R∗ ≈ 12.3
nm for no = 0 and R∗ ≈ 12.4 nm for no = 1 with a snub
cube symmetry of protein centers [see Figs. 1(a) and 1(b)]. To
obtain R∗ in the CP model for N = 24 and no � 1, we carry
out simulated annealing MC simulations first with the value
of R = R∗ found for no − 1, and then increase R to determine
R∗ with a resolution of 0.01 nm. For no = 0, we start our
search for R∗ at R = 11 nm. We thus find the optimal MPPN
radii 12.06 nm � R∗ � 13.29 nm for 0 � no � 24. A simple
way to rationalize this increase in R∗ with no is to regard
the ratio of MPPN surface area to the area occupied by the
disks representing closed-state and open-state MscS proteins
as being approximately constant, which implies

(N − no + 1)πr′2
c + (no − 1)πr′2

o

4π [R∗(no − 1)]2

≈ (N − no)πr′2
c + noπr′2

o

4π [R∗(no)]2 (5)

for R∗ = R∗(no − 1) and R∗ = R∗(no). Using the value
R∗(0) = 12.06 nm found in our simulated annealing MC sim-
ulations, Eq. (5) allows us to recursively estimate R∗(no)
for 1 � no � 24. Note that, as shown in Fig. 3, Eq. (5)
implies that (R∗)2, which is proportional to the MPPN surface
area, depends approximately linearly on no. Equation (5)
yields the optimal MPPN radii 12.11 nm � R∗ � 13.29 nm
for 1 � no � 24, which is in approximate agreement with
the range of R∗(no) obtained through our simulated annealing
MC simulations (Fig. 3). Proceeding as for N = 24, we find
R∗ ≈ 7.84 nm and R∗ ≈ 8.6 nm for the CP and LP models
with (N, no) = (12, 0), and R∗ ≈ 14.07 nm and R∗ ≈ 15.0 nm
for the CP and LP models with (N, no) = (32, 0), respectively
(see Sec. III). For both the LP and CP models, we estimated
R∗ on the basis of 50 independent simulated annealing MC
simulations for each MPPN radius considered, for which we
used different random seeds. To determine the lowest-energy
MPPN configuration implied by the LP model, we selected
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from the resulting set of 50 MPPN configurations at R = R∗
the MPPN configuration with the lowest energy. To determine
the lowest-energy MPPN configuration implied by the CP
model, we carried out 200 further simulated annealing MC
simulations at R = R∗, and selected from the resulting set of
250 MPPN configurations at R = R∗ the MPPN configuration
with the lowest energy.

For simulations of the LP and CP models with no = 1, we
use as initial conditions the lowest-energy MPPN configura-
tions obtained at no = 0 and randomly replace one closed-
state MscS protein by an open-state MscS protein. When
using the CP model to simulate MPPNs with no > 1, we take
MscS proteins to gate sequentially; i.e., we use as the initial
conditions for MPPNs with (N, no) and no > 1 the minimum-
energy configurations found for (N, no − 1) and randomly
replace a closed-state MscS protein with an open-state MscS
protein. Our simulations suggest that similar results for the
minimum-energy MPPN configurations are obtained if one
does not make this assumption. Here a technical difficulty
arises in that the simulated annealing MC procedure described
above fails to robustly identify the minimum-energy arrange-
ments of open-state MscS in MPPNs with no > 1. To illustrate
this issue, we consider (N, no) = (24, 2), in which case the
arrangement of open-state MscS can be characterized by the
angle α between the vectors pointing from the MPPN center
to the particles representing open-state MscS [see inset in
Fig. 4(a)]. The minimum-energy MPPN configuration corre-
sponds to a snub cube arrangement of protein centers with
the two open-state MscS being located across the diagonal of
one of the square faces of the snub cube. This configuration
corresponds to α ≈ 1.12 rad [see Figs. 1(e) and 4(a)]. Plotting
the values of α associated with the final MPPN configurations
obtained in our simulated annealing MC simulations, αfinal,
versus the values of α associated with the initial MPPN
configurations, αinit , we find that our simulated annealing MC
simulations are, in general, unable to overcome the energy
barriers for interchanging closed-state and open-state MscS
and, hence, fail to yield the minimum-energy MPPN configu-
ration [see Figs. 4(a) and 4(b)].

To address the computational issue described above and
illustrated in Figs. 4(a) and 4(b), we augment our simulated
annealing MC simulations to allow for “swapping moves,” in
which the positions of closed-state and open-state MscS are
randomly interchanged. In particular, we allow the “newly
gated” MscS protein to randomly swap its position with a
randomly selected closed-state MscS protein every 2 × 103

MC steps. The swapping move is accepted with a probability
of the same form as in Eq. (4), but with �G being given by the
difference in MPPN energy between the MPPN configurations
after and before the attempted swapping move. If this MC
move is not accepted, we let the system evolve as if it was
accepted and, after 100 further MC steps, again apply Eq. (4),
where �G is now calculated with respect to this evolved
MPPN configuration. If, after this second attempt, the swap-
ping move is still rejected, we revert the MPPN configuration
to its state immediately prior to the attempted swapping move,
and attempt the next swapping move after 2 × 103 further MC
steps.

The motivation behind the “staggered” swapping proce-
dure described above is that, since open-state MscS proteins

FIG. 4. CP model with (N, no) = (24, 2). (a) Total MPPN en-
ergy vs angular separation of open-state MscS in the final MPPN
configuration, α = αfinal (see inset) and (b) αfinal vs corresponding
initial angular separation of open-state MscS, α = αinit . The results
in panels (a) and (b) were obtained through simulated annealing
MC simulations with no swapping moves (see Sec. II C). (c) αfinal

vs αinit as in panel (b) and using the same initial conditions as in
panel (b) but allowing for swapping moves. The dashed vertical
and horizontal lines show the values of α associated with perfect
snub cube symmetry. The solid lines in panels (b) and (c) indicate
αfinal = αinit . Each cross symbol represents the result of one simulated
annealing MC simulation. The insets show enlarged versions of the
indicated regions in the plots.
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have a larger size than closed-state MscS proteins, swapping
of closed-state and open-state MscS proteins tends to strongly
increase the MPPN energy unless the MPPN configuration
is allowed to relax following the swapping move. Spurious
rejection of swapping moves is thus avoided, speeding up our
MC procedure. Our choice to evolve the system over 100 MC
steps following an attempted swapping move does not have
any deeper significance and, indeed, no such relaxation steps
are needed if the number of independent MC simulations is
large enough. We find that our results concerning energetically
optimal MPPN configurations in Sec. III are robust with
respect to the number of MC relaxation steps used. Figure 4(c)
shows that, upon implementation of the swapping procedure,
our simulated annealing MC simulations robustly identify the
minimum-energy arrangement of open-state MscS proteins
irrespective of the initial conditions used, and only in rare
instances fail to produce the energetically preferred value of
αfinal.

Our simulations suggest that if one allows any open-
state MscS protein—rather than just the newly opened MscS
protein—to engage in swapping moves, one obtains similar
results for the minimum-energy MPPN configurations as with
the sequential gating procedure used here. We find, however,
that if any open-state MscS protein is allowed to engage in
swapping moves, a given simulated annealing MC simula-
tion is less likely to successfully identify the energetically
preferred MPPN configuration, making the sequential gating
procedure employed here more efficient from a computa-
tional perspective. Furthermore, our simulations indicate that
if one uses as the “initial” MPPN state (N, no) = (24, 24)—
rather than (N, no) = (24, 0)—and sequentially closes open-
state MscS proteins—rather than opens closed-state MscS
proteins—one obtains minimum-energy MPPN configura-
tions similar to those described here (see Sec. III).

D. Quantifying MPPN symmetry

The most straightforward approach for quantifying the
symmetry of the MPPN configurations obtained through our
simulated annealing MC simulations of the LP and CP models
is to fit the protein centers to polyhedral vertices. In particular,
we proceed as in experiments on MPPNs [22] and previous
simulations of the LP model [25] and compare the protein
arrangements in MPPNs with the symmetries implied by the
132 convex polyhedra with regular faces [42]: The Platonic
(P), Archimedean (A), Catalan (C), and Johnson (J) solids. We
denote the Platonic, Archimedean, and Catalan solids using
the Conway polyhedron notation [43] and the Johnson solids
using the indexing scheme developed in Ref. [44]. For each
simulated MPPN configuration, we quantify the fits to the
aforementioned 132 polyhedral symmetries by calculating the
fit error

E =
N∑

i=1

( �vi − �v0i )
2 , (6)

where the vectors �vi point from the MPPN center to the
positions of the protein centers on the MPPN surface obtained
in our simulated annealing MC simulations, and the vectors
�v0i denote the corresponding positions of the closest fitted

polyhedron vertices. The latter are obtained [22,45] by freely
moving, rotating, and rescaling the polyhedron models until
E is minimized for each polyhedral symmetry considered.
Note that this fitting procedure yields for each MscS particle
a closest polyhedron vertex. If the number of polyhedron
vertices is smaller than N , each polyhedron vertex is associ-
ated with multiple MscS particles. In contrast, if the number
of polyhedron vertices is greater than N , the fitting proce-
dure used here determines the subset of polyhedron vertices
yielding the best fit to the MscS positions. We also note that
in our simulated annealing MC simulations the preference
of the minimum-energy MPPN configuration for one chiral
polyhedral symmetry over its mirror-symmetric configuration
results from the random numbers and initial conditions used
[25] and is therefore not a model prediction.

In addition to Eq. (6), we characterize MPPN symmetry
through bond-orientational order (BOO) parameters. BOO
parameters have been employed to quantify local ordering
in liquids and glasses [46–48] and, more recently, have been
used to characterize the symmetry of protein shells [4]. BOO
parameters are rotational invariants and, for MPPNs, can
be constructed from the spherical harmonics of the protein
positions on the MPPN surface. In particular, we employ here
the BOO parameters Ql [46],

Ql =
(

4π

2l + 1

l∑
m=−l

|Qlm|2
)1/2

, (7)

where

Qlm = 1

N

N∑
i=1

Ylm( �vi), (8)

in which, as in Eq. (6), the vectors �vi point from the MPPN
center to the centers of the proteins on the MPPN surface
obtained in our simulated annealing MC simulations, and the
Ylm( �vi ) denote the corresponding spherical harmonics. We
take here l in Eqs. (7) and (8) to be even so that Ql is
independent of the direction of a particular bond [46].

In Sec. III C, we employ the BOO parameters Ql in Eq. (7)
to quantify how closely the MPPN configurations implied by
the CP model resemble a snub cube [Fig. 1(e)]. To this end, we
first use Eq. (7) to calculate Ql for a perfect snub cube for even
l starting from l = 0. We denote the values of Ql associated
with a perfect snub cube by Q(sc)

l . We note that these values
of Q(sc)

l are independent of the chirality of the snub cube. The
relative difference between the Ql associated with a simulated
MPPN configuration and Q(sc)

l can then be expressed in the
form

Q̂l =
∣∣∣∣∣1 − Ql

Q(sc)
l

∣∣∣∣∣ . (9)

We find that for even l > 0 the first nonzero Q(sc)
l occurs at

l = 4, and Q(sc)
l = 0.0525 and 0.0412 for l = 4 and l = 6. In

Sec. III C, we use Q̂4 and Q̂6 to characterize the symmetry of
MPPNs with N = 24.
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TABLE I. Symmetries and associated fit errors E in Eq. (6) of the best two polyhedral fits to the minimum-energy MPPN configurations
implied by the LP and CP models of MPPN symmetry for N = 12, 24, and 32 with no = 0. All results were obtained through simulated
annealing MC simulations (see Sec. II C). We denote [43,44] the icosahedron by I, the snub cube by sC, the pentakis dodecahedron by kD, the
metabiaugmented dodecahedron by J60, the truncated octahedron by tO, the pentagonal hexecontahedron by gD, the rhombic triacontahedron
by jD, and the disdyakis triacontahedron by mD. We proceeded as described in Sec. II D when searching for optimal polyhedral fits. The
polyhedral chiralities result from the random numbers and initial conditions used and are not model predictions.

Best polyhedral fit Second-best polyhedral fit

N Model Symmetry E [nm2] Symmetry E [nm2]

12 CP I 1.50 × 10−2 J60 6.07 × 10
12 LP I 4.18 tO 1.21 × 10

24 CP sC (dextro) 4.70 × 10−2 gD (laevo) 3.62 × 10
24 LP sC (dextro) 2.96 × 10 gD (laevo) 6.60 × 10

32 CP kD 1.06 × 10 jD 1.95 × 10
32 LP kD 7.27 × 10 mD 7.78 × 10

III. MINIMUM-ENERGY MPPN CONFIGURATIONS

In this section, we discuss the results of our simulated
annealing MC simulations of the LP and CP models of MPPN
symmetry. We first compare the MPPN symmetries predicted
by the LP and CP models (see Sec. III A). We then use the CP
model to survey the minimum-energy MscS configurations
in MPPNs with N = 24 and 0 � no � 24. We thereby first
consider qualitative features of the protein arrangement in
MPPNs with heterogeneous protein size (see Sec. III B) and
then quantify the symmetry of MPPNs with heterogeneous
protein size (see Sec. III C).

A. Comparison of LP and CP models

As discussed in Sec. II, we consider here two models of
MPPN symmetry: The LP model (see Sec. II A) and the CP
model (see Sec. II B). The LP model separately accounts for
the lipids and proteins in MPPNs. In contrast, the CP model
focuses on the protein configurations in MPPNs and does
not explicitly consider the arrangement of lipids in MPPNs.
Table I shows the polyhedral symmetries obtained through
simulated annealing MC simulations of the LP and CP models
(see Sec. II C) for N = 12, 24, and 32 with no = 0. We fitted
the simulated MPPN configurations to polyhedral symmetries
as described in Sec. II D. For both the LP and CP models,
we find the minimum-energy MPPNs to have the symmetry
of the icosahedron for N = 12 [see Fig. 5(a)], the snub cube
for N = 24 [see Fig. 1(e)], and the pentakis dodecahedron
for N = 32 [see Fig. 5(b)]. For N = 12 and N = 32, the

FIG. 5. 3D representations of (a) the icosahedron (I) and (b) the
pentakis dodecahedron (kD) in Table I.

LP and CP models give different results for the second-best
polyhedral fits to the minimum-energy MPPNs, but identical
results for N = 24.

The icosahedron is a Platonic solid with 12 vertices, while
the pentakis dodecahedron is a lower-symmetric Catalan solid
with 32 vertices. Experiments on MPPNs formed from MscS
[22,23] yielded MPPNs with N = 24 and snub cube symmetry
as the dominant MPPN symmetry, which we also find through
our simulated annealing MC simulations of the LP and CP
models. We note that the snub cube is a chiral polyhedron.
The right-handed (dextro) and left-handed (laevo) chiralities
of the snub cube can be constructed by translating outward
the faces of a cube, and rotating them clockwise (dextro)
or counterclockwise (laevo) as viewed from the polyhedron
center until the polyhedral shell can be closed up with equi-
lateral triangles. As noted in Sec. II D, the preference of the
minimum-energy MPPN configuration for one chiral polyhe-
dral symmetry over its mirror-symmetric configuration results
from the random numbers and initial conditions used [25] for
our simulated annealing MC simulations, and is therefore not
a model prediction.

The polyhedra in Table I that provide the best fits to the
simulated MPPN configurations all have N vertices. Inter-
estingly, the second-best polyhedral fits in Table I do not
necessarily correspond to polyhedra with the same number of
vertices as the number of proteins in MPPNs. For instance,
the second-best polyhedral fits in Table I for (N, no) = (12, 0)
are provided by the metabiaugmented dodecahedron (J60) and
the truncated octahedron (tO), which have 22 and 24 vertices,
respectively, and not by the truncated tetrahedron or the
cuboctahedron, which both have 12 vertices. While we con-
sidered in Table I MPPNs with N = 12, 24, and 32, we find
similar agreement of the dominant symmetries predicted by
the LP and CP models for other values of N . Furthermore, we
checked whether the LP and CP models yield identical results
for the dominant MPPN symmetry for MPPNs with heteroge-
neous protein size. In particular, we find that the LP and CP
models both yield the snub cube as the dominant symmetry
of MPPNs with (N, no) = (24, 1) [Figs. 1(b) and 1(d)]. As
discussed in Secs. II A and II B, the CP model is conceptually
simpler than the LP model and avoids some of the computa-
tional difficulties associated with finding the minimum-energy
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FIG. 6. Minimum-energy protein arrangements in MPPNs im-
plied by the CP model of MPPN symmetry for N = 24. The numbers
labeling the vertices denote the positions of the nth

o open-state MscS
protein, with subscripts denoting the degree of degeneracy in placing
the nth

o open-state MscS protein. We omit this subscript if the position
of the nth

o open-state MscS protein is uniquely determined by the pro-
tein arrangement in MPPNs with (no − 1) open-state MscS proteins.
The degeneracy in placing open-state MscS proteins follows from
the symmetry of the snub cube. The faces are colored according to
their symmetry properties with red (gray), yellow (light gray), and
blue (dark gray) colors indicating two-fold, three-fold, and four-fold
symmetry axes, respectively (see also Fig. 7).

MPPN configurations in the LP model. In the remainder of
this article, we therefore focus on the CP model.

B. Protein arrangement in MPPNs with heterogeneous
protein size

To determine the minimum-energy arrangement of MscS
proteins in MPPNs [22,23] with heterogeneous MscS size,
we carried out simulated annealing MC simulations of the CP
model for N = 24 and 0 � no � 24. Independent of the value
of no considered, we find that the minimum-energy MPPNs
have the symmetry of a snub cube with one (closed-state or
open-state) MscS protein being located at each one of the 24
vertices of the snub cube (see also Sec. III C). We find that,
as no is increased from no = 0, the minimum-energy MscS ar-
rangement in MPPNs follows a strikingly regular pattern (see
Figs. 6 and 7). To specify, at each no, the minimum-energy
MscS arrangement obtained in our simulated annealing MC
simulations, we label in Figs. 6 and 7 the vertices of the snub
cube by no to denote the position of the nth

o open-state MscS
protein. If there is more than one equivalent choice for the
position of the nth

o open-state MscS protein, we introduce a
subscript specifying the degree of degeneracy. In Fig. 6, we
show the pattern of open-state MscS proteins found in our
simulated annealing MC simulations. In Fig. 7, we provide 3D
illustrations of selected MPPN configurations in Fig. 6, and in
Fig. 8 we show some of the simulated MPPN configurations
corresponding to Fig. 6.

To understand the protein arrangement in MPPNs with
N = 24 and heterogeneous protein size, it is instructive to

FIG. 7. 3D illustrations of selected minimum-energy protein ar-
rangements in Fig. 6 for (a) no = 0 or no = 24 (undeformed snub
cube), (b) no = 3, (c) no = 12, and (d) no = 16. Following the label-
ing scheme in Fig. 6, the faces of the snub cube are colored according
to their symmetry properties. In panel (a), the locations of some of
the two-, three-, and fourfold symmetry axes of the snub cube are
indicated by arrow, triangle, and square symbols, respectively, with
the symmetry axes perpendicularly intersecting these symbols at
their geometric centers. In panels (b), (c), and (d), vertices of the snub
cube occupied by open-state MscS proteins are indicated by disks. In
panel (b), the two geometrically equivalent choices for placing the
third open-state MscS protein are labeled as 3 and 3′, respectively.
In panels (c) and (d), we highlight the positions of the open-state
MscS proteins occupying the “front” and “back” square faces of the
snub cube through increased disk sizes with no labels (see main text),
and label the positions of selected open-state MscS proteins with
no > 8 by no. In panel (c), the closed zigzag loop formed by the first
eight open-state MscS proteins is indicated by small (orange) disks,
while large (green) disks indicate the nearest-neighbor pairs formed
by the ninth to twelfth open-state MscS proteins with the open-state
MscS proteins occupying the front and back square faces of the snub
cube. In panel (d), the white lines show the closed zigzag loop of
closed-state MscS proteins formed at no = 16. Portions of the loops
in panels (c) and (d) located at the back of the snub cube are indicated
by dashed curves.

briefly recall the symmetry properties of the (undeformed)
snub cube [49]. The snub cube is an Archimedean solid
with 24 vertices and 38 faces corresponding to six squares,
none of which share a vertex, and 32 equilateral triangles
[Fig 1(e)]. All vertices in the snub cube are equivalent. The
six square faces of the snub cube are associated with six
fourfold rotational symmetry axes. Eight of the 32 triangular
faces of the snub cube are associated with threefold rotational
symmetry axes, while 24 of the 32 triangular faces of the snub
cube are associated with twofold rotational symmetry axes.
Figure 7(a) provides an illustration of the symmetry properties
of the snub cube.
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FIG. 8. 3D representations of the minimum-energy MPPN configurations implied by the CP model of MPPN symmetry for N = 24 and
(a) no = 2, (b) no = 4, (c) no = 8, (d) no = 12, and (e) no = 16 (see also Fig. 6). As in Fig. 1(d), closed-state and open-state MscS proteins are
represented by small (blue) and large (red) disks, respectively, with the radii of these disks being decreased by some fixed scale factor relative
to the disk radii implied by r′

o and r′
c. For clarity, polyhedral ridges enclosing (distorted) square faces of the snub cube are shown in bright

green (light gray), while polyhedral ridges associated only with triangular faces of the snub cube are shown in dark green (dark gray).

For no = 1, the single open-state MscS protein can equiva-
lently occupy each one of the 24 vertices of the snub cube.
We therefore have a 24-fold degeneracy in the position of
the first open-state MscS protein (Fig. 6). In contrast, once
the position of the first open-state MscS protein has been
set, the energetically most favorable position of the second
open-state MscS protein is fixed (Fig. 6): The second open-
state MscS protein is arranged so that it is located diagonally
across the square-shaped face of the snub cube from the first
open-state MscS protein [see Fig. 8(a)]. In other words, the
two open-state MscS proteins form a next-nearest-neighbor
pair across a square face of the snub cube. As a result, the
symmetry axis associated with this square face is changed
from a fourfold symmetry axis (for a perfect snub cube) to
an axis with approximate twofold rotational symmetry. The
third open-state MscS protein forms a nearest-neighbor pair
across a triangular face of the snub cube with either one
of the two other open-state MscS proteins so as to trace
out a “zigzag” pattern (Fig. 6). The two equivalent nearest-
neighbor “bonds” associated with the third open-state MscS
protein intersect twofold symmetry axes of the snub cube [see
Fig. 7(b)]. The fourth open-state MscS protein is again located
diagonally across a square face of the snub cube from an
open-state MscS protein [see Fig. 8(b)]. Hence, its position
is uniquely determined by the position of the third open-state
MscS protein (Fig. 6).

The aforementioned zigzag pattern of alternating next-
nearest-neighbor bonds of open-state MscS proteins across
the square faces of the snub cube and nearest-neighbor bonds
intersecting twofold symmetry axes of the snub cube contin-
ues for 0 � no � 8 (Fig. 6). At no = 8, the eight open-state
MscS proteins thus connect up to form a closed loop [see
Fig. 7(c)]. As a result, two square faces of the snub cube,
located at opposite sides of the snub cube, are left devoid
of any open-state MscS proteins [see the lower panel in

Fig. 8(c)]. At no = 9, one of the eight vertices associated with
these two square faces is occupied by the ninth open-state
MscS protein, resulting in a degeneracy of eight for placing
the ninth open-state MscS protein (Fig. 6). Note that the
ninth open-state MscS protein forms a nearest-neighbor pair
with some other open-state MscS protein located across a
polyhedral ridge separating triangular faces associated with
two- and threefold symmetry axes [Fig. 7(c)].

The tenth open-state MscS protein forms a next-nearest-
neighbor bond across a square face of the snub cube with
the ninth open-state MscS protein and, hence, has a position
that is uniquely determined by the position of the ninth
open-state MscS protein (Fig. 6). The polyhedral geometry
of the snub cube mandates that, similar to the ninth open-
state MscS protein, the tenth open-state MscS protein forms
a nearest-neighbor bond with some other open-state MscS
protein located across a polyhedral ridge separating triangular
faces with two- and threefold symmetry axes [Fig. 7(c)]. As
a result, the square face of the snub cube containing the
ninth and tenth open-state MscS proteins connects two square
faces of the snub cube, each containing two open-state MscS
proteins, that are part of the zigzag loop formed at no = 8.
Following Fig. 7(c), we denote the latter two faces as the
“front” and “back” faces of the zigzag loop formed at no = 8,
respectively.

At no = 11, the last remaining square face of the snub
cube containing only closed-state MscS proteins starts to be
occupied by open-state MscS proteins [Figs. 6 and 7(c)]. Two
vertices on that square face are—via open-state MscS proteins
that are part of the front and back faces of the zigzag loop
of open-state MscS proteins formed at no = 8 in Fig. 7(c)—
next-next-nearest neighbors of the ninth and tenth open-state
MscS proteins. We find that either one of these two vertices
is occupied by the eleventh open-state MscS protein. Hence,
there is a twofold degeneracy in the position of the eleventh
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open-state MscS protein. The twelfth open-state MscS protein
is again located diagonally across a square face of the snub
cube from an open-state MscS protein, and its position is
therefore uniquely determined by the position of the eleventh
open-state MscS protein [Figs. 6 and 7(c)]. Thus, the square
face occupied by open-state MscS proteins at no = 11 and
no = 12 connects, similar to the square face containing the
ninth and tenth open-state MscS proteins, the front and back
faces of the zigzag loop of open-state MscS proteins formed
at no = 8 in Fig. 7(c). At no = 12, all square faces of the
snub cube contain two open-state MscS proteins, which form
next-nearest-neighbor pairs across the diagonals of the square
faces [see Figs. 7(c) and 8(d)].

As no is increased beyond no = 12, open-state MscS pro-
teins start to form nearest-neighbor bonds on the square faces
of the snub cube. We find that first the front and back faces
of the zigzag loop of open-state MscS proteins formed at
no = 8 in Fig. 7(c) are fully occupied by open-state MscS
proteins. In particular, at no = 13, there are four geometrically
equivalent choices for the location of the thirteenth open-state
MscS protein, resulting in a fourfold degeneracy for placing
the thirteenth open-state MscS protein (Fig. 6). The fourteenth
open-state MscS protein is located diagonally across a square
face of the snub cube from an open-state MscS protein, and
its position is therefore uniquely determined by the position of
the thirteenth open-state MscS protein (Fig. 6). Similarly, we
have a twofold degeneracy in the protein position at no = 15,
with the position of the sixteenth open-state MscS protein
being determined uniquely by the position of the fifteenth
open-state MscS protein (Fig. 6).

Note that, at no = 16, there are four geometrically equiv-
alent square faces of the snub cube containing two closed-
state MscS proteins each. Connecting the vertices associated
with these closed-state MscS proteins, we obtain a closed
zigzag loop with similar geometric properties as the loop of
open-state MscS proteins found at no = 8 [see Fig. 7(d)]. As
no is increased beyond no = 16, the vertices of this loop are
occupied by open-state MscS proteins following a pattern that
is analogous to that obtained for 0 � no � 8 (Fig. 6). We find
an eightfold degeneracy in the protein position at no = 17 and
twofold degeneracies in the protein position at no = 19, 21,
and 23, respectively, with the positions of open-state MscS
proteins at even no being determined uniquely by the positions
of open-state MscS proteins at odd no. At no = 24, all vertices
of the snub cube are occupied by open-state MscS proteins.

C. Quantifying the symmetry of MPPNs
with heterogeneous protein size

In this section, we employ the mathematical approaches
described in Sec. II D to quantify the symmetry of MPPNs
with heterogeneous protein size. To determine how closely
the protein configurations in MPPNs follow polyhedral sym-
metry, it is convenient to introduce, based on the fit error E in
Eq. (6), the dimensionless root-mean-square fit error

σ̂ = 1

λ

√
E

N
(10)

with λ = 10−2r′
c as the characteristic length scale. In Table II,

we list σ̂ in Eq. (10) for the best two polyhedral fits for MPPNs

TABLE II. Symmetries and associated root-mean-square fit er-
rors σ̂ in Eq. (10) of the best two polyhedral fits to the minimum-
energy MPPN configurations implied by the CP model of MPPN
symmetry for N = 24 and the indicated values of no. All results
were obtained through simulated annealing MC simulations (see
Sec. II C). We use the same notation for polyhedral symmetries
as in Table I [43,44] with, in particular, gD corresponding to the
pentagonal hexecontahedron, and denote the rhombicuboctahedron
by eC and the gyroelongated square bicupola by J45. We proceeded
as described in Sec. II D when searching for optimal polyhedral fits.
The polyhedral chiralities result from the random numbers and initial
conditions used and are not model predictions.

Best polyhedral fit Second-best polyhedral fit

no Symmetry σ̂ Symmetry σ̂ /10

0 sC (dextro) 1.13 gD (laevo) 3.06
1 sC (laevo) 3.16 eC 3.66
2 sC (dextro) 5.52 gD (laevo) 3.31
3 sC (laevo) 7.21 gD (dextro) 3.22
4 sC (dextro) 8.31 gD (dextro) 3.24
5 sC (laevo) 8.93 gD (dextro) 3.34
6 sC (laevo) 1.08×10 gD (dextro) 3.04
7 sC (dextro) 1.21×10 gD (laevo) 3.03
8 sC (dextro) 1.44×10 sC (laevo) 3.15
9 sC (laevo) 1.37×10 sC (dextro) 3.25
10 sC (laevo) 1.29×10 gD (laevo) 3.67
11 sC (laevo) 1.24×10 gD (laevo) 3.35
12 sC (laevo) 1.20×10 sC (dextro) 3.58
13 sC (dextro) 1.23×10 J45 (dextro) 3.56
14 sC (laevo) 1.30×10 gD (dextro) 3.4
15 sC (dextro) 1.30×10 gD (laevo) 3.14
16 sC (laevo) 1.29×10 J45 (laevo) 3.52
17 sC (dextro) 1.18×10 gD (laevo) 3.21
18 sC (laevo) 1.07×10 gD (dextro) 3.15
19 sC (dextro) 9.23 gD (laevo) 3.24
20 sC (laevo) 8.23 gD (laevo) 3.49
21 sC (dextro) 7.04 gD (dextro) 3.48
22 sC (laevo) 6.16 gD (dextro) 3.42
23 sC (laevo) 3.47 gD (dextro) 3.75
24 sC (dextro) 1.08 gD (dextro) 3.54

with N = 24 and 0 � no � 24. We calculated these values of
σ̂ from the minimum-energy MPPN configurations obtained
in our simulated annealing MC simulations of the CP model.
As already noted in Sec. III B, we find that, independent of
the value of no considered, the best polyhedral fits in Table II
always correspond to snub cube (sC) symmetry.

Figure 9 shows σ̂ in Table II versus no for the best polyhe-
dral fits. We also provide in Fig. 9 the range in σ̂ associated
with the ten lowest-energy MPPN configurations obtained, at
each no, in our simulated annealing MC simulations, as well as
the average σ̂ associated with these ten lowest-energy MPPN
configurations. Each one of these ten lowest-energy MPPN
configurations corresponds to one independent MC trajectory.
At each no, the best polyhedral fits to the ten lowest-energy
MPPN configurations in Fig. 9 all correspond to snub cube
symmetry. Note from Fig. 9 that the root-mean-square fit error
in Eq. (10) is smallest for MPPNs with homogeneous protein
composition (no = 0 and no = 24). Similarly, comparison of
fits of the simulated MPPN configurations to the snub cube
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FIG. 9. Root-mean-square fit errors σ̂ in Eq. (10) of the best
polyhedral fit (snub cube symmetry) to the minimum-energy MPPN
configurations implied by the CP model of MPPN symmetry for
N = 24 vs number of open-state MscS proteins, no [blue (dark gray)
data points]. For each no, we also show the range in σ̂ associated
with the ten lowest-energy MPPN configurations obtained in our
simulated annealing MC simulations, which all correspond to snub
cube symmetry. This range in σ̂ is indicated by bars, with the red
(light gray) data points showing the average σ̂ for the ten lowest-
energy MPPN configurations obtained in our simulated annealing
MC simulations. See also Table II.

with fits to competing polyhedral symmetries shows that the
snub cube symmetry is most dominant for homogeneous or
nearly homogeneous protein compositions (see Table II).

Starting from no = 0, the increase in σ̂ with no in Fig. 9
and Table II can be understood by noting that for MPPNs with
heterogeneous protein composition the polyhedral symmetry
must deform so as to accommodate proteins of different size.
For instance, the square faces of the snub cube in Fig. 8
containing a mixture of closed-state and open-state MscS
proteins are seen to deviate from a perfect square. We find
a maximum in σ̂ in Fig. 9 at no = 8. As already noted in
Sec. III B, no = 8 yields an MPPN configuration with four
deformed square faces of the snub cube forming a closed
loop, which “flattens” the polyhedron and increases the fit
error [Figs. 6 and 8(c)]. An analogous protein configuration
is obtained at no = 16 [Figs. 6 and 8(e)], which may explain
the large values of σ̂ found in our simulations in the vicinity
of no = 16. A (weak) local minimum occurs in Fig. 9 at
no = 12. As noted in Sec. III B, at no = 12 all square faces
of the snub cube are composed of two closed-state and two
open-state MscS proteins arranged in the same pattern [Figs. 6
and 8(d)], which may explain the relatively small value
of σ̂ at no = 12.

In addition to the dimensionless root-mean-square fit error
in Eq. (10), the BOO parameters Ql in Eq. (7) provide
a mathematical approach for quantifying MPPN symmetry.
In the case of the snub cube, the first two nonzero values
of the BOO parameters Ql occur at l = 4 and l = 6 (see
Sec. II D). In Figs. 10(a) and 10(b), we plot Q̂l in Eq. (9),
which corresponds to the relative difference between the
values of Ql associated with a (perfect) snub cube and the
minimum-energy MPPN configurations implied by the CP

FIG. 10. Relative difference in BOO parameters between a snub
cube and the MPPN configurations implied by the CP model, Q̂l ,
vs number of open-state MscS, no, at (a) order l = 4 and (b) order
l = 6 in Eq. (9). For each no, we show the range in Q̂l associated
with the ten lowest-energy MPPN configurations obtained in our
simulated annealing MC simulations, which all correspond to snub
cube symmetry. This range in Q̂l is indicated by bars, with the
red (light gray) data points showing the average Q̂l for the ten
lowest-energy MPPN configurations and the blue (dark gray) data
points showing the Q̂l associated with the minimum-energy MPPN
configurations. The plots in panels (a) and (b) are obtained from the
data for low-energy MPPN configurations also used in Fig. 9.

model, for 0 � no � 24 and l = 4 and l = 6, respectively.
The parameters Q̂4,6 do not depend on the chirality of the
snub cube. For completeness, we also show in Fig. 10 the
range in Q̂4,6 associated with the ten lowest-energy MPPN
configurations obtained, at each no, in our simulated annealing
MC simulations, as well as the corresponding average values
of Q̂4,6. With the definition of Q̂l in Eq. (9), smaller values of
Q̂l indicate a closer resemblance of the protein arrangement in
MPPNs to a snub cube. Consistent with the results in Fig. 9,
Fig. 10 shows local peaks at no = 8 and no = 16, as well as
a local minimum at no = 12. Similarly as for Fig. 9, these
features of Fig. 10 can be understood by noting that the protein
arrangements found for no = 8 and no = 16 correspond to
deformed square faces of the snub cube forming closed loops
[Figs. 6, 8(c), and 8(e)], while for no = 12 all square faces

022417-11



MA, LI, KAHRAMAN, AND HASELWANDTER PHYSICAL REVIEW E 101, 022417 (2020)

of the snub cube are occupied by two closed-state and two
open-state MscS proteins [Figs. 6 and 8(d)]. Note that the
Q̂4-versus-no curve in Fig. 10(a) shows two peaks at no = 8
and no = 16 of approximately equal height. In contrast, the
Q̂6-versus-no curve in Fig. 10(b) shows a more pronounced
peak at no = 8 than at no = 16. At a qualitative level, the Q̂6-
versus-no curve in Fig. 10(b) thus resembles the σ̂ -versus-no

curve in Fig. 9.

IV. SUMMARY AND CONCLUSIONS

We have used here computational modeling to explore
the symmetry of MPPNs with heterogeneous protein size.
Our computational modeling approach is closely related to
previous models describing the symmetry of viral capsids
[4,7,31,32]. Although, from an experimental perspective,
MPPNs and viral capsids are quite distinct—with proteins in
MPPNs being embedded in a lipid bilayer environment but
viral capsids being composed solely of proteins—our results
suggest that MPPN symmetry and viral capsid symmetry
are governed by similar physical principles [25]. Analogous
modeling approaches may also be applicable to other kinds
of systems forming polyhedral shells [1–5]. Motivated by
previous experimental studies of MPPNs [22,23], we have
focused here on MPPNs composed of 24 closed-state or
open-state MscS proteins [28–30]. However, our modeling
approach is easily generalized to other types of MPPNs.

An important distinction between previous studies of pro-
tein shells [1,4,5,7,31,32] and the model of MPPN symmetry
developed here is that, in the former case, a key question
concerns the symmetry of protein shells as a function of the
number of protein subunits. In contrast, a central question for
MPPNs is how the protein arrangement in MPPNs changes
after some proteins in MPPNs transition to a different confor-
mational state following, for instance, osmotic shock, while
leaving the membrane intact [22,23]. We have therefore fo-
cused here on MPPNs containing a fixed number of proteins.
In the spirit of previous work on the symmetry of closed
protein shells [4,7,31,32], we have employed highly idealized
models of MPPN symmetry. Our modeling approach could be
extended in various ways to allow more detailed predictions.
For instance, we assumed here similar interactions between
closed-state and open-state MscS proteins, with the only
difference in their interaction potentials stemming from the
distinct sizes of closed-state and open-state MscS proteins
[28–30]. In general, different conformational states of a given
membrane protein or distinct kinds of membrane proteins may
show distinct interactions in MPPNs. Furthermore, we as-
sumed here that the particles representing membrane proteins
(and lipids) are confined to the surface of a sphere. While
this assumption is justified for the observed MPPNs formed
from MscS proteins [22,23], it may not hold in general. For
instance, for large enough protein numbers MPPNs may, in
analogy to protein shells [50,51], buckle into faceted shapes.

A key outcome of our study is that MPPNs with het-
erogeneous protein size can be highly symmetric, with a

well-defined polyhedral (snub cube) ordering of membrane
proteins of different sizes. MPPNs have been proposed [22]
as a means for the structural analysis of membrane proteins
in the presence of physiologically relevant transmembrane
gradients. Such transmembrane gradients are expected to
result in heterogeneous protein size, with different proteins
being trapped in different conformational states, while leaving
the membrane intact. Our finding that MPPNs with hetero-
geneous protein size can be highly symmetric suggests that
it may be feasible to utilize MPPNs for structural studies
[22,52] even if not all membrane proteins in MPPNs are
trapped in the same conformational state. In particular, for
MPPNs formed from 24 MscS proteins [22,23], we predict
that the first eight gated (open-state) MscS proteins form
a closed zigzag loop, resulting in two square faces of the
snub cube that are devoid of any open-state MscS proteins
(Figs. 6–8). For more than eight open-state MscS proteins,
these two square faces are gradually filled with open-state
MscS proteins until, for twelve open-state MscS proteins, all
square faces of the snub are occupied by two open-state MscS
proteins located diagonally across the square faces of the snub
cube. As the number of open-state MscS proteins is increased
further, the square faces of the snub cube that connect—via
bonds between open-state MscS proteins—the square faces of
the snub cube that were not part of the original closed zigzag
loop of open-state MscS proteins are filled with open-state
MscS proteins until, for more than sixteen open-state MscS
proteins, the remaining vertices of the snub cube are populated
by open-state MscS proteins.

In addition to their potential use for structural studies,
MPPNs have also been proposed as a potential vehicle for
targeted drug delivery with precisely controlled release mech-
anisms [22]. To this end, it is desirable to arrive at a quan-
titative understanding of the physical mechanisms governing
MPPN self-assembly, shape, and stability for arbitrary pro-
tein compositions. The self-assembly, symmetry, and size of
MPPNs with homogeneous protein composition [22,23] can
be understood based on a simple mean-field model combin-
ing protein-induced lipid bilayer deformations, topological
defects in protein packing, and thermal effects [25,26]. This
mean-field approach cannot be directly applied to MPPNs
with heterogeneous protein composition, because in MPPNs
with heterogeneous protein composition not all proteins are
equivalent. However, the well-defined and regular protein ar-
rangements in MPPNs with heterogeneous protein size found
here suggest that it may be practicable to generalize the
theory of MPPNs [25,26] to allow for heterogeneous protein
compositions. Such a generalized theory of MPPNs may allow
prediction of how MPPN self-assembly must be directed to
produce MPPNs with given release mechanisms [22].
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