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The formation of protein patterns inside cells is generically described by reaction-diffusion models. The
study of such systems goes back to Turing, who showed how patterns can emerge from a homogenous steady
state when two reactive components have different diffusivities (e.g., membrane-bound and cytosolic states).
However, in nature, systems typically develop in a heterogeneous environment, where upstream protein patterns
affect the formation of protein patterns downstream. Examples for this are the polarization of Cdc42 adjacent
to the previous bud site in budding yeast and the formation of an actin-recruiter ring that forms around a
PIP3 domain in macropinocytosis. This suggests that previously established protein patterns can serve as a
template for downstream proteins and that these downstream proteins can “sense” the edge of the template. A
mechanism for how this edge sensing may work remains elusive. Here we demonstrate and analyze a generic
and robust edge-sensing mechanism, based on a two-component mass-conserving reaction-diffusion (McRD)
model. Our analysis is rooted in a recently developed theoretical framework for McRD systems, termed local
equilibria theory. We extend this framework to capture the spatially heterogeneous reaction kinetics due to the
template. This enables us to graphically construct the stationary patterns in the phase space of the reaction
kinetics. Furthermore, we show that the protein template can trigger a regional mass-redistribution instability
near the template edge, leading to the accumulation of protein mass, which eventually results in a stationary
peak at the template edge. We show that simple geometric criteria on the reactive nullcline’s shape predict when
this edge-sensing mechanism is operational. Thus, our results provide guidance for future studies of biological
systems and for the design of synthetic pattern forming systems.
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I. INTRODUCTION

A. Background and motivation

Many cellular processes, such as cell division and cell
motility, rely crucially on the localization of proteins in space
and time. Strikingly, these protein localization patterns can
emerge from the collective coordination of transport and local
molecular interactions of proteins. Diffusion in the cytosol is
a simple means of protein transport that accounts for many
self-organization processes [1]. To analyze how the interplay
of diffusive protein transport and protein-protein interactions
on a nanometer scale influences the protein patterns on
the cellular scale, mass-conserving reaction-diffusion models
have proven useful [2–18]. The study of reaction-diffusion
systems in general goes back to Turing [19], who showed
how patterns can emerge from a homogenous steady state
when two reactive components have different diffusivities.
In cells, differential diffusivities are generic because many
proteins have membrane-bound and cytosolic states, where
diffusion on the membrane is orders of magnitude slower than
in the cytoplasm. Turing’s pioneering work [19] has led to
vast advances in the field on how protein patterns arise from
homogeneous (initial) steady states on spatially homogeneous
domains. However, as Turing already pointed out [19], “most
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of an organism, most of the time, is developing from one
pattern into another, rather than from homogeneity into a
pattern.”

For example, previously formed protein patterns can con-
trol pattern formation of proteins downstream by affecting
their local interactions, such that the upstream pattern acts
as a spatial template for the downstream proteins. A bio-
logical system where such “templating” has been suggested
is macropinocytosis [20]. Here, a high density domain of
PIP3 (a charged phospholipid) and a Ras-GTPase1 have been
suggested to serve as a template for a ring of actin recruiters
(SCAR complex, Arp2/3), that forms around the PIP3 domain
edge [21]. Recruitment of an actomyosin ring, controlled by
GTPases, is also key for single-cell wound healing. Following
the rupture of the cell wall, two GTPases—Abr and Cdc42—
are recruited to the wound edge, where they organize into two
concentric rings of high protein concentration [22]. Cdc42 in
turn recruits actomyosin which contracts to close the wound
and repair the underlying cytoskeleton. Mutations of Abr,
which forms the inner ring, leads to a loss of the outside
Cdc42 ring, suggesting hierarchical interaction between Abr
and Cdc42 [22]. Thus, the inner Abr-ring may be pictured
as a template for the outer Cdc42-ring. Yet another example

1GTPases are hydrolase enzymes that can bind and hydrolyze
guanosine triphosphate (GTP). Ras is a subfamily of small GTPases.
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where protein patterns act as a spatial template, can be found
during cell division in budding yeast. Here, landmark proteins
direct the polarization of the GTPase Cdc42, such that the
Cdc42 cluster emerges either adjacent to the previous bud
site, or at the opposite cell pole, depending on the cell-type
[23]. Various mutations or deletions of individual landmark
proteins lead to Cdc42 clusters right on top of the previous
bud site or at a random position [24–26]. Hence, the landmark
proteins may be pictured as a template that controls Cdc42
pattern formation. Common to all the above examples is
that the downstream proteins localize at the edge of some
template. Both the specific (molecular) mechanisms, and
the general principles underlying this “edge sensing” remain
elusive.

Here, we present a pattern-forming mechanism capable
of robust edge sensing and provide criteria for its operation
based on simple geometric relations in the phase space of
the reaction kinetics. To find these criteria, we use a re-
cently developed framework, termed local equilibria theory
which enables us to gain insight into the dynamics of mass-
conserving reaction-diffusion (McRD) systems [27,28]. We
briefly review the key elements of the local equilibria theory
for a paradigmatic model for cell polarization in Sec. I B. We
then introduce a step-like template that imposes heterogeneity
in the reaction kinetics, and generalize the framework to study
the dynamics of such systems. This enables us to explain why
and under which conditions a density peak forms at the edge
of the template. Thus, our results may provide guidance for
the design of patterns in synthetic systems and may help to
identify molecular mechanisms underlying edge-sensing in
biological systems.

B. Local equilibria theory

We consider the dynamics of one protein species on a
one-dimensional domain of length L, as in Ref. [28]. The
proteins can cycle between a membrane-bound state [concen-
tration m(x, t )] and a cytosolic state [concentration c(x, t )],
with diffusion constants Dm and Dc, respectively. In cells, the
diffusion constants of membrane-bound proteins and cytosolic
proteins are typically widely different, such that Dm � Dc.
The reaction-diffusion equations for the membrane density m
and the cytosolic density c read

∂t m(x, t ) = Dm∂2
x m + f (m, c), (1a)

∂t c(x, t ) = Dc∂
2
x c − f (m, c), (1b)

where the reaction term f (m, c) describes the attachment–
detachment dynamics of the proteins. Specific examples of
such systems exhibiting self-organized pattern formation can
be found in Refs. [4,6,7,17]. At the boundaries, we impose
no-flux conditions Dc∂xc|0,L = Dm∂xm|0,L = 0. The dynamics
conserves total protein density

n̄ = 1

L

∫ L

0
dx n(x, t ), (2)

with the local total density n(x, t ) = m(x, t ) + c(x, t ).
To characterize the dynamics and steady states of McRD

systems, we recently introduced a framework, termed local
equilibria theory [27,28]. This theory proposes to analyze

spatially extended systems as a collection of small diffusively
coupled compartments. The local reaction kinetics inside each
of the compartments, then serves a proxy for the spatially
extended dynamics, enabling a quantitative phase portrait
analysis of the spatially extended system in the phase space
of reaction kinetics [28]. In the following we briefly re-
view the key results of local equilibria theory for the two-
component McRD system and generalize this framework to
analyze pattern formation in the presence of a spatial tem-
plate. For a comprehensive analysis of the two-component
McRD system on a homogeneous domain, we refer to
Ref. [28].

The reaction kinetics of McRD systems conserves total
protein mass, which implies that the reactive flow must point
along the reactive phase spaces n = c + m, indicated by the
gray lines in Fig. 1(a). The reactive flow vanishes along the
reactive nullcline (NC), given by f (m, c) = 0. Intersections
of the reactive nullcline with reactive phase spaces, given by
the total density (mass) n, determine the reactive equilibria
[m∗(n), c∗(n)] shown as black dots in Fig. 1(a). Hence, the
shape of the nullcline encodes how the reactive equilibria
move when total density n is changed, highlighting that the to-
tal density n is a control parameter for the reaction dynamics.
Within each reactive phase space, the flow is directed toward
a stable reactive equilibrium, as illustrated by the red arrows
in Fig. 1(a).

In a spatially extended system, the total density n(x, t ) =
m(x, t ) + c(x, t ) is generically inhomogeneous, and its dy-
namics is driven by diffusion, as can be seen by adding
Eqs. (1a) and (1b),

∂t n(x, t ) = Dc∂
2
x η(x, t ), (3)

where we introduced the mass-redistribution potential, de-
fined as [28]

η(x, t ) := c(x, t ) + Dm

Dc
m(x, t ). (4)

To study the interplay of local reactions and diffusive mass-
transport in spatially extended systems, local equilibria theory
proposes to analyze such systems as a collection of diffusively
coupled compartments. These notional compartments are cho-
sen small enough that each of them can be regarded as well-
mixed. Thus, local dynamics within each compartment can be
characterized in the ODE phase space of reactions which is
determined by the density n(x, t ) within that compartment.
In this characterization, the local (reactive) equilibria and
their stability in each local phase space serve as proxies for
the reactive dynamics in each compartment. This becomes
clear when one imagines the compartments as isolated, for
a given total density profile n(x). Then each compartment
will approach a stable local equilibrium, parametrized by
the local density n(x). In the spatially coupled system, the
total density n(x, t ) is diffusively redistributed due to con-
centration gradients between the compartments [cf. Eq. (3)].
Consequently, the local equilibria shift and their stability
may change [1,28]. This interplay between shifting local
equilibria and mass transport is at the core of local equilibria
theory.

In the remainder of this section, we recapitulate two key
results from the phase-portrait analysis of two-component
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FIG. 1. Illustration of the phase-space geometric analysis for two-component McRD systems. (a) The reactive equilibria (black dots) are
given by the intersections between the reactive subspaces m + c = n (gray lines) and the reactive nullcline f = 0 (black line) in the (m, c)-phase
space. Hence, the reactive nullcline encodes the qualitative structure of the reactive flow as illustrated by the red arrows. (b) Sketch of the
membrane profile of a mesa pattern composed of a high- and low-density domains, m+ and m−, connected by a diffusive interface around
the inflection point x0. (c) Flux-balance construction of the mesa pattern in phase space. The intersections of the flux-balance subspace (FBS)
(purple dashed line) and the reactive nullcline yield the concentrations at the plateaus m± and the inflection point m0. The balance of net
reactive flows in the system (red arrows) determines the FBS-offset η0. In the regime where the slope of the reactive nullcline is steeper than
the slope of the FBS, an homogenous steady state is laterally unstable. (d) Linearization of the dynamics in the vicinity of the homogeneous
steady state, yields a dispersion relation for growth rates of the eigenfunctions (Fourier modes indexed by wave number q). The fastest growing
mode, qc, dominates the length scale of the initial dynamics.

McRD systems [28]. We will later generalize this analysis to
systems on a spatially heterogeneous domain.

Flux-balance construction. From the dynamics of the total
mass Eqs. (3)–(4) it follows that, for any stationary pattern
[denoted by m̃(x), c̃(x)], η̃(x) must be constant in space on a
domain with no-flux (or periodic) boundary conditions [28]:

η0 = c̃(x) + Dm

Dc
m̃(x) = const. (5)

This relationship defines a linear subspace, termed flux-
balance subspace (FBS), of the (m, c)-phase space of reaction
kinetics [purple dashed line in Fig. 1(c)]. Any stationary
pattern must be embedded in a single FBS. This reflects that,
in steady state, the diffusive fluxes in m and c are balanced
against each other such that there is no net transport of mass.

We can use this condition, Eq. (5), to geometrically con-
struct the steady-state density profile in the (m, c)-phase space
and from that estimate the real space density profile. The key
insight is that we can approximate the concentrations at the
plateaus, and the inflection point of the pattern by the local
equilibria at the FBS-NC intersections [see Fig. 1(b)]. We
denote these intersection points by m−, m0, and m+, where m±
correspond to the concentrations at the plateaus and m0 to the
concentration at the inflection point of the pattern [Figs. 1(b)
and 1(c)]. Thus, the FBS-offset, η0, fully determines these
concentrations.

To determine the FBS-offset, η0, one uses that in steady
state the net reactive flow within the whole system must be

balanced2: ∫ m+(η0 )

m−(η0 )
dm f

(
m, η0 − Dm

Dc
m

)
= 0, (6)

where the plateau concentrations far away from the interface
are approximated by the FBS-NC intersections m±(η0). This
total turnover balance condition implicitly determines the
FBS-offset η0. Note that on a large domain (much larger than
the interface width, where the approximation m(0, L) ≈ m±
holds), total turnover Eq. (6), and hence η0, depends only on
the function f and the ratio of the diffusion constants. This
implies that η0 is not dependent on the average mass n̄ in this
approximation.

We will show next that the average mass n̄ determines the
relative size of the low- and high-density regions and with that
the position of the pattern’s interface. This interface is marked
by the position of the inflection point x0 of the pattern profile.
For a domain size much larger than the interface width, we
can neglect the finite width of the interface region, such that
the average mass can be approximated by

L n̄ ≈ x0 n−(η0) + (L − x0) n+(η0). (7)

Conversely, x0 can be determined for a given n̄. Thus, this geo-
metric construction, termed flux-balance construction, shows

2Note that before integration, Eq. (1a) is multiplied with ∂xm̃(x)
as a mathematical trick to substitute the integral over space by an
integral over m.
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that significant features of the steady-state profile are deter-
mined by the shape of the nullcline.

Mass-redistribution instability. In addition to the construc-
tion of stationary patterns, it was shown in Ref. [28] that the
nullcline shape determines the stability of a homogeneous
steady state, and that the mechanism underlying lateral (“Tur-
ing”) instability is a mass-redistribution cascade. Specifically,
it was found that a homogenous steady state is laterally
unstable when the slope of the nullcline χ (n̄) := ∂mc∗|n̄ is
steeper than the slope of the FBS (see Sec. II D1 in Ref. [28]
for a derivation),

χ (n̄) < −Dm

Dc
, (8)

which, using the mass-redistribution potential, Eq. (4), is
equivalent to ∂nη

∗ < 0. If this condition is fulfilled, then high-
density regions act as cytosolic sinks, leading to further ac-
cumulation of mass and hence a mass-redistribution cascade.
This motivates the corresponding name mass-redistribution
instability.

Starting from a homogeneous steady state with a small
random perturbation, the initial dynamics is dominated by
the fastest growing eigenfunction of the linearized dynamics.
At the onset of this instability there is a dominant eigen-
function that determines the initial dynamics of the system.
We can find this dominant eigenfunction by linearizing the
system around its homogenous steady state (linear stability
analysis). For a homogenous steady state, these eigenfunction
are Fourier modes and their growth rates are given by the
dispersion relation, shown as inset in Fig. 1(d). Due to mass-
conservation, the real part of the growth rate goes to zero
at q = 0, corresponding to a type II dispersion relation in
the classification by Cross and Hohenberg [29]. The fastest
growing mode, qc, determines the length scale of the initially
growing pattern as illustrated in Fig. 1(d). Subsequently the
pattern coarsens into a single peak [6,7,30,31].

C. Pattern formation with a steplike template

A common feature of the biological examples we discussed
in Sec. I A is that the templates have a sharp edge, and that a
downstream protein pattern localizes to this edge. To obtain
a conceptual understanding of how such an edge-sensing
mechanism might work, we study how an idealized steplike
template affects the pattern formation of the two-component
McRD model as a paradigmatic example.

We consider a steplike template profile θ (x) with a sharp
edge at xE,

θ (x) :=
{
θA x � xE
θB x > xE

, (9)

as illustrated in Fig. 2(a). Such a template defines two spatial
subdomains (labeled A and B). Here, we consider a template
that couples to the downstream pattern forming system via
the local reactions f (m, c; θ (x), such that different reactive
dynamics

fA,B(m, c) := f (m, c; θA,B), (10)

govern the system in the two subdomains [see Fig. 2(b)].

Subdomain A Subdomain B

membrane

cytosol

(a)

(b)

(c)

(d)

Steplike template

Subdomain phase-portraits

Combined phase-portrait

FIG. 2. Illustration of a step-like template (a) that acts on the
reaction kinetics defines two subdomains, labeled A and B, with
respective reaction kinetics fA and fB. (b) We consider a two-
component system describing, for example, a single protein species
that cycles between a membrane bound and a cytosolic state. (c) The
reactive flow due to the reaction kinetics can be visualized in the
(m, c)-phase space of concentrations. Due to mass-conservation, the
flow points along the reactive phase spaces m + c = n (indicated by
gray lines). Along the nullclines fA,B, the flow vanishes. Therefore,
the reactive flow in each subdomain is qualitatively captured by the
shape of the respective nullcline. (d) With the reactive flow encoded
by the nullclines, the phase portraits of the two subdomains can
be combined (“overlaid”) into a single phase space. This combined
phase space will be used for the construction of stationary states.

Pattern forming systems with a steplike (also called “jump-
type”) heterogeneity have a rich history in the mathematical
literature (see, e.g., Refs. [32–41]), where they have been
studied in the context of front-pinning [39], pulse localization
[40], and wave-number selection [41], to name a few recent
examples. These studies predominantly focused on excitable
media and the models studied are not mass-conserving. Fur-
thermore, the prevalent methods employed in these studies
are singular perturbation theory (Refs. [42,43] may serve
as general introductions) and normal form theory (see, e.g.,
Ref. [44]). The former method uses matched asymptotics and
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Montonic turnover

FIG. 3. Illustration of the construction of monotonic steady states (heterogeneous base states) in (m, c)-phase space. (a) Density profile
with the inflection point at the template edge xE. (b) Phase space including the reactive nullclines of subdomain A (orange) and B (blue) with
the corresponding density distribution (thick orange and blue line). (c) Total turnover as a function of the membrane density at the template
edge mE. Total turnover balance determines the steady-state value m∗

E. (d) Density profile for a case where the inflection point of the profile,
x0, lies within subdomain A, that is, when m0

A > mB as illustrated in the corresponding phase space representation (e). (f) In this case, the
total turnover becomes a nonmonotonic function of mE, such that total turnover balance may have multiple solutions, or no solution at all.
These different cases are sketched here for different average global total densities n̄. (g) Bifurcation diagram of the base state, showing the
saddle-node bifurcation due to breakdown of total-turnover balance. In the region beyond the saddle-node bifurcation (shaded in gray) no
monotonic base state exists. Note that monotonicity enforces m∗

E − mB < 0 here.

is based on a separation of spatial scales; the latter applies in
the vicinity of a bifurcation.

Here, we choose a conceptually different approach build-
ing on the recently developed local equilibria theory [27,28],
specifically the phase-portrait analysis outlined in Sec. I B and
introduced in detail in Ref. [28]. Our starting point is to use
the reactive nullclines of the two subdomains as proxies for
the respective reactive flows [Fig. 2(c)]. For this purpose, we
combine the phase portraits of the subdomains into a single
phase portrait as shown in Fig. 2(d). This “overlaying” of the
phase portraits facilitates a geometric analysis of the system
with a steplike template based on the approach presented
previously for the two-component system on a homogeneous
domain [28] (see recap in Sec. I B). Throughout the paper
we will use nullcline shapes as illustrated in Fig. 2(d) (see
Appendix A for the specific equations and parameters). A
different nullcline “arrangement,” and the general role of the
nullcline shapes are discussed in Appendix B.

The remainder of the paper is structured as follows. In
Sec. II A, we first analyze steady states with a monotonic
density profile and show how these states can be determined
via a flux-balance construction in the (m, c)-phase portrait. In
Sec. II B, we extend the flux-balance construction to also ob-
tain the nonmonotonic steady states of the system. In Sec. II C,
we introduce the concept of regional instability to understand
the transition from monotonic to nonmonotonic steady states.
Finally, in Sec. III, we analyze how the peak responds to a
moving template edge and show that this can lead to depinning

or suppression of the peak when the template edge moves
sufficiently fast.

II. CONSTRUCTION OF STEADY STATES
AND THEIR BIFURCATIONS

The goal of this section is to characterize the steady states
of the two-component McRD system with a steplike template.
These systems generically do not exhibit spatially homoge-
nous states. Nonhomogeneous steady states can be catego-
rized based on the monotonicity of their density profiles.
We first briefly summarize the main results of this section.
In Sec. II A, we characterize the monotonic steady states,
which consist of two plateaus connected by a monotonic
interface at the template edge xE, as shown in Fig. 3(a). We
call these monotonic steady states the (spatially) heterogenous
base-states. We will show that these base states only exist
for low or high total mass. Starting from the low-mass base
state and increasing the total mass n̄, we find that the base
state disappears through a saddle node bifurcation. In the sub-
sequent intermediate-mass regime, the steady states are non-
monotonic which are the self-organized patterns of the sys-
tem. In Sec. II B we show that the stable stationary patterns
(i.e., nonmonotonic steady states) exhibit a single density peak
either at the system boundary or at the template edge. The
transition between the monotonic base states to the nonmono-
tonic patterns arises from a lateral instability localized at the
template edge, which we call a regional instability. Via nu-
merical simulations we show that from this instability a peak
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at the template edge emerges (“edge sensing”). Importantly,
we find a simple geometric criterion for edge sensing: The
reactive nullclines of the two subdomains have to intersect at a
point where only one of them has negative slope, as illustrated
in Fig. 2(d). Note that we restrict our construction to the
nullcline shapes shown in Fig. 2(d) here. Generalizations to
other arrangements follow the same principles and can be
worked out analogously.

A. Monotonic steady states (base states)

In steady state, the net diffusive flux that redistributes mass
must vanish and reactive flows in m and c must be balanced.
This balance is encoded in the constraint that a stationary
pattern’s phase space distribution must be embedded in a flux-
balance subspace [cf. Eq. (5)]. This constraint is independent
of the local reactions, and, hence, also holds when the local
reaction are heterogeneous due to a template [purple dotted
line in Fig. 3(b)].

Analogously to the construction of mesa patterns in
Sec. I B, we can graphically construct the steady-state density
profile in real space, as illustrated in Figs. 3(b) and 3(e). To
that end, we approximate the density profile at the plateaus—
where diffusive fluxes cancel everywhere—by the concentra-
tion at the FBS-NC intersections, such that the concentration
at the plateaus is fully determined by the FBS-offset, η0.
Let us denote the membrane concentration at the FBS-NC
intersections as m−

A (η0), m0
A(η0), and m+

A (η0) for subdomain
A (orange nullcline) and as mB(η0) for subdomain B (blue
nullcline). For specificity, we consider in the following a base
state that approaches the plateaus m−

A and mB far away from
the template edge. An analogous construction can be made for
a monotonic state that connects m+

A and mB.3

The conservation of average total density n̄ enforces a
constraint on the construction of the base state. This constraint
can be used to estimate η0 from the average total density n̄. For
a domain much larger than the profile interface, the interface
region can be neglected and the average total density can be
approximated by the weighted average of the plateau densities
in the two subdomains,

n̄ ≈ xE n−
A (η0) + (L − xE) nB(η0), (11)

with n−
A and nB the total density at the plateaus in sub-

system A and B, respectively. This determines an implicit,
approximate relation between the control parameter n̄ and the
FBS-offset η0.

Upon changing n̄, the plateau concentrations of the density
profile must change, and hence, η0 must shift [cf. Eq. (11)].
For the laterally stable plateaus, the nullcline slope at the
corresponding FBS-NC intersections (m−

A and mB) is larger
than the FBS-slope [∂nη

∗
A,B(n) > 0, cf. NC-slope criterion

Eq. (8)]. Hence, the relationship η0(n̄) must be monotonically
increasing for stable base states, as one sees by taking the

3Furthermore, note that we ignore potential intersection points of
FBS and B-nullcline at higher masses. In this regime, subdomain B
will also exhibit lateral instability. Here, we restrict ourselves to the
regime where only subdomain A becomes laterally unstable.

derivative of Eq. (11) w.r.t. η0, and using that monotonicity
of a function implies monotonicity of its inverse.

Note that, even though the base state looks similar to a
mesa pattern in a system on a homogeneous domain, the
relationship between η0 and n̄ makes a key difference between
the two cases. As we discussed in the introduction (Sec. I B),
in a system on a homogeneous domain, changing n̄ does
not affect η0 in a system much larger than the interface
width, but instead shifts the pattern interface [cf. Eq. (7)].
In contrast, the interface position of a heterogeneous base
state is determined by the position of the template edge xE.
Hence, to accommodate a given average mass n̄ the plateau
concentrations n−

A (η0) and nB(η0), determined by FBS-NC
intersection points, must adapt [cf. Eq. (11)]. Thus, η0 of a
heterogeneous base state depends directly on n̄.

So far we have estimated the concentration at the two
plateaus of the monotonic steady-state profile. To determine
how these two plateaus are connected at the template edge
position xE, we use the condition that in steady state the total
reactive turnover in the system must vanish. In the vicinity of
the template edge at xE, the concentrations deviate from the
local equilibria, such that there are reactive flows [illustrated
by red arrows in Fig. 3(b)]. Since the template introduces two
subdomains with different reaction kinetics, the total reactive
turnover in a system with a template is given by the sum over
the turnover in the two subdomains,

F (mE; η0) = FA(mE; η0) + FB(mE; η0)

=
∫ mE

m−
A

dm fA

(
m, η0 − Dm

Dc
m

)
+

∫ mB

mE

dm fB

(
m, η0 − Dm

Dc
m

)
, (12)

where mE is the membrane concentration at the template edge.
In steady state, the total turnover F (mE; η0) must vanish such
that all reactive flows in the system balance. Thus, the solution
of F (m∗

E; η0) = 0 [see Fig. 3(c)] determines the steady-state
concentration at the template edge m̃(xE) = m∗

E. Note that, due
to monotonicity, η0 and m∗

E uniquely identify a base state of a
given system.

For small enough n̄, the second FBS-NC intersection m0
A

for the A-nullcline is larger than the FBS-NC intersection for
the B-nullcline mB as illustrated in Fig. 3(b). In this case,
both summands of Eq. (12) are monotonic in mE ∈ [m−

A , mB]
because the reactive flow does not change sign within either
subdomain, i.e., the inflection point of the profile coincides
with the template edge. Hence, there is only a single solution
m∗

E that fulfills total turnover balance. For larger n̄ [and thus
η0, cf. Eq. (11)], m0

A can become smaller than mB, as illus-
trated in the sketch in Figs. 3(d) and 3(e). This entails that the
position where the reactive flows change sign (i.e., inflection
point) lies in subdomain A [see Figs. 3(d) and 3(e)]. Thus,
FA(mE; η0), and thereby also the total turnover F as a function
of mE becomes nonmonotonic and may thus have multiple
roots. Indeed, for increasing n̄, our flux-balance construction
predicts three different regimes: (i) A regime where there is
one solution in the interval [m−

A , mB], (ii) a regime with two
solutions, and (iii) a regime with no solution [as illustrated
in the sketch in Fig. 3(f)]. In the last regime, total turnover
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balance becomes impossible for a monotonic steady state
(base state). In Sec. II B, we will see how total turnover
balance can be reached in this regime by a nonmonotonic
steady state.

The roots of F correspond to different base states which
we characterize by the amplitude of the density profile in
Subdomain B, m∗

E − mB; see Fig. 3(g). For monotonic states
(i.e., base states), m∗

E − mB is negative.4 At the transition from
regime (ii) to (iii), the base state undergoes a saddle-node
bifurcation at n̄SN. From the flux-balance construction and
total turnover balance, we can estimate the position of this bi-
furcation. At the saddle-node bifurcation point, the minimum
of F coincides with the root of F . From Eq. (12) it follows that
F reaches its minimum at fA(mmin, η) = fB(mmin, η). Thus,
this condition, together with F (mmin; ηSN) = 0 implicitly de-
termines the value of ηSN at the saddle-node bifurcation. From
this we can then estimate n̄SN via Eq. (11).

To test this approximate construction of steady states,
we use specific reaction terms fA and fB as specified in
Appendix A and compare the steady-state profiles obtained
from the flux-construction to the profiles obtained from nu-
merical continuation (see Appendix E for a short description
of numerical continuation and the comparison of steady states.
A more detailed explanation of continuation methods can be
found in Ref. [45]). We find that the flux-balance construction
gives a estimate of the steady-state profiles for sufficiently
large system sizes (see Appendix E).

As we noted above, there is also a family of base states
which connects a plateau at m+

A (instead of m−
A ) in subdomain

A to mB in subdomain B. These base states have a high
average mass, and we will refer to them as “high-mass” base
states. Following the same arguments as above, we find that
these base states undergo a saddle-node bifurcation when the
average total mass is decreased below a critical average mass,
analogously to the saddle-node bifurcation of “low-mass”
base states discussed in this section.

In summary, we have shown how to find monotonic steady
states (base states) with a flux-balance construction. Notably,
we found that for a range of total mass n̄, this flux-balance
construction has no solution, and hence, there exist no mono-
tonic steady states. In this regime, the steady states must be
nonmonotonic. We next study these nonmonontonic steady
states, which we refer to as patterns.

B. Nonmonotonic steady states (patterns)

To gain some intuition about the structure of the stationary
patterns, we first calculate them numerically as a function of
the average total density n̄ using numerical continuation5 for
a specific choice of the reaction term f (m, c; θ ) specified in
Appendix A. The resulting one-parameter bifurcation struc-
ture shows that the system exhibits two stable patterns, one
with a peak (high density region) at the template edge and
one with a peak at the system boundary, respectively [see

4Note that for high-mass base states, monotonicity enforces m∗
E −

mB > 0, in the case of a nullcline arrangement as shown in Fig. 2.
5See Appendix E for a brief description of the core idea behind nu-

merical continuation. An excellent overview is provided in Ref. [45].

Fig. 4(a)]. In the bifurcation structure, the branches of stable
patterns are connected to the base states via an unstable steady
states (green dashed branches in the bifurcation structure in
Fig. 4(a), see also Fig. 12 in Appendix E). Between the two
branches of stable patterns, there is a cascade of unstable
patterns (numbered 1–6 in Fig. 4(a); see Fig. 13 in Appendix E
for representative density profiles). The instability of these
patterns that have multiple interfaces within subdomain A
can heuristically be understood as a coarsening process due
to a competition for total density, similarly as in a system
on a homogeneous domain [6,7,30,31]. Some more tech-
nical aspects of this bifurcation structure are discussed in
Appendix E.

Can we use the flux-balance construction to construct
nonmonotonic steady states as well? At the extrema of any
stationary pattern in a two-component McRD system, the
gradients (and hence diffusive flux) in both membrane and cy-
tosol concentration vanish simultaneously [cf. diffusive flux-
balance Eq. (5)]. This allows us to place notional reflective
boundaries at extrema, effectively splitting the nonmonotonic
profile into monotonic segments. Thus, we can use the flux-
balance construction as described in Sec. II A to construct the
steady states in the two segments separately, with the addi-
tional constraint of continuity at the boundaries connecting
the segments.

The stable patterns in the two-component McRD system
with a step-like template have only a single peak, and hence
only a single extremum within the domain that splits the
system into two segments [labeled I and II; see Figs. 4(b)
and 4(c)]. Segment I is fully embedded in subdomain A,
i.e., it is a system on a homogeneous (sub)domain. Hence,
for sufficiently large domain size, its steady state is a mesa
pattern6 as introduced in Sec. I B. The orientation of the mesa
pattern in segment I determines whether the density peak is
located at the left domain boundary or at the template edge.
Segment II contains the template edge, such that the steady
state in segment II is a heterogeneous base state.

By continuity, the FBS-offset η0 must be identical in both
segments. Recall that for a mesa pattern, η0 is determined by
total turnover balance, and independent of the average mass
and domain size in the large domain size limit (see Sec. I B
and Ref. [28]). We can thus find η0 solely by total-turnover
balance in segment I, without specifying the position of the
boundary between the segments, and without specifying the
average masses in the two segments, respectively. Instead,
given η0, we find the average mass in segment II, n̄II, via
Eq. (11), which depends on the choice for the orientation of
the mesa pattern in segment I. In segment II, subdomain B
plays the role of a mass-reservoir that absorbs a fraction of the
total average mass and thus reduces the mass available to the
mesa pattern in segment I, n̄I = n̄ − n̄II. Finally, n̄I determines
the position of the mesa pattern’s interface in segment I via
Eq. (7). Similarly, we can construct the (unstable) patterns

6In the vicinity of the saddle-node bifurcations of these patterns,
segment I exhibits a peak pattern instead of a mesa pattern. To obtain
an approximation for this case, one would need to generalize the peak
approximation as discussed in Ref. [28].
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FIG. 4. Bifurcation structure and phase space construction of stationary patterns. (a) Bifurcation structure of stationary states for the
average mass, n̄, obtained by numerical continuation, together with spatial profiles for the stable steady states (monotonic base states and
nonmonotonic patterns). In the area shaded in gray, no monotonic base states exist. Solid (dashed) lines indicate stable (unstable) branches. The
unstable branches in the central region, marked by numbers 1–6 correspond to unstable patterns with multiple inflection points in subdomain A
(see Fig. 13 in Appendix E). The instability of these patterns is related to coarsening, which is generically exhibited by two-component McRD
systems on a homogeneous domain [6,7,30,31]. (b), (c) Sketches of stable, nonmonotonic, stationary patterns together with the corresponding
phase space constructions. At the density profile’s extremum, marked by the dash dotted vertical line, there are no gradients (∂xm̃ = 0 = ∂x c̃),
such that a notional no-flux boundary can be introduced. Thus, the resulting two segments (labeled I and II), can now be studied separately. In
the phase portraits, the density distributions of the two segments connect at the extremal concentrations m−

A and m+
A , in (a) and (b), respectively.

They are shown slightly offset from the FBS (dashed purple line) for visual clarity. The true density distribution must of course be embedded
in a single FBS to fulfill diffusive flux-balance. Parameters for the bifurcation diagram: Dm = 0.01, Dc = 0.5, k̂fb = 0.25, k̂off = 4, θB = 20,
θA = 2, L = 10, xE = 5.

with multiple peaks by splitting the system into more than two
segments.

We conclude that the flux-balance construction fully char-
acterizes the stationary patterns of the system with a steplike
template. These steady states exhibit density peaks similar to
a system on a homogeneous domain, however, the position of
the density peak depends on the template edge position.

We next ask which of the two stable patterns emerges
as the base state ceases to exist. To that end, we use finite
element simulations and adiabatically increase the total aver-
age density in a system such that it passes through the base-
state bifurcation (Supplemental Material Movie 1 [46]). The
system evolves into a pattern with a peak at the template edge
[corresponding to the upper branch in Fig. 4(a)]. Upon further
increase of n̄ the peak widens and eventually transitions into a
mesa pattern at the template edge. The right-hand interface of
the mesa patter remains localized at the template edge while
the left-hand interface moves into subdomain A to accom-
modate the additional mass [cf. Eq. (7)]. Eventually for even
larger n̄, the mesa pattern ceases to exist as its interface hits
the left boundary of the domain. The system then transitions to
the “high-mass” base state which connects the FBS-NC inter-
section points m+

A and mB. Going backwards by adiabatically
decreasing n̄, the system passes through the “high-mass” base
state’s saddle-node bifurcation. The corresponding regional
instability leads to the formation of a trough, rather than a
peak, at the template edge. The resulting stationary pattern

has a minimum at the template edge and a maximum at the
left boundary [corresponding to the lower branch in Fig. 4(a)]
(Supplemental Material Movie 2 [46]). Upon further decrease
of n̄, the interface of this pattern will reach the left boundary
of the domain such that the system transitions back into the
low-mass base state.

These transitions also take place when the average mass is
changed nonadiabatically but still so slow that mass-transport
across the system by cytosolic diffusion (∼L2/Dc) is faster
than the rate at which mass is added or removed. Interestingly,
when we increase the mass on a nonadiabatic timescale we
observe multiple transient patterns, which we characterize in
Appendix D. Furthermore, we show that we can get similar
transitions between the base state and the patterns if, instead
of increasing the average mass, the local reactions fA,B in the
two subdomains are varied over time (Appendix C).

Taken together, we have shown that the flux-balance con-
struction can be used to construct nonmonotonic steady states
by splitting the density profile into monotonic segments. This
is possible because, the stationary pattern profile can be split
at extrema, where all diffusive fluxes vanish. We found that
the system can exhibit two patterns, with a density peak either
at the system boundary or at the template edge. The peak at the
template edge only exists when the two nullclines intersect at a
point where only one of them has negative slope. Furthermore,
our finite element simulations show that increasing the mass,
starting from the low-mass base state, leads to a peak at the
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template edge. Vice versa, decreasing mass, starting from the
high-mass base state leads to a peak at the system boundary. In
the next section we provide a heuristic argument to understand
under which conditions the peak emerges at the template edge.

C. Template-induced regional instability

We next want to understand the mechanism of pattern
selection as the system goes through the saddle-node bifurca-
tion(s) where the base state ceases to exist. We first show that a
(numerical) linear stability analysis explains why either a peak
or a trough pattern grows at the template edge, as the system
goes through the bifurcation. We then provide a heuristic argu-
ment to explain this edge-sensing mechanism, and formulate a
geometric criterion under which this mechanism works, based
on the shape of the nullclines.

To study how the base state develops into a pattern, as
the system goes through the saddle-node bifurcation, we
consider a base state [m̃(x), c̃(x)] in the vicinity of the bifur-
cation point and analyze the dynamics of a small perturbation
[δm(x, t ), δc(x, t )]. The dynamics of the perturbed state, up to
linear order is given by

∂tδm(x, t ) = Dm∂2
x δm + f̃m(x)δm + f̃c(x)δc, (13a)

∂tδc(x, t ) = Dc∂
2
x δc − f̃m(x)δm − f̃c(x)δc. (13b)

The linearized reaction coefficients

f̃m,c(x) = ∂m,c f
∣∣
[m̃(x),̃c(x)] (14)

are not homogeneous in space and hence Eq. (13) is a set of
linear PDEs with nonconstant coefficients. We seek solutions
of the form δm(x, t ) = �m(x)eσ t , δc(x, t ) = �c(x)eσ t . With
this ansatz, Eq. (13) turns into the Sturm-Liouville eigenvalue
problem

σ�m(x) = Dm∂2
x �m + f̃m(x)�m + f̃c(x)�c, (15a)

σ�c(x) = Dc∂
2
x �c − f̃m(x)�m − f̃c(x)�c, (15b)

for the eigenvalues σ and the associated eigenfunctions
(�m,�c)(x).

The defining feature of a a saddle-node bifurcation is that
one eigenvalue vanishes exactly at the bifurcation point. The
associated eigenfunction reveals the flow structure of the
dynamics on the slowest timescale close to the bifurcation
point (center manifold, see, e.g., Ref. [44]). From this we
can gain intuition about the fate of the system upon passing
through the bifurcation.

At the base-state saddle-node bifurcation [marked SN in
Fig. 4(a)], the numerically calculated7 eigenfunction is peaked
in the vicinity of the template edge [see Fig. 5(a)]. This
localized eigenfunction indicates that the density profile will
change most in the vicinity of the template edge, giving rise
to either a peak or a trough as the system goes through the
saddle-node bifurcation.

7The Sturm-Liouville eigenvalue problem at the numerically cal-
culated base-state saddle-node bifurcation is solved by discretizing
the spatial derivatives (Laplace operator) and solving the resulting
eigenvalue problem numerically in Mathematica. For further details
see, e.g., Ref. [47].

Regional lateral instability

Leading eigenfunction

m
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m

m

0
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0

FIG. 5. Regional lateral instability at the base state’s saddle-
node bifurcation. (a) The numerically calculated eigenfunction, �m,
associated to the vanishing eigenvalue at the saddle-node bifurcation
is localized at the template edge. (Parameters as in Fig. 4 at the
saddle-node bifurcation n̄ ≈ 2.65541). (b) The concentration profile
m̃(x) of the base state at the saddle-node bifurcation. A spatial region
that is fully contained in subdomain A and centered around the
profile’s inflection point x0 is marked in green. (c) This spatial region
corresponds to a phase space region where the dynamics is guided
by a section of the nullcline with a negative slope, i.e., where the
system is laterally unstable. (The phase space is shown as a sketch for
visual clarity. See Fig. 8(a) in Appendix B for a plot from numerical
simulation.)

An intuition why the neutral eigenfunction at the base-state
saddle-node bifurcation is peaked at the template edge can be
gained from the phase portrait as sketched in Fig. 5(c). Recall,
that the inflection point of the base state’s density profile
m0

A = m̃(x0) lies within subdomain A [cf. Figs. 3(d) and 3(e)].
Consider a region centered around x0, fully contained within
subdomain A, as indicated in green in Fig. 5(b). In phase space
this point lies on a section of the A-nullcline with a slope
steeper than the FBS. Suppose for a moment that this region
is isolated from the rest of the system. Then, as the slope
of the nullcline at m0

A is steeper than the slope of the FBS,
the homogeneous equilibrium in this region will be unstable
due to a mass-redistribution instability. This instability will
set in when the region is large enough to contain the shortest
growing mode.8 We call this a regional (mass-redistribution)
instability.

A necessary condition to trigger a regional instability at
the template edge is that the nullclines of the two subdo-
mains cross at a point where the A-nullcline fulfills the

8More precisely, the size of the region centered around the inflec-
tion point, 2(xE − x0), must be larger than the wavelength of the
shortest growing mode π/qmin(n0).

022414-9



WIGBERS, BRAUNS, HERMANN, AND FREY PHYSICAL REVIEW E 101, 022414 (2020)

(a) Edge sensing (b) No edge sensing

FIG. 6. Nullcline criterion for edge sensing, i.e., the emergence
of a stable density peak at the template edge. Edge sensing is possible
is the nullclines intersect in a point where one of them has negative
slope (a). If they do not intersect (b) or intersect in a point where they
have both positive (or both negative) slope, then stable peaks only
exist at a system boundary, and hence, edge sensing is not possible.

nullcline-slope criterion for lateral instability, Eq. (8) [see
Fig. 6(a)]. When this edge-sensing criterion is not fulfilled,
as shown in Fig. 6(b), the regional instability sets in at
the system boundary first, giving rise to a peak at the
system boundary and not at the template edge (as illus-
trated in Fig. 8(b) in Appendix B). Because the shapes
of the nullclines in the two subdomains relative to each
other depend on how the template affects the reaction ki-
netics, the edge-sensing criterion constrains models that
can exhibit edge sensing. In Appendix F we demonstrate
that the edge-sensing criterion precisely predicts the regime
of edge sensing for a phenomenological model of Cdc42.
We furthermore show that edge sensing only works if the
template increases both the attachment and detachment rate
of Cdc42 in one of the subdomains. This may help to identify
the relevant molecular players in biological systems.

The concept of regional instability was already discussed in
Ref. [28] in the context of stimulus-induced pattern formation
(“nucleation and growth”) on a homogeneous domain. There,
a stable homogeneous steady state is perturbed by moving
mass from the system into small region. When this region
contains sufficient mass, it can become laterally unstable
and thus formation of a peak pattern is “nucleated.” With
that, the regional instability at the template edge can also be
understood in terms of stimulus-induced pattern formation.
From the perspective of subdomain A, the differing reaction
kinetics in subdomain B induces a perturbation at the sub-
domain interface, that is, the template edge [orange line in
Fig. 5(b)]. In that sense, the base state is a perturbed homo-
geneous steady state in each subdomain. If in subdomain A
this perturbation becomes large enough to cross the nullcline
in a section of negative slope [Fig. 5(c)], then it triggers a
lateral instability and thus the formation of density peak at the
template edge. This highlights that it is the spatial gradient
of the reaction kinetics due to the template that localizes

the instability. Heuristically this can be pictured as sensing
the spatial derivative of the template. Here we focused on a
sharp template edge. For future work, it will be interesting to
study also a smooth template edge. Intuitively, if the template
gradient is too shallow, it will not induce a laterally unstable
region, because the induced deviation from the local equilibria
that effectively acts as the stimulus for pattern formation will
be too small.

In conclusion, we showed in this section that the template
localizes the patterns and determines the position of the in-
stability from which they emerge. Importantly, this instability
determines which of the two stable stationary patterns forms
when the system passes through a bifurcation of the base state.
Finally, we presented a simple geometric criterion, shown
in Fig. 6, that determines when the regional instability is
localized at the template edge.

III. MOVING TEMPLATE EDGE

Until now we considered pattern formation with a fixed
template edge position xE. We next ask what happens when xE
moves after a peak at the template edge has been established
(Fig. 7).

When the template edge moves, the peak must adapt to
the new template edge position. To reach the new stationary
state, mass must be transported from one side of the peak to
the other. Thus, we expect that the peak follows the template
edge position as long as the mass is transported faster than
the velocity vE at which the template edge moves, i.e., for
vE � Dc/w, where w is the width of the peak. To test the
intuition for this adiabatic case, and study what happens in
the nonadiabatic case of a fast-moving template edge, we turn
to numerical simulations. To probe a range of template veloc-
ities vE, we quadratically increase the template edge velocity
during the simulation. At a distance 0.3 L from the system
boundary, the template movement is stopped. Furthermore,
we move the interface either to the right, away from the peak
[Figs. 7(a) and 7(c)], or to the left, toward the peak [Figs. 7(b)
and 7(d)]. In the adiabatic case, we find—in agreement with
our expectation—that the peak remains pinned to the template
edge position [see Figs. 7(a) and 7(b) and Supplemental
Material Movies 3 and 4].

In the nonadiabatic case, when the template edge moves
faster than the peak can follow by diffusive mass transfer,
the peak position will shift relative to the template edge.
We find that, when the template moves away from the peak
(“pulling”), the peak depins at a critical velocity and stops
following the template edge [see Fig. 7(c) and Supplemental
Material Movie 5]. Because peaks in the interior of subdo-
main A are unstable [cf. Figs. 4(a) and 13], the depinned
peak will move very slowly either to the domain boundary
or to the template edge (given that the movement of the
template edge has stopped). There it reaches the respective
stable steady state, a “boundary peak” or an “edge peak” [cf.
Figs. 4(a)].

When the template moves toward the peak (“pushing”), the
peak is suppressed at some critical edge-velocity [see Fig. 7(d)
and Supplemental Material Movie 6]. Interestingly, the critical
velocity for depinning while pulling is much lower than the
critical velocity for suppression while pushing.
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FIG. 7. Time evolution of m-profile due to dynamic template
interface position. The Supplemental Material contains a movie for
each of the four scenarios. (a) Slow pull (the template edge moves
away from the peak): This results in pinning of the peak to the tem-
plate edge (see Supplemental Material Movie 3 [46]). (b) Slow push
(the template edge moves toward the peak): This results in pinning
of the peak to the template edge (see Supplemental Material Movie
4). (c) Fast pull: This results in depinning as the peak cannot follow
the template edge. However, the peak stays where it depins as it is
quasistable in region A on the observed timescale (see Supplemental
Material Movie 5). (d) Fast push: This results in suppression as the
peak is not stable in region B. As the peak dissipates the average
mass at the new edge position slowly increases and potentially (if
there is enough total mass in the system) leads to to a reentrance of
the peak (see Supplemental Material Movie 6). Parameters: Dm =
0.01, Dc = 10, kon = 1, k̂fb = 1, koff = 2, K̂d = 1, n̄ = 5, θB = 20,
θA = 0.5, L = 20, xE = 3/5 L, vE(t ) = ±2.4 × 10−14 t2 in (a), (b),
vE(t ) = ±8.9 × 10−13 t2 in (c), (d).

To heuristically understand this difference of critical ve-
locities, we take a closer look at how the peak adapts to a
shifted template position. Suppose for a moment that we keep
the peak profile frozen while shifting the template edge xE by a
small amount δxE. This will change the local reactions in the
vicinity of the template edge. When the peak profile is now
“released”, these reactions will lead to changes in the concen-
trations m and c, and hence in the mass-redistribution potential
η(x, t ) between the original and shifted edge positions xE and
xE + δxE. The resulting η gradient leads to mass transport
[Eqs. (3)], which in turn causes a movement of the peak.9 The

9A geometric analysis in phase space, similar to the one presented
in Figs. 3 and 4, shows that the η gradient is always such that the

difference between pulling and pushing, i.e., moving the tem-
plate edge away from the peak or toward it, is the amplitude of
the η gradient that builds up as the template edge is shifted. In
the case of pulling, the template edge moves into the flat tail
of the peak, such that the η gradient decreases with increasing
distance between peak and template edge. In contrast, while
pushing, the template edge moves into the steep interface of
the peak, leading to an continually increasing η gradient. Only
when the template edge has shifted beyond the maximum of
the peak, the induced η gradient starts decreasing again.

This effect qualitatively explains the different critical ve-
locities for depinning (while pulling) and suppression (while
pushing). In the former case the induced gradients in η, and
hence, the rate of mass transport that shift the peak toward the
moving template edge are small and decreasing with peak-
to-edge distance. Therefore, depinning is self-enhancing. In
the case of pushing, the η gradient keeps increasing as the
peak-to-edge distance decreases. This in turn, increases the
speed of the peak due to faster mass transport. Only when the
template edge has crossed the peak maximum, the peak will
be suppressed because it then lies mostly within the laterally
stable subdomain B that does not support a stable peak.

In summary, we showed that in the case of an adiabatically
slow template motion, the peak stays pinned at template
edge. In the nonadiabatic case we found a qualitatively and
quantitatively different behavior between pushing and pulling.
Pulling leads to depinning, while pushing eventually leads
to suppression. Furthermore, we heuristically explained why
critical velocity for pulling (depinning) is lower than the criti-
cal velocity for pushing (suppresion). Going forward, it would
be interesting to study this behavior more systematically, both
in numerical simulations and on an analytic level. For ex-
ample, concepts like response functions [48], projection onto
slow manifolds [36], and singular perturbation theory [39,40]
may help to estimate the critical velocities for depinning and
suppression.

IV. DISCUSSION

We showed how protein pattern formation can be con-
trolled by a spatial template (e.g., an upstream protein pat-
tern), which acts on the proteins interaction kinetics. In par-
ticular, we demonstrated for two-component McRD systems
how a step-like template—which defines two subdomains
with different reaction kinetics—can localize the formation
of a peak pattern to the template edge. We explained this
edge-sensing mechanism by a regional (mass-redistribution)
instability that emerges at the template edge position. This is
in contrast to pattern formation on a homogeneous domain,
where the instability is generically “delocalized” [Fourier
modes, cf. Fig. 1(d)], such that noisy initial conditions have
a strong impact on pattern formation process.

Our analysis is based on a recently developed theoreti-
cal framework [27,28], termed local equilibria theory. This
theory proposes to analyze McRD systems as dissected into

peak moves in the direction that the template edge was shifted, until
it reaches it’s new stationary (pinned) position at the shifted edge
position.
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diffusively coupled compartments, so small that each of
the compartments can be considered as well-mixed. For the
paradigmatic (minimal) case of two-component systems, this
framework enables one to to perform phase-portrait analysis
of the interplay between local reactions and diffusive transport
in the phase space of the reaction kinetics. Here, we have ex-
tended this phase-portrait analysis to incorporate the effect of
a step-like heterogeneity of the reaction kinetics in the spatial
domain. We were able to construct the bifurcation diagram for
the average mass n̄, which is a natural control parameter as it
can be controlled by production or degradation/sequestration
of proteins in cells (e.g., in a cell cycle dependent manner). We
found that, at a critical average mass, the system’s base state
undergoes a saddle-node bifurcation, such that the system
transitions to a stationary pattern, with either a peak at the
template edge or at the system boundary. The peak forms at
the template edge if the template triggers a regional (mass-
redistribution) instability at the template edge. The phase-
portrait analysis enables us to formulate a geometric criterion
for this edge-sensing mechanism. In particular, we show that
the step-like template can trigger a regional instability at the
template edge, if the nullclines of the reaction kinetics in the
two subdomains intersect at a point where one of them has a
negative slope (more precisely, a slope steeper than the neg-
ative ratio of the diffusion constants, −Dm/Dc), as illustrated
in Fig. 6. Finally, we showed that the edge-localized peak is
stable when the template edge is slowly moved and demon-
strated that qualitatively different processes—depinning ver-
sus suppression—lead to the loss of the edge-localized peak
when the template is shifted too rapidly away from the peak
(“pulling”) or toward it (“pushing”).

We speculate that the edge-sensing mechanism studied
here might underly formation of the actomysin ring during
macropinocytosis and cellular wound healing, as well as the
direction of Cdc42 polarization in budding yeast adjacent to
the previous bud site. In macropinocytosis a high density
PIP3 domain has been suggested to act as a template for a
ring of actin nucleators that localize to its periphery [21].
Similarly, during cellular wound healing, the inside Abr could
act as a template for the outside Cdc42 ring which then drives
recruitment of actin via formins [22]. Finally, in budding
yeast, landmark proteins that localize to the previous bud
site can be pictured as a template that suppresses Cdc42
accumulation at the previous bud site and simultaneously
localizes Cdc42 cluster to its vicinity [23–26]. Furthermore,
the spatiotemporal organization of intracellular membranes,
like the Golgi apparatus, endosomes, and the endoplasmatic
reticulum, involves cascades of coupled GTPases [49–51].
Hence, we speculate that this organization may rely on similar
domain-edge sensing mechanisms.

The edge-sensing criterion (cf. Fig. 6) based on the shape
of the nullcline, may provide guidance for the mathematical
modeling of these systems and thereby help to identify the
key biomolecular players and processes. The nullcline shapes
of a given model constrain the ability of this model for edge-
sensing. As an example, we showed for an phenomenological
two-component model for Cdc42 pattern formation [4] that
edge sensing requires a template which increases both the
attachment and detachment rate of Cdc42 in one subdomain.
Indeed in single-cell wound healing, the protein Abr could

provide such a template for Cdc42 since it is both a gua-
nine exchange factor (GEF) and a GTPase-activation protein
(GAP) for Cdc42 [22].

Beyond the understanding of living systems, our results
may also advance the field of synthetic biology. Previous
studies have explored mechanisms by which a gradient can
position a sharp front pattern via a bistable reaction-diffusion
system [52,53]. The edge-sensing mechanism, presented in
this paper, is a candidate for a further building block to design
spatial protein patterns.

In future studies, it would be interesting to generalize our
results beyond the paradigmatic case of a single, stationary,
steplike template in one spatial dimension. Templates with
multiple steps may be dissected into segments with single
steps that can then be studied separately. Furthermore, it has
been shown that the geometry of a cell indirectly affect the
attachment-detachment kinetics via the ratio of bulk-volume
to surface-area [54,55] and curvature sensing proteins [56].
Another promising direction is to incorporate the dynamics of
the template itself as a self-organized pattern-forming system
and include a feedback from the downstream pattern to the
template. Such feedback may give rise to complex spatiotem-
poral behavior, like oscillatory patterns and traveling waves,
that can then be characterized by building on the phase-
portrait analysis presented here. Our results on the moving
template (Sec. III) and nonadiabatic upregulation of average
mass (Appendix D) indicate that the edge sensing works
beyond the adiabatic regime.

Finally, even for the elementary case studied here, many
important questions remain open. We showed that a moving
template will lead to a loss of the edge-localized peak due
to depinning (while pulling) or suppression (while pushing)
at different critical edge-velocities. In future work, these
transitions should be studied in more detail both numerically
and analytically, e.g., using a response function formalism
[48]. Furthermore, an analytic approach employing asymp-
totic methods like singular perturbation theory [36,39,40,43]
may help to cast our heuristic explanation of the localized
eigenfunction, based on the concept of regional instability,
into a more rigorous argument. Similarly, such an approach
may elucidate the transition from edge-localized peaks to
boundary-localized peaks for too fast mass upregulation (cf.
Appendix D, Fig. 11). In general, we expect that combining
mathematical tools like singular perturbation theory with the
local equilibria framework will be a fruitful approach to
systematically study complex pattern-forming systems.
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APPENDIX A: REACTION KINETICS AND
TEMPLATE DEFINITION

Throughout this paper we use a two-component McRD
model on a one-dimensional domain with one protein species
[cf. Eqs. (1a) and (1b)]. The proteins cycle between a cytosolic
state [concentration c(x, t )] and membrane bound state [con-
centration m(x, t )] as specified by the reaction term f (m, c).
Importantly, our results are based on the shape of the reactive
nullclines and, hence, do not depend on the specific choice
for f (m, c). To illustrate our findings, we use biochemically
motivated reaction kinetics, comprising attachment, a(m), and
detachment, d (m), reactions:

f (m, c) := a(m)c − d (m)m. (A1)

Specifically, we use

a(m) := (kon + kfb m), (A2a)

d (m) := koff

Kd + m
, (A2b)

as introduced before in Ref. [28]. These reaction kinetics
describe a protein species that can attach from the cytosol
to the membrane with a rate kon and get recruited from
the cytosol to the membrane by membrane bound proteins
with a rate kfb. Membrane bound proteins detach from the
membrane via an enzymatic process described by first order
Michaelis-Menten kinetics, parameterized by the rate koff and
the dissociation constant Kd.

We consider systems were the reaction rates are different
in subdomains A and B. This externally imposed hetero-
geneity was introduced as a step-like template in Sec. I C
[cf. Eq. (9)]. For specificity, we choose a template that af-
fects the reaction rates, such that the reactive nullcline in
subdomain B is stretched along the m axis with respect
to the reactive nullcline in subdomain A. To that end, we
rescale the feedback rate and the dissociation constant scale
with the template value, such that these rates become space
dependent:

kfb(x) := k̂fb/θ (x), (A3a)

Kd(x) := K̂d θ (x). (A3b)

The reaction term then becomes

f (m, c; θ ) =
(

kon + k̂fb
m

θ (x)

)
c −

koff
m

θ (x)

K̂d + m
θ (x)

. (A4)

For convenience, we do not specify units of length
and time. In an intracellular context a typical size would
be L ∼ 10 μm, and typical diffusion constants are Dm ∼
0.01−0.1 μm2 s−1 on the membrane and Dc ∼ 10 μm2 s−1

in the cytosol. Rescaling to different spatial dimensions is
straightforward. To fix a timescale, the kinetic rates can be
rescaled with respect to the attachment rate kon. In an intracel-
lular context, typical attachment timescales are on the order of
seconds, i.e., kon ∼ s−1.

APPENDIX B: NULLCLINES WITHOUT EDGE-SENSING

In Sec. II C in the main text, we analyzed the edge-sensing
mechanism based on the reactive nullclines in phase space.

Regional lateral
instability

(a) Low-mass base state (b) Base-state bifurcation

FIG. 8. Base states for nullclines shapes that do not facilitate
edge-sensing. (a) The low-mass base state with a high-concentration
plateau in subdomain A and a low-concentration plateau in subdo-
main B. (b) At a critical average mass, the base state undergoes a
saddle-node bifurcation. The bifurcation arises from the “annihila-
tion” of the FBS-NC intersection point m−

A and m0
A, and not from the

break down of turnover balance as discussed in Sec. II C the main
text. In this case, a regional instability is triggered at the system
boundary. An adiabatic sweep of n̄ through the saddle-node bifur-
cation of the FBS-NC intersection points is shown in Supplemental
Material Movie 7.

In this analysis, the effect of the heterogeneous reaction
kinetics, i.e., the template, is captured by the shapes of the
reactive nullclines. From our analysis, we found a criterion
for the edge-sensing mechanism, as illustrated in Fig. 5. The
nullclines need to intersect at a point where only one nullcline
is steeper than FBS [cf. Eq. (8)].

In this Appendix, we discuss a case where the criterion for
edge sensing is not fulfilled, such that a localization of the
regional instability to the edge is not possible, and a peak at
the template edge does not exist [cf. Fig. 6(b)]. As an example,
we consider a template, affecting the reaction kinetics such
that the nullcline is stretched along the c axes instead of the m
axis, as shown in Fig. 8(b).

For the specific attachment-detachment reaction kinetics
[Eq. (A2)], the nullclines is stretched along the c axis via the
off-rate while keeping all other rates constant:

koff (x) := k̂off θ (x). (B1)

The resulting reaction term then reads

f (m, c; θ ) = (kon + kfb m) c − θ (x)
k̂off m

Kd + m
. (B2)

Following the same arguments as presented in Sec. II A, we
can construct the base states (monotonic steady state). Starting
from the low-mass base state, illustrated in Fig. 8(a), and
increasing the average mass n̄ results in an upwards shift of
the FBS by the same argument as presented in Sec. II A.
When the mass is further increased the FBS moves to the level
where the two FBS-NC intersection points on the A-nullcline,
m−

A and m0
A, annihilate in a saddle-node bifurcation, as shown

in Fig. 8(b). If η0 increases beyond that point, then the base
state vanishes. Note that the origin of the saddle-node bifur-
cation lies in the annihilation of the two FBS-NC intersection
points. This is different from the saddle-node bifurcation that
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Regional lateral
instability

(a) (b) (c) (d)

FIG. 9. An adiabatically changing template triggers peak formation at the template edge. See also Supplemental Material Movie 8.
(a) Initial state with a homogeneous template profile θA = θB. (b) Base state analogous to Fig. 3. (c) Base state right before the saddle-node
bifurcation. The region that becomes laterally unstable in the bifurcation is highlighted in light green in the spatial profile and in phase space
(cf. Fig. 5). (d) Peak pattern state after the system transitioned through the bifurcation. This state is qualitatively the same as sketched in
Fig. 4(c). Parameters same as described in the caption of Fig. 7 but with L = 5, θB = 20, and θ f

A = 0.5.

occurs for the nullclines we analyzed in Sec. II A in the
main text. There, the base state vanishes due to a breakdown
of total turnover balance which becomes apparent by the
“annihilation” of the two solutions for mE of Eq. (12); cf.
Fig. 3.

To study the dynamics in the vicinity of the base state
bifurcation, we use the concept of regional instability (cf.
Sec. II C). The part of the density distribution that enters
the laterally unstable region in phase space corresponds to
the concentration at the left hand system boundary (x = 0)
[Fig. 8(b)]. Hence, upon crossing the base state’s saddle-
node bifurcation, a regional instability emerges at this system
boundary, and a peak forms there.

Moreover, for nullclines shown in Fig. 8, there is only one
way to construct a stationary pattern with a single interface
(inflection point) within subdomain A (in addition to the in-
terface imposed by the template step). This pattern always has
a density peak at the system boundary (x = 0) and decreases
monotonically in space toward x = L. A stable peak localized
to the template edge does not exist in this case.

APPENDIX C: TEMPORAL VARIATION OF
THE TEMPLATE

In Sec. II in the main text, we considered upregulation of
average mass n̄ while the spatial template was kept constant.
One can perform a similar analysis for a varying template,
while keeping the average mass constant. In this scenario, not
n̄ but the parametrization of the template (e.g., θA) serves as
a bifurcation parameter. In the biological context, this corre-
sponds to a dynamically varying upstream protein pattern.

To demonstrate that varying the template induces equiv-
alent bifurcations as variation of the average mass, we use
the template as in the main text [cf. Eq. (A4)] and perform
a numeric simulation where we let the template θ (x, t ) slowly

vary with time (for simplicity only in subdomain A):

θ (x, t ) =
{
θA(t ) x � xE,

θB x > xE.
(C1)

We initialize the template value in subdomain A at θA(0) =
θB and let it change via a sinusoidal ramp to its final value
θA(tf ) = θ f

A.
An exemplary simulation is shown in Fig. 9 and Supple-

mental Material Movie 8. At the start of the simulation, the
reaction rates, and thus the reactive nullclines, are the same
in subdomain A and subdomain B, which is illustrated by
the overlapping nullclines in Fig. 9(a). The template is ho-
mogeneous, and the corresponding steady state is a homoge-
neous density profile for sufficiently low average mass. Upon
decreasing θA, the reaction rates in subdomain A change,
leading to a change in the shape of the reactive nullcline
[Fig. 9(b)]. The resulting base state is equivalent to the low-
mass base state, similar to the case for mass upregulation
analyzed in Sec. II A. When θA is further decreased, the
density profile becomes regionally unstable at the template
edge [Fig. 9(c)], which triggers a peak at the template edge
[Fig. 9(d)]. This shows that the pattern formation process as
discussed in the main text can also be realized with a dynamic
template.

APPENDIX D: NONADIABATIC MASS UPREGULATION

In Sec. II in the main text, we analyzed the steady
states as a function of average mass and found that the
system undergoes a transition from base states to patterns
through a saddle-node bifurcation. To analyze how the pat-
terns emerge as the system goes through this bifurcation,
we performed numerical simulations where we adiabatically
increased the average mass by a global cytosolic source with
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rate κs,

∂t c = Dc ∂2
x c − f (m, c) + κs, (D1)

which entails ∂t n̄ = κs. In this Appendix, we explore the emer-
gence of patterns when the average mass is nonadiabatically
increased beyond the base-state bifurcation. We initialize the
system at zero mass and increase mass up to a value n̄f within
the regime where no base state exists. Varying the rate of
mass inflow κs, we find six regimes with qualitatively different
transient dynamics (see Supplemental Material Movies 9–14).
Below, we briefly describe the observed dynamics of the
density profile in real space in these regimes going from slow
to fast κs. We then use the (m, c)-phase space and the concept
of regional instability (cf. Sec. II C) to heuristically explain
the observed dynamics.

(1) Template-edge peak. For small κs, a density peak
emerges at the template edge, even though the density profile
does not relax to a quasisteady state. This highlights that the
edge-sensing mechanism is robust against rate of mass inflow.
(Supplemental Material Movie 9)

(2) Transition regime. Here, we observe two peaks emerg-
ing simultaneously, one at the outer boundary of subdomain A
and one at the template edge. This is an intermediate regime
between the boundary peak regime (3) and the template
edge peak regime (1), as both peaks emerge simultaneously.
(Supplemental Material Movie 10)

(3) System-boundary peak. Here, we observe one peak
forming at the system boundary at x = 0. (Supplemental
Material Movie 11)

(4) Sequential peak formation. First, a peak forms at the
domain boundary of subdomain A, as in the system-boundary
peak regime (3). Then, after the first peak already formed,
another peak forms at the template edge as in regime (1)
(Supplemental Material Movie 12).

(5) Multiple peaks. Here, the pattern-formation process is
very similar to the system-boundary peak regime (3). How-
ever, multiple peaks form at the outer boundary of subdomain
A simultaneously (Supplemental Material Movie 13).

(6) Quenched system. Here the mass is upregulated almost
instantaneously, κ−1

s → 0, which is equivalent to a system
initialized with the complete mass in the cytosol. This results
in a sequence of peaks forming in subdomain A, starting
from the template edge in a process akin to front invasion
into an unstable state [57–59] (Supplemental Material Movie
14).

Note that all states with multiple peaks (corresponding to
multiple inflection points of the pattern profile in subdomain
A) are unstable due to coarsening. The final steady state is
always a pattern with a peak either at the template edge or at
the system boundary x = 0.

In Sec. II C and Appendix B, we showed that the formation
of a density peak is determined by the position of a regional in-
stability, when the system is in quasisteady state. The position
of the regional instability can be found from a phase portrait
analysis, since the nullcline slope criterion [cf. Eq. (8)] de-
termines which part of the density profile becomes unstable.
To use the same heuristic for understanding the formation
of these transient peaks, we analyze the density distribution
in phase space obtained from numerical simulations in these
nonadiabatic regimes. When mass is added to the system on a

(a) (b)

Regional lateral instability

 

FIG. 10. Effect of nonadiabatic mass upregulation on the pattern
formation dynamics. (a) Peak formation at the template edge: The
density distribution is not embedded in a single FBS, leading to the
“zigzag”-shaped density distribution in phase space. The regional
instability is still triggered at the template edge, as highlighted by the
(green) shaded region. (b) Peak formation at the system boundary:
The faster mass-inflow leads to a more pronounced “zigzag”-shaped
density distribution in phase space. The regional instability is now
first triggered at the system boundary. This results in a peak forming
at the system boundary as shown in Fig. 4(b).

faster timescale than it can relax to its steady state, the density
distribution in phase space is no longer embedded in a single
FBS. Instead, the density distribution in phase space follows
a “zigzag” shape, as illustrated in Fig. 10. This indicates
that the density in the vicinity of the template edge is still
embedded in a FBS, with offset ηint, but the density far away
from the template edge deviates from this FBS. Instead, these
“quasiplateaus” are slaved to the nullcline which indicates
that they are locally close to reactive equilibrium, and that
their relaxation is limited by diffusive mass transport. Ac-
cordingly, for faster inflow of mass, the zigzag shape is more
pronounced—that is, the quasiplateaus deviate more from ηint.
If inflow of mass is faster than diffusive transport across
the quasiplateaus, then a region at the system boundary in
subdomain A enters the lateral unstable region in phase space
first, as illustrated in Fig. 10(b). This leads to the emergence
of a peak at the system boundary in regime (3), and to more
complex pattern formation in regimes (4)–(6). In the transition
regime (2), mass inflow and mass transport roughly balance,
such that a region at the system boundary and a region at
the template edge enter the laterally unstable region in phase
space at the same time.

The (L2/Dc, κ
−1
s )-phase diagram shown in Fig. 11 con-

firms the intuition that pattern emergence depends on the
competition between the timescales of mass inflow, κs, and
diffusive mass transport across the system ∼L2/Dc. Indeed,
the regime boundaries in the phase diagram are roughly
straight lines emanating from the origin. In particular, the
transition from a “template-edge peak” to a “system-boundary
peak” corresponds to a line κ−1

s ≈ L2/Dc. This confirms the
intuition that edge sensing is only possible when the inflow of
mass into the system is slower than the timescale of diffusive
mass transport. For comparison, in an intracellular context
one has L ≈ 10 μm and Dc ≈ 10 μm2 s−1, such that the
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FIG. 11. Phase diagram for the timescale of mass upregula-
tion (global cytosolic inflow κ−1

s ) against the timescale of mass-
redistribution across the entire domain (L2/Dc). Edge sensing, i.e.,
formation of a single density peak a the template edge, is operational
in regime (1), see Supplemental Material Movie 9. In regimes (2)–(6)
a peak at the system boundary (x = 0) or multiple peaks form,
see Supplemental Material Movies 10–14. Parameters: Dm = 0.01,
Dc = 10, kon = 1, k̂fb = 1, koff = 2, K̂d = 1, θA = 0.5, θB = 20,
xE = 3/5 L, n̄f = 5.

timescale of mass transport across the cell is on the order of
seconds. This is fast compared to changes in average protein
concentrations (for instance, due to protein expression or
release from the nucleus). Hence, the edge-sense mechanism
is a realistic candidate for template guided intracellular pattern
formation.

APPENDIX E: NUMERICAL CONTINUATION,
STEADY-STATE CONSTRUCTION, AND

BIFURCATION SCENARIOS

Numerical continuation. To numerically calculate steady-
state solutions of the two-component McRD system [Eq. (1)],
we choose a finite-difference discretization of the PDEs. For
steady states, this yields an algebraic system of equations that
can be solved with an iterative Newton method. The basic
idea of numerical continuation is to follow a solution branch
through parameter space (see, for instance, Ref. [45] for an
excellent overview over continuation methods). This “path-
following” is often performed by employing a predictor-
corrector scheme: Starting from one solution, the next solution
along the branch is predicted from the tangent space of the
solution branch which can be obtained from the Jacobian.

Steady-state construction and finite domain size effects.
To test the geometric constructions introduced in Sec. II we
characterize the steady state of the system with the quantity
m∗

E − mB, which must be negative for low-mass base states
(monotonic steady states in the low-mass regime, cf. Sec. II A)
and positive for nonmonotonic steady states (stationary peak
pattern localized at the template edge, cf. Sec. II B). We per-
form numerical continuation and compare the results from the
simulation (solid lines in Fig. 12) with the approximation from
the geometric construction (red dots and dash-dotted line).
The geometric construction serves as a good approximation
for the steady for sufficiently large system sizes.

monotonic states

non-monotonic states

analytic/

4

0

-2
1.5 3.5

FIG. 12. One-parameter bifurcation structure in n̄ (average mass)
connecting the low-mass base state (monotonic, i.e., mE < mB and
the peak pattern at the template edge (nonmonotonic, i.e., mE > mB).
Solid (dashed) lines indicate stable (unstable) branches from numer-
ical continuation for different domain sizes (increasing from dark
to light lines). The corresponding steady-state profiles are shown
in Supplemental Material Movies 15 and 16 [46], for domain sizes
L = 10, 40. Solutions from the analytic construction of base states
in the large domain size limit (L → ∞) are shown as red dots and
(position of the saddle-node bifurcation denoted by n∞

bs ). Note that
for small domain size (L = 5), the saddle-node bifurcations vanish
and the base state smoothly transitions into a stable peak pattern
upon increasing n̄. The red, dash dotted line indicates the analytically
constructed edge-localized pattern (limit L → ∞). The lower bound
in average mass for the existence of these patterns is denoted by
n∞

pattern. Fixed parameters as described in the caption of Fig. 4(a).

Also note that for small system sizes the base state
smoothly transitions into the pattern state (purple line corre-
sponding to L = 5 in Fig. 12).
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FIG. 13. Spatial profiles representative of the unstable branches
numbered (1–6) in the n̄-bifurcation diagram Fig. 4(a).
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FIG. 14. Demonstration of the edge-sensing criterion for a phenomenological model for Cdc42 pattern formation. (a) Nullclines of the
reaction kinetics Eq. (F1) in subdomains A (orange) and B (blue), defined by the reaction rates in Eq. (F4). Multiple B-nullclines are shown
for off-rate factors γoff = 1, 1.5, . . . , 5 while the on-rate factor is fixed at γon = 8. The critical values γ ±

off between which the A-nullcline is
intersected at negative slope (i.e., the edge-sensing criterion is fulfilled) are shown as dashed and dash-dotted lines, respectively. (b) Phase
diagram of on- and off-rate factors (γon, γoff ). The shaded region shows the regime where edge-sensing is observed in numerical simulations
with adiabatically increasing average mass [cf. Eq. (D1)]. Dashed red lines show the curves γ ±

off (γon ), cf. Eq. (F6), between which the edge-
sensing criterion is fulfilled. (c) Quasistationary density profiles obtained from numerical simulations with adiabatically increasing average
mass n̄ illustrating the typical pattern emerging from the base-states’s saddle-node bifurcation in the three regimes of the (γon, γoff ) phase
diagram (γon = 8; top: γoff = 5.5, n̄ = 2.9; γoff = 3, n̄ = 2.35; bottom: γoff = 1.5, n̄ = 2.24.). Fixed parameters: kfb = 1, kon = 0.07, koff =
1, Dm = 10−4, Dc = 0.1, L = 1, xE = 0.5, κs = 10−5.

Bifurcation scenario. The bifurcation scenario connecting
the base state and the patterns can be understood as a series of
imperfect subcritical pitchfork bifurcations. The imperfection
is caused by the template that breaks mirror symmetry of the
system. On a homogeneous domain (i.e., without a template),
the bifurcations from homogeneous steady state to patterns are
subcritical pitchfork bifurcation that become supercritical for
small system sizes/large wave numbers [28]. A more detailed
analysis of the bifurcation scenario induced by the step-like
template is left for future work. One interesting starting point
would be to analyze the two-parameter bifurcation diagram
in the (n̄, θA)-plane, where the line θA = θB correspond to
the homogeneous domain. Alternatively, one can investi-
gate the bifurcation scenario in the template edge position
(i.e., the (n̄, xE) parameter plane), where xE = 0 and xE = L
correspond to homogeneous domains.

Unstable multi-interface patterns. The dotted branches
in the bifurcation structure Fig. 4(a) correspond to patterns
with multiple self-organized interfaces (i.e., more than two
inflection points in the spatial profile, since the template edge
enforces one inflection point at xE). Figure 13 shows spatial
profiles at the numbered points in Fig. 4(a) representative for
the respective branches. The spiral structure of the bifurcation
structure reflects an increasing number of peaks from the
outside to the center of the spiral. For the branches numbered
1–3 (4–6) the concentration difference m∗

E − mB is positive
(negative), corresponding to a peak (trough) at the template
edge.

All multi-interface patterns are unstable due to a competi-
tion for mass and decay into one of the two stable patterns,
with a peak either at the system boundary or at the template
edge, in a coarsening process.

APPENDIX F: DEMONSTRATION OF THE
EDGE-SENSING CRITERION

To illustrate how the edge sensing criterion might help
in modeling of biological systems we consider a concrete
biological example. Cdc42 pattern formation is described by a
phenomenological two-component model of the form Eq. (1)
with the reaction kinetics [4]

f (m, c) =
(

kon + kfb
m2

1 + m2

)
c − koff m. (F1)

The nullcline c∗(m) determined by f (m, c∗(m)) = 0 has
a section of negative slope for kfb > 8kon in the interval
[mmax, mmin] given by

mmin,max =
√

1

1 + kon/kfb

(
1 ∓ ν

2
− kon

kfb

)
, (F2)

with

ν =
√

1 − 8
kon

kfb
. (F3)

Since cytosolic diffusion is multiple orders of magnitude
faster than diffusion of membrane bound Cdc42, we consider
the limit Dc 
 Dm where the FBS-slope is zero. Then the
criterium for lateral instability is that the nullcline slope be
negative ∂mc∗(m) < 0; and the edge-sensing criterion is that
nullclines must intersect at a point where one of them has
negative slope.

In cellular wound healing, Abr forms a ring of high concen-
tration around the wound edge, followed by the formation of
a Cdc42 ring around the Abr ring [22]. Cdc42 then activates
the actomyosin machinery that drives the contraction of the
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cell membrane to close the wound. Protein mutation on Abr
and Cdc42 studies suggest that the high density Abr ring
acts as a template for Cdc42 [22]. Furthermore, it has been
shown that Abr acts as both a nucleotide exchange factor
(GEF) and a GTPase-activating protein (GAP) for Cdc42
[22]. We therefore model the effect of Abr on the Cdc42
kinetics as a factor increasing both the attachment rate kon

and the detachment rate koff . The reaction terms in the two
subdomains with low and high Abr density, are thus defined
as fA,B(m, c) = f (m, c; kA,B

on , kA,B
off ) with

kA
on = kon, kB

on = γonkon, (F4)

kA
off = koff , kB

off = γoffkoff , (F5)

where the factors γon, γoff > 1 encode the relative enhance-
ment of attachment and detachment rates in subdomain B
compared to subdomain A.

The edge-sensing criterion (nullclines intersect at a point
where the A-nullcline has negative slope) is fulfilled when
the intersection point (mi, ci ) of the two nullclines, de-
fined by fA(mi, ci ) = 0 & fB(mi, ci ) = 0, lies in the range
[mmax, mmin] [see Fig. 14(a)]. Solving these equations for γoff ,
we find that nullclines fulfill the edge-sensing criterion when

γoff lies in the range [γ −
off , γ

+
off ] as a function of γon:

γ ±
off (γon) = 1

1 + kfb/kon

(
kfb

kon
+ 2

ν ∓ 1
+ γon

ν ∓ 3

ν ∓ 1

)
. (F6)

Note that γ ±
off (1) = 1 corresponds to the singular case where

the template has no effect, i.e., the reaction kinetics in the two
subdomains are identical. The dashed, red lines in Fig. 14(b)
show the curves γ ±

off (γon) that delineate the regime where the
edge-sensing criterion is fulfilled.

To test the criterion, we ran numerical simulations, for
different combinations (γon, γoff ). In each simulation, the
average mass is adiabatically increased at a rate κs = 10−5,
cf. Eq. (D1).

We find three different types of patterns emerging from
the base-states’s saddle-node bifurcation. Examples of these
are shown in Fig. 14(c). The regime where we find edge-
localized peaks agrees well with the prediction from the
geometric edge-sensing criterion [shown as dashed, red lines
in (b)].

Interestingly, the (γon, γoff )-phase diagram shows that both
attachment and detachment need to be enhanced in subdomain
B. This implies that proteins, like Abr, that have both GEF-
and GAP-catalytic domains may play a crucial role for edge
sensing by GTPases.
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