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Finite-size scaling analysis of protein droplet formation
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The formation of biomolecular condensates inside cells often involve intrinsically disordered proteins (IDPs),
and several of these IDPs are also capable of forming dropletlike dense assemblies on their own, through
liquid-liquid phase separation. When modeling thermodynamic phase changes, it is well known that finite-size
scaling analysis can be a valuable tool. However, to our knowledge, this approach has not been applied before
to the computationally challenging problem of modeling sequence-dependent biomolecular phase separation.
Here we implement finite-size scaling methods to investigate the phase behavior of two 10-bead sequences in a
continuous hydrophobic-polar protein model. Combined with reversible explicit-chain Monte Carlo simulations
of these sequences, finite-size scaling analysis turns out to be both feasible and rewarding, despite relying
on theoretical results for asymptotically large systems. While both sequences form dense clusters at low
temperature, this analysis shows that only one of them undergoes liquid-liquid phase separation. Furthermore,
the transition temperature at which droplet formation sets in is observed to converge slowly with system size,
so that even for our largest systems the transition is shifted by about 8%. Using finite-size scaling analysis, this
shift can be estimated and corrected for.
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I. INTRODUCTION

Advances over the past decade have shown that, in addition
to classical membrane-bound organelles, various membrane-
less liquidlike droplets of proteins and nucleic acids can be
found within living cells [1,2]. The droplets form through
a liquid-liquid phase separation (LLPS) process, also called
coacervation, in which intrinsically disordered proteins (IDPs)
often play a key role. Furthermore, it has been demonstrated
in vitro that several of these IDPs are able to phase separate
on their own [3–5], depending on the solution conditions.
Phase-separating IDPs can be rich in charged residues [3] but
can also be dominated by polar and aromatic residues [5].

To rationalize the phase behavior of IDPs and its depen-
dence on solution conditions, a variety of theoretical and
computational methods have been employed. A widely used
method is Flory-Huggins mean-field theory [6,7] and its
extension to polyelectrolytes by Voorn and Overbeek [8].
However, this approach is sensitive only to the overall com-
position of amino acids but not to their ordering along the
chains. One way to overcome this shortcoming without re-
sorting to explicit-chain simulation is offered by the random-
phase approximation [9], which has been applied to model
the phase-separating ability of IDPs with different charge
patterns [10].
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By turning to molecular simulation with explicit chains,
key approximations made in the above approaches can be
removed. In addition, structural properties become readily
accessible. Therefore, despite being computationally costly,
recent years have seen a growing number of explicit-chain
simulation studies of biomolecular LLPS [11–18]. In par-
ticular, there have been simulations based on coarse-grained
lattice or continuous representations to elucidate sequence
determinants of phase-separating IDPs [11–14].

Another approach, recently applied for the first time to
biomolecular LLPS [19,20], is to rewrite the original poly-
mer problem as a statistical field-theory problem that can
be investigated by field-theory simulation. This approach has
the potential to open for studies of system sizes that are
inaccessible with explicit-chain simulation.

Yet, regardless of whether explicit-chain or field-theory
methods are used, the simulated systems are finite and as such
there is a need to understand how measured properties depend
on system size. Fortunately, tools for this purpose are available
in the form of finite-size scaling theory for droplet formation
by phase separation [21–24]. These tools have previously been
applied to analyze droplet formation in simpler systems such
as the lattice gas and the Lennard-Jones fluid [24–26], but we
are not aware of any prior study of biomolecular LLPS using
these ideas.

In this paper, we implement finite-size scaling methods
to assess the phase behavior of two short model proteins,
which provide an instructive testbed for the analysis methods.
While several previous computational studies of IDP phase
separation focused on the role of charge-charge interactions,
we here consider a hydrophobic-polar (H-P) protein model.
One of the sequences we study, called A, is alternating (HPH-
PHPHPHP), whereas the other, called B, has a block structure
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(HHHHHPPPPP). Using Monte Carlo (MC) methods, we
perform canonical simulations of these sequences for a range
of system sizes, with up to 640 chains. Both sequences form
dense multichain assemblies surrounded by a dilute back-
ground at low temperatures, while only small clusters are
present at high temperatures. However, the sequences differ
in phase behavior. We show that their phase behavior can be
assessed in a systematic fashion by finite-size scaling analysis
of the simulation data. This analysis demonstrates that one
of the sequences, A, undergoes LLPS, whereas the other, B,
does not.

II. METHODS

A. Biophysical model

We study systems consisting of N copies of a polypeptide
enclosed in a periodic cubic box with volume V . The polypep-
tide is represented as a string of n hydrophobic (H) or polar (P)
beads. The length of the bond between two consecutive beads,
b, is kept fixed, while the polar and azimuthal bond angles are
both free to vary. In the absence of interactions, the bonds have
a spherically uniform distribution.

The beads interact through a pairwise additive potential,
E = ∑

i< j Ei j , where the sum runs over all intra- and in-
termolecular pairs of beads in the system. All beads have
a diameter of rev = 0.75b. When two beads i and j are at
a distance ri j < rev from each other, the pair potential Ei j

becomes infinite. Additionally, each HH pair interacts through
a soft attractive potential with interaction range rhp = 2b. If
rev < ri j < rhp, then the interaction energy is set to −ε (with
ε > 0). Thus, the pair potential can be summarized as

Ei j =
⎧⎨
⎩

∞, if ri j < rev

ui j, if rev < ri j < rhp

0, if ri j > rhp

, (1)

where ui j = −ε when beads i and j are both hydrophobic and
ui j = 0 otherwise.

Throughout this article, lengths and energies are given in
units of b and ε, respectively.

B. MC simulations

We investigate the thermodynamics of droplet formation in
this model by using MC methods to generate samples from
the canonical (NV T ) ensemble. Of particular interest is the
behavior at the onset of droplet formation. Therefore, given
N and V , the temperature T is chosen close to the maximum
of the heat capacity, by an iterative procedure. Simulations
at one or several additional temperatures are performed when
needed to ensure an accurate description of the heat capacity
throughout the transition region. The temperature dependence
of the heat capacity is computed by reweighting techniques
[27], using data from all simulated temperatures.

The efficiency of MC simulations depends strongly on the
choice of move set. We use a set of six elementary moves.
Two of the moves update the internal structure of individual
chains. The first of these is a single-bead move, which turns a
randomly selected nonend bead about the axis through its two
nearest neighbors. The second one is a pivot-type rotation,
where the rotation axis goes through a randomly selected

nonend bead in a random direction. Beads on one side of the
selected one are turned as a rigid body about this axis.

The other four moves are rigid-body translations and rota-
tions of either a single chain or a cluster of chains. In the clus-
ter moves, the clusters are constructed probabilistically using
a Swendsen-Wang-type algorithm [28,29]. The construction
is recursive and begins by picking a random first cluster
member, i. Then each chain j that has an interaction energy
Ei j < 0 with chain i is added to the cluster with probabil-
ity pi j = 1 − eβEi j , where β = 1/kBT is inverse temperature
(kB is Boltzmann’s constant). This step is iterated until the
list of potential further cluster members is empty. Finally, the
resulting cluster is subject to a trial rigid-body move. The
form of the statistical weight pi j is such that no Metropolis
accept-reject criterion is needed; any sterically allowed move
is accepted.

For each choice of N , V , T , and HP sequence, a set of one
to eight trajectories is generated, each comprising 107 MC
sweeps, where one MC sweep corresponds to nN elemen-
tary updates. Multiple runs are used for the largest systems
to ensure statistical significance. Statistical uncertainties are
computed using a jackknife procedure [30].

C. Finite-size scaling theory

Droplet formation by phase separation in finite systems is a
topic that has been extensively studied over the years [21–24].
This body of research provides a general framework for finite-
size scaling analysis, which has been tested on systems such
as the lattice gas and the Lennard-Jones fluid [24–26]. This
section outlines some key results that will be used in Sec. III.

We consider a d-dimensional system of N particles in a
volume V at temperatures T below an assumed critical tem-
perature Tc. A schematic phase diagram can be found in Fig. 1.
Under grand-canonical conditions, for a given T < Tc and
large system size, the system can be in one of two bulk phases
with respectively low (ρL) and high (ρH ) density, depending
on the chemical potential. At some value of the chemical
potential, a first-order transition occurs between these phases.
Under canonical conditions, for T < Tc and densities ρ such
that ρL(T ) < ρ < ρH (T ), the system is in a mixed two-phase
regime, bounded by the binodal curve, Tb(ρ) (Fig. 1).

Consider now a finite but large system under canonical
conditions, for a given T < Tc and ρ just above ρL(T ) (Fig. 1).
At some ρ

(N )
L (T ) > ρL(T ), the system transitions from a

supersaturated dilute state to a mixed two-phase state. It has
been shown that this mixed state consists of a single large
droplet of the high-density phase in a low-density background,
and that the linear dimension R of the droplet scales as
R ∼ N1/(d+1) with N [21–23]. This result can be rigorously
proven for the two-dimensional lattice gas [31]. In brief, the
size of the critical droplet can be viewed as the result of
two competing mechanisms for handling a particle excess,
δN . One is that the particle excess is absorbed as a density
fluctuation in the low-density phase, the free-energy cost of
which scales as (δN )2/N . The other mechanism is that a finite
fraction of the particle excess forms a dense droplet, the free-
energy cost of which scales as the surface area of the droplet,
that is, (δN )(d−1)/d . Assuming that droplet formation sets in
when these two costs become comparable, one finds that the
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FIG. 1. Schematic temperature-density phase diagram of a sys-
tem that undergoes phase separation below an upper critical tem-
perature, Tc, into two phases with respectively low (ρL) and high
(ρH ) densities. In other systems, phase separation may occur above a
lower critical temperature. Below the so-called binodal curve, Tb(ρ ),
the low- and high-density phases coexist. At the left branch of the
curve, the system transitions between the low-density phase and a
mixed two-phase regime. In finite systems, the transition temper-
ature, T (N )

b (ρ ), is shifted (dashed line). Finite-size scaling theory
predicts T (N )

b (ρ ) to converge toward Tb(ρ ) following the scaling
relation in Eq. (2) (arrow).

linear size of the critical droplet scales as R ∼ (δN )1/d ∼
N1/(d+1) [21–23].

Using this result, it follows that the finite-size shift of
the transition density scales as ρ

(N )
L (T ) − ρL(T ) ∝ N−1/(d+1).

Correspondingly, with ρ rather than T fixed, the transition
temperature has a finite-size shift, given by

T (N )
b (ρ) − Tb(ρ) ∝ N−1/(d+1). (2)

Note that this relation implies that the convergence of T (N )
b

toward its value for infinite system size, Tb, is slow. For com-
parison, the finite-size shift of a regular temperature-driven
first-order phase transition scales as N−1 [32].

In finite systems, the transition is not only shifted but
also smeared. At fixed ρ, the smearing, or width, of the
transition, wT , may be estimated as the temperature interval
over which |β�F | � 1 [23,26], where �F is the free-energy
difference between the states with and without a droplet.
Since �F vanishes at T (N )

b , a Taylor expansion yields β�F =
−[�E/kBT 2]T =T (N )

b
[T − T (N )

b ] to leading order. Here �E is
the energy gap, which, assuming that particle interactions are
negligible in the low-density phase, should scale as the droplet
volume, that is,

�E ∼ Nd/(d+1). (3)

It then follows that the smearing of the transition scales as

wT ∝ N−d/(d+1). (4)

When analyzing the droplet transition, a useful property is
the specific heat, CV /N , which exhibits a peak at the transition
and can be computed from the energy fluctuations, using
CV = (〈E2〉 − 〈E〉2)/kBT 2. The transition temperature, T (N )

b ,
and smearing, wT , may be defined as, the position and width

FIG. 2. MC evolution of the energy density E/N in a run with
N = 640, T ≈ T (N )

b , and ρb = 0.025b−3, for sequence A. Low and
high energies correspond to states with and without a droplet, respec-
tively. During the course of the run, droplet formation and dissolution
occur several times.

of the specific heat peak, respectively. With increasing N , the
width of the peak, wT , decreases [Eq. (4)], whereas the height
of the peak, CV,max/N , increases. With a two-state approxima-
tion, one has CV,max ≈ (�E )2/4kBT 2, where �E , as before,
is the energy gap. Using this relation along with Eq. (3), one
finds that

CV,max/N ∼ N (d−1)/(d+1). (5)

A slightly different behavior, namely CV,max/N ∼ Nd/(d+1),
has been suggested [26], based on the assumption that
CV,max/N scales inversely proportional to wT . However, unlike
at a regular temperature-driven first-order phase transition,
in the case of droplet formation, the area under the specific
heat peak vanishes in the large-N limit, since �E/N does
so. Hence CV,max/N should grow slower than w−1

T ∼ Nd/(d+1)

with N , as it does in Eq. (5).

III. RESULTS

Using the model and MC methods described in Sec. II,
we conduct thermodynamic simulations of droplet formation
by the two sequences A (HPHPHPHPHP) and B (HHHHH-
PPPPP) for a range of system sizes, with up to N = 640
chains. The volume V is adjusted so as to have a given bead
density ρb = nN/V . Most of the calculations are for a bead
density of ρb = 0.025b−3, where b is the link length of the
chains. For comparison, some data for ρb = 0.0125b−3 and
ρb = 0.0375b−3 are also included. The simulations focus on
temperatures near the onset of droplet formation and were
sufficiently fast for droplets to form and dissolve several times
during the course of a run, even for the largest systems, as
illustrated by Fig. 2.

A. Overall characterization

At high temperatures, the simulated systems are in a dis-
ordered state, with only small clusters present (� 10 chains).
As the temperature is reduced, markedly larger clusters, or
droplets, appear. Their formation sets in abruptly, in a narrow
temperature interval, where states both with and without
droplets are observed. Figure 3 shows representative snap-
shots of configurations with droplets for both sequences, from
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FIG. 3. Snapshots showing representative droplet-containing configurations from simulations near the temperature at which droplet
formation sets in for N = 640 and ρb = 0.025b−3. Each bead is shown as a dot. (a) Sequence A, for which a single large droplet is observed.
(b) Sequence B, which typically forms a few smaller droplets.

simulations with 640 chains. For sequence A, a single large
droplet can be seen, in a dilute background with only small
clusters. For sequence B, more than one droplet is often
present, and the droplets are smaller than those formed by
sequence A. A single large droplet is what one expects to
observe if droplet formation occurs through phase separation
[21–23].

If phase separation occurs, then the onset of droplet forma-
tion is, furthermore, expected to be associated with a diver-
gence in the specific heat (Sec. II C). Consistent with this, for
sequence A, specific-heat data from simulations with 10–640
chains show a peak that steadily gets higher and narrower
with increasing system size [Fig. 4(a)]. The corresponding
data for sequence B follow the same trend for small systems
[Fig. 4(b)]. However, for this sequence, at some system size
(around 80 chains), the specific heat stops growing higher
and becomes multimodal. This behavior reflects the fact that
sequence B forms more than one droplet in the larger systems

(Fig. 3) and implies that this sequence does not undergo
LLPS.

B. Finite-size scaling analysis

The above results indicate that, unlike sequence B,
sequence A may undergo LLPS. To determine whether this is
the case, we next compare simulation data for several quanti-
ties with predictions from finite-size scaling theory (Sec. II C),
focusing on sequence A.

At the onset of droplet formation, due to the coexistence of
states with and without a droplet, the probability distribution
of energy should be bimodal, as it is at a regular temperature-
driven first-order phase transition. In the latter case, the en-
ergy gap between the two phases scales linearly with system
size, corresponding to a nonzero specific latent heat. How-
ever, at the droplet transition, the energy gap �E should
scale as the critical droplet volume or �E ∼ N3/4 [Eq. (3)].

FIG. 4. Temperature dependence of the specific heat, CV /N , from simulations with 10–640 chains for fixed ρb = 0.025b−3. The curves are
computed by reweighting methods [27] using data from canonical MC simulations at several temperatures. Shaded bands indicate statistical
uncertainties but are in many cases too narrow to be visible. (a) For sequence A, the specific heat exhibits a single peak that steadily gets higher
and narrower with increasing system size. (b) For sequence B, the same trend is observed but only for small systems. In the larger systems,
sequence B forms more than one droplet, which leads to a multimodal specific heat.
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FIG. 5. Probability distribution of the shifted and rescaled energy
Ẽ = (E + a)/N3/4 (with a = 5Nε) from simulations with 160, 320,
and 640 chains for sequence A at T ≈ T (N )

b and ρb = 0.025b−3. Con-
sistent with the predicted scaling relation �E ∼ N3/4 [Eq. (3)], the
gap between the two peaks in Ẽ stays essentially constant, whereas
the statistical suppression of intermediate energies gets stronger with
increasing system size.

Figure 5 shows the probability distribution of the shifted and
rescaled energy Ẽ = (E + a)/N3/4, where a is a parameter
independent of E , for T ≈ T (N )

b and ρb = 0.025b−3, for our
three largest systems. With larger system size, the probability
distribution of Ẽ becomes increasingly bimodal in character,

due to a stronger suppression of intermediate energies. By
contrast, the gap between the two peaks in Ẽ stays essentially
unchanged, in perfect agreement with the predicted scaling of
�E [Eq. (3)].

Assuming this scaling of �E with N [Eq. (3)], the maxi-
mum specific heat, CV,max/N , should scale as N1/2 [Eq. (5)].
Figure 6(a) shows CV,max/N data against N in a log-log plot,
for three bead densities ρb. Not surprisingly, the data for
small systems do not follow the predicted scaling relation
for large N . However, the data for the four largest systems
(N = 80–640) match well with the predicted form for all three
bead densities.

Figure 6 also illustrates the finite-size smearing and shift of
the transition, for the same three bead densities. The smearing
wT is expected to scale inversely proportional to the energy
gap �E or wT ∼ N−3/4 [Eq. (4)]. From the log-log plot in
Fig. 6(b), it can be seen that the data for wT indeed are
consistent with the predicted scaling for large N .

The finite-size shift of the transition temperature,
T (N )

b − Tb, is predicted to scale as N−1/4 [Eq. (2)]. Therefore,
Fig. 6(c) shows the data for T (N )

b plotted against N−1/4. As can
be seen from this figure, fits of the form T (N )

b = Tb + cN−1/4,
with Tb and c as parameters, indeed provide a good description
of the large-N data (80 � N � 640). It is worth noting that the
scaling of the shift as N−1/4 or inversely proportional to the
linear size of the critical droplet, implies a slow convergence

FIG. 6. Finite-size scaling analysis at three bead densities ρb (0.0125b−3, 0.0250b−3, 0.0375b−3) for sequence A using data from
simulations with 5–640 chains. Lines represent fits of predicted scaling expressions from Sec. II C to data for the four largest system sizes.
(a) Log-log plot of the maximum specific heat, CV,max/N , against N . The lines are fits of the form CV,max/N ∼ N1/2 [Eq. (5)]. (b) Log-log
plot of the finite-size smearing of the transition, wT , against N , where wT is computed as the length of the temperature interval over which
CV > 0.8CV,max. The lines are fits of the form wT ∼ N−3/4 [Eq. (4)]. (c) The transition temperature T (N )

b plotted as a function of N−1/4. The
lines are fits of the form T (N )

b = Tb + cN−1/4 [Eq. (2)], with c and the transition temperature for infinite system size, Tb, as fit parameters. The
fitted values of Tb are TbkB/ε = 2.92, 3.10, and 3.23 for ρbb3 = 0.0125, 0.025, and 0.0375, respectively.
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FIG. 7. Mass fraction of clusters with m chains, P(m), as ob-
tained using N = 640, ρb = 0.025b−3 and a temperature near the
onset of droplet formation. Alternatively expressed, P(m) is the
probability that a randomly selected chain belongs to a cluster with
m chains. Sequence A forms droplets containing roughly 200 of
the 640 chains, whereas intermediate-mass clusters are statistically
suppressed.

of T (N )
b toward Tb with increasing N . In fact, for our largest

systems with 640 chains, T (N )
b is still about 8% smaller than

the fitted value of Tb.
To summarize the above analysis, for all properties studied,

we find that the simulation data for sequence A are consistent
with the theoretical predictions, which provides strong evi-
dence that this sequence indeed undergoes LLPS.

C. Droplet size and structure

The specific heat data discussed in Secs. III A and III B
show that the sequences A and B, despite sharing the same
length and composition, have different phase behaviors. To
understand this difference, we next examine some basic struc-
tural properties of the droplets formed by these sequences.
Throughout this section, we focus on data obtained using
N = 640, ρb = 0.025b−3 and a temperature near the onset of
droplet formation.

One important characteristic is the mass of the droplets or
the number of chains that they contain. It was already noted

that sequence A forms more massive droplets than sequence B
(Fig. 3). To quantify this assertion, Fig. 7 shows cluster mass
distributions for both sequences. From this figure, it can be
seen that, in these systems, a typical sequence A droplet
accommodates about 200 chains, whereas the corresponding
number for sequence B is less than 50. Also worth noting
is the statistical suppression of intermediate-mass clusters,
which is particularly pronounced for sequence A. If phase sep-
aration occurs, then one expects to observe a single dominant
droplet [21–23], as is the case for sequence A.

Another basic characteristic is the density of the droplets.
Figure 8 shows average bead-density profiles around the cen-
ter of mass of large clusters. Here a given cluster is defined
as large if the number of chains exceeds a threshold (75
for sequence A and 20 for sequence B), and the density is
calculated as a function of the distance from its center of mass,
rc.m., counting all beads, whether or not they belong to a chain
in the cluster. The total density is split into H and P densities.
The calculated density profiles for sequence A are essentially
flat at both small and large rc.m. [Fig. 8(a)], suggesting that
these densities are representative for the interior of droplets
and the dilute background, respectively. Using this property,
we find that the density inside droplets is more than a factor
40 higher than that of the dilute background (where the total
bead density is 0.019b−3). Note also that the droplets are
homogeneous in composition; the H to P ratio is virtually
independent of rc.m..

The droplets formed by sequence B exhibit, by contrast, a
micellar structure, with a high-density core composed almost
exclusively of H beads and a corona of mainly P beads
[Fig. 8(b)]. The formation of a hydrophobic core is possible
due to the block structure of this sequence. However, as the
sequence is short and contains a stretch of P beads, this
core can only accommodate a small number of chains, which
explains the low mass of droplets formed by this sequence
(Fig. 7). The mechanisms of micelle formation by block
copolymers have been extensively studied by both theory and
simulation [33–35].

While we have seen above that sequence A phase separates,
it is still not immediately clear whether the dense phase is
liquidlike. Therefore, we end with a brief assessment of the

FIG. 8. Bead-density profiles calculated as a function of the distance rc.m. from the center of mass of large clusters for (a) sequence A and
(b) sequence B. The data were obtained using N = 640, ρb = 0.025b−3 and a temperature near the onset of droplet formation. A cluster is
defined as large if the number of chains is above a cutoff (75 and 20 for sequences A and B, respectively). The total density is split into H and
P densities. For comparison, a perfect close-packing of the beads would give a total density of 3.35b−3.
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mobility of the chains in droplets formed by this sequence.
The analysis uses configurations stored at a time interval of
103 MC cycles, which is much shorter than the average droplet
lifetime of about 2 × 105 MC cycles. As before, a droplet
is a cluster with more than 75 chains. We first consider the
exchange of chains between droplets and their surroundings.
To this end, whenever two consecutive snapshots both contain
droplets, the chain contents of the droplets are compared. Over
this timescale (103 MC cycles), it turns out that, on average,
44% of the chains present in the original droplet are lost,
indicating a fast exchange with the surroundings compared to
the lifetime of a droplet.

To get a measure of whether also the internal structure of
a droplet is dynamic, we monitor changes in chain-chain con-
tacts within droplets. To this end, given a droplet-containing
snapshot, we identify all pairs of chains in the droplet that
are in contact (interaction energy < 0) and where each chain
also interacts with at least 15 other chains. The latter condition
serves to focus the analysis on chain pairs buried in the
interior of the droplet. Whenever a droplet is present also in
the next snapshot (103 MC cycles later), we check the fate
of the contacts identified in the first snapshot. On average,
we find that 54% of the pairs remain in contact, whereas
only about 11% are broken due to at least one of the chains
leaving the droplet. This leaves 34% of the pairs separating
due to internal rearrangements of the droplet, showing that
the internal structure is far from rigid. Thus, the droplets are
dynamic with respect to both exchange with the surroundings
and their internal organization.

IV. DISCUSSION AND CONCLUSIONS

It is well known that finite-size scaling theory provides a
powerful tool for analyzing phase transitions in spin models
as well as vapor-to-droplet transitions in simple liquids. In
this manuscript, we have applied these ideas to investigate the
sequence-dependent phase behavior of a simple explicit-chain
model for protein droplet formation.

Of the two specific sequences studied, the block sequence
B turned out not to undergo LLPS. It is worth noting that
from data for small systems, one may be led to the opposite
conclusion. In particular, the observed peak in the specific heat
is for small systems higher for sequence B than it is for the
alternating sequence A, which does phase separate. However,
above some system size (about 80 chains), the maximum
specific heat does not increase further for sequence B, in
contrast to what is observed for sequence A and to what one
expects if phase separation takes place.

For sequence B, we observed micelle formation rather
than the formation of a droplet of a dense bulk phase. Mi-
celle formation was found to set in at a kT of about 5.
Note that the system need not remain micellar in character
well below this temperature. In particular, it is conceivable
that the global free-energy minimum of this system contains
bilayer structures at low temperatures. However, a proper
investigation of the low-temperature phase structure is
computationally challenging and beyond the scope of the
present article.

To determine whether sequence A phase separates, simu-
lation data for several properties and a range of system sizes
were compared with predictions from finite-size scaling the-
ory. In this way, the phase behavior can, in principle, be inves-
tigated in a systematic fashion, but it must be remembered that
the theoretical results are leading-order predictions for large
systems and therefore not necessarily valid for the system
sizes amenable to simulation. It turned out, however, that a
scaling behavior consistent with the predicted asymptotic one
could be observed for all properties studied. Hence, taken
together, the results of this analysis leave little doubt that
sequence A does indeed phase separate.

It is worth noting that sequences with alternating hy-
drophobic and polar residues tend to have a high β-sheet
propensity [36,37]. The biophysical model used in our present
calculations cannot describe β-sheet formation, due to the
lack of hydrogen bonding. However, it has been shown that
droplet formation through LLPS sometimes is followed by
maturation into a solidlike state containing amyloid fibrils
[38]. In this case, LLPS represents a first step toward β-sheet
formation.

Among the specific scaling relations studied, the finite-size
shift of the transition temperature deserves special attention.
This shift scales inversely proportional to the linear size,
rather than the volume, of the critical droplet, so that T (N )

b −
Tb ∼ N−1/4 [Eq. (2)]. This slow convergence of the transition
temperature T (N )

b toward its value for infinite system size,
Tb, makes finite-size scaling analysis an important ingredient
when determining the phase diagram from simulation data.
This conclusion is highlighted by the magnitude of the relative
shift of the transition temperature for sequence A, which was
found to still be ∼8% for the largest systems with 640 chains.

Simulation methods, based on explicit-chain or field-
theory representations, offer some distinct advantages over
mean-field methods in the study of sequence-dependent
biomolecular phase separation. However, to exploit the full
potential of the simulations, the system-size dependence of
the generated data needs to be understood and accounted
for. The results presented here demonstrate that a systematic
analysis of the system-size dependence can be both feasible
and rewarding.

Note added in proof. We recently became aware of Ref.
[39]. This article studied finite-size effects on pair distribution
functions in a model for biomolecular LLPS. It did not use the
theoretical framework employed in the present article.
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