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A genetic toggle switch would involve multistep reaction processes (e.g., complex promoter activation),
creating memories between individual reaction events. Revealing the effect of this molecular memory is
important for understanding intracellular processes such as cellular decision making. We propose a generalized
genetic toggle switch model and use a generalized chemical master equation theory to account for the memory
effect. Interestingly, we find that molecular memory can induce bimodality in this memory system although the
corresponding memoryless counterpart is not bimodal. This finding implies a plausible alternative mechanism for
phenotypic switching that is driven by molecular memory rather than by ultrasensitivity or cooperative binding
as shown in previous studies. We also find that unbalanced memories arising from the processes by which
mutually inhibiting transcription factors are produced can give rise to asymmetric bimodality without changing
the positions of two peaks in the bimodal protein distribution. Given the prevalence of molecular memory in
gene regulation, our findings would provide insights into cell fate decisions in growth and development.
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I. INTRODUCTION

Phenotypic switching, which often relies on bimodal dis-
tributions of gene expression levels, has been observed in
bacteria [1], yeast [2], and cancer cells [3] with single-cell
experimental methods. It has been argued that stochastic
transition in gene activity is a cause of phenotypic diversity in
a population of genetically identical cells [1,4] and is critical
for the cell population survivial in a fluctuating environment
[5]. Closely related to phenotypic switching, bimodality (i.e.,
two peak modes of a distribution) is usually associated with
different physiological states of a living system, such as
different stem-cell fates, different disease states, and cancer
subtypes [1,3,6,7]. Therefore, revealing the mechanism of
phenotypic switching or bimodality is of significance.

Several mechanisms underlying bimodality have been
identified to date. One common belief is that bimodality is
directly related to deterministic bistability, i.e., two determin-
istic stable steady states of a system in the absence of noise
[8]. Common examples of bimodality include lactoseoperon
of Escherichia coli [9,10], λ phage lysis or lysogeny circuit
[11], competence development for genetic transformation in
Bacillus subtilis [12]. These systems have been studied both
experimentally and theoretically as well as in the context of
synthetic biology, and it has been shown that bistability and
switching are two important properties of gene regulatory
networks [8,13,14]. The second mechanism is noise-induced
bimodality, i.e., the noise can induce a bimodal response that
does not occur in the deterministic case [15–19]. For instance,
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using a synthetic system in budding yeast, To et al. found that
positive feedback involving a promoter with multiple tran-
scription factor (TF) binding sites can induce a steady-state
bimodal response without cooperative bindings of the TFs
[16]. The third mechanism is noise filter-induced bimodal-
ity, which results from the fact that a nonlinear noise filter
characterized by a Hill function can transform a unimodal
distribution into a bimodal one of transcription rates in a cell
population [20]. For example, Ochab-Marcinek et al. found
that a unimodal distribution of TFs over a cell population can
generate a bimodal steady-state output without cooperative
binding of the TFs [20].

We note that the modeling of the reaction systems corre-
sponding to the above mechanisms is based on the Markovian
assumption, that is, the stochastic motion of the reactants
is assumed to be uninfluenced by previous states and only
by the current state. This memoryless property implies that
the reaction kinetics can be described as a Poisson process,
which is characterized by an exponential distribution of the
interevent time between consecutive reaction events [21–23].
However, gene expression is a complex stochastic process
and in particular, epigenetic regulation, gene activation, and
transcription would involve numerous chemical events: from
repressors falling off DNA to RNA polymerase elongating
nascent transcripts, and to protein translation. These sub-
processes can lead to nonexponential time intervals between
transcription windows or during protein synthesis even if
every single elementary reaction involved is rate limiting
[4,24,25]. In other words, a multistep reaction process can
create molecular memory between single reaction events, and
this case cannot be described as a Markovian process. As a
matter of fact, such molecular memory can significantly affect
reaction kinetics and gene expression levels. For example, a
nonexponential waiting time distribution between the arrival
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of mRNA bursts can amplify gene expression noise [26,27],
and the memory resulting from time delay can cause a sys-
tem of stochastic gene expression to oscillate, although its
deterministic counterpart does not oscillate under the same
condition of parameters [28]. In addition, molecular memory
can increase the average residence time near a stable state
of a bistable gene system [29]. In spite of these facts on
memory effects, many questions remain unsolved, e.g., how
molecular memory contributes to bimodality and whether it
can give rise to the bimodality in a biochemical network
without ultrasensitivity or cooperative interactions? In order
to address these questions, we will introduce a generalized
toggle switch model (gTSM) without cooperative bindings,
where two TFs mutually repress each other [18].

For Markovian reaction systems or networks such as ge-
netic toggle switch models, there have been many methods of
modeling and analysis. On the modeling side, there have been
different approaches to model biochemical systems where
molecular memory would implicitly exist [25,28,30–32]. The
most straightforward way is to model these systems with
both the total biochemical reactions and the known parameter
values if available. But it is difficult to identify all rate
limiting elementary reactions and measure/estimate parameter
values. Even if all model details are given, the computational
complexity would also hamper the revealing of the memory
effect [25–28]. An alternative way is to reduce dimensionality
while keeping the system tractable without losing its impor-
tant dynamical properties. For example, an explicit nonexpo-
nential waiting time or delay is used to model a multistep
reaction process and this is formally correct in the limit
of many steps. Some successful examples include queuing
models [25,30,33–35], delay models [36–38], and continuous
time random walk (CTRW) models [39–42]. On the analysis
side, there have been rather few theories for non-Markovian
processes so far. This is because reliable mathematical tools
and machineries in the traditional Markovian theory cannot
be directly translated into those for non-Markovian reaction
systems.

In this paper, we adopt a CTRW framework to model and
analyze the non-Markovian gTSM. First, we introduce general
(exponential or nonexponential) waiting-time distributions for
the reactions involved in the reaction system. Then, we estab-
lish a stationary generalized master equation for this system,
which explicitly captures the effect of internal or external
variability in the waiting times between reaction events on
the probabilistic behavior of the system [32]. This frame-
work lays a solid theoretical basis and provides an effective
mathematical tool for studying various genetic toggle switch
models with molecular memory [24,25,32,42]. In addition,
based on the framework, we find interesting phenomena due
to the effect of molecular memory, e.g., molecular memory
can induce phenotypic switching.

The rest of this paper is organized as follows. In Sec. II, we
first explain how a complex protein synthesis process creates
molecular memory, and introduce this memory to the gTSM
without the cooperative binding of TFs. Then, we develop
a stationary generalized master equation and a stationary
reaction rate equation to study the dynamics of the gTSM,
where the former actually converts a non-Markovian problem
into a Markovian one whereas the later can help us predict

the system’s the macroscopic behavior [or average behavior]
underlying the memory effect. In Sec. III, we present main
results on how molecular memory rather than cooperative
binding drives phenotypic switching. In Sec. IV, we conclude
this paper by discussing our results and their applicability.

II. BACKGROUND AND MODELS

A. The complex process of gene expression can
create molecular memory

Generally, each birth or death of a macromolecule (e.g.,
protein) could involve several intermediate reaction steps, thus
creating a memory between individual reaction events. For
example, the process of gene promoter activation can create
narrowly distributed gestation periods between transcription
windows, and this implies a multistep process, which stems
from the fact that the chromatin template accumulates over
time until the gene promoter becomes active [25]. Some
studies have shown that the arrival time of messenger RNA
(mRNA) or protein bursts is nonexponentially distributed
[25,27]. In addition, transcription delay may lead to the de-
layed response time of a gene system [28,29]. These examples
indicate that molecular memory exists extensively in gene
expression.

Molecular memory can be characterized by nonexponential
waiting-time distribution such as γ or Weibull distribution
[25]. Here we take protein synthesis as an example to explain
the biophysical foundation of γ waiting-time distribution. As
mentioned above, the synthesis of a protein involves a multi-
step process where each single-step process is assumed as an
elementary reaction. Note that although the waiting time for
each single-step reaction follows an exponential distribution,
the waiting time for the entire multistep reaction process in
general does not follow an exponential distribution but follows
a γ distribution [see Fig. 1(a)]. If this multistep process
is regarded as the composition of n identical subprocesses
where the waiting time for each single-step reaction obeys an
exponential distribution characterized by parameter μ, then
the waiting time distribution [denoted by ψ (t )] for the entire
reaction process is the n-fold convolution of the exponential
distribution. Mathematically, this can be described as [24,43]

ψ (t ) = [μe−μt ∗ μe−μt ∗ . . .]︸ ︷︷ ︸
n times

= t n−1e−μtμn

(n − 1)!
, (1)

where * denotes convolution and n is a shape parameter. This
distribution is also known as the Erlang distribution (a special
case of γ distribution, i.e., n is an integer). Note that we only
consider unbranched multistep processes in this example. If
a branched multistep process (i.e., in the multiple process
analyzed above, some single reaction itself is a multistep
reaction process) is introduced, the waiting-time distribution
ψ (t ) in Eq. (1) is different and could become more complex.
Moreover, the branched process may change the shape of the
waiting-time distribution for the entire process. Nevertheless,
the resulting distribution can be well approximated by a γ dis-
tribution with the same mean and variance [34]. In addition, a
large number of experimental measurements on waiting times
offer another possibility for the versatility of γ distributions
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FIG. 1. Schematic diagram that maps a multistep reaction process into a single-step reaction process. (a) A multistep process for protein
synthesis, where the waiting time for each single-step reaction is exponentially distributed. (b) One-step reaction for protein synthesis, where
the reaction waiting time is assumed to follow a γ distribution characterizing molecular memory that is introduced to simplify the modeling
of the multistep reaction process.

[43]. Therefore, we will focus on multistep processes with γ

waiting-times distribution in the following analysis.

B. A generalized toggle switch model

A bistable genetic toggle switch is often used to ex-
plain cell fate differentiation and decision making, e.g., lac-
toseoperon of E. coli [9,10], λ phage lysis or lysogeny circuit
[11], and competence development for genetic transformation
in Bacillus subtilis [12]. The model of a synthetic genetic
toggle switch constructed in E. coli [44] provides a theoret-
ical basis for analyzing bistability and state switching. This
bistable system consists of two genes, lacI and tetR, which
mutually repress each other via promoter binding [44]. The
protein product of one gene (lacI or tetR) first binds to the pro-
moter of the other gene as a TF and then represses its output.
Subsequently, this protein activates its lineage-determining
downstream targets in each differentiating cell. Indeed, some
protein molecules themselves can also form a polymer com-
plex to produce protein homomultimers, which in turn bind to
a promoter site and inhibit the gene expression, thus carrying
out gene regulation. To better explain the complex dynamics
of mutually repressing genes lacI and tetR, we construct a
synthetic genetic toggle switch model, which is schematically
depicted in Fig. 2(a).

The genetic model shown in Fig. 2(a) assumes that two
genes A and B mutually repress each other via promoter

binding (possibly via protein homomultimer binding). Gene
activation and transcription would involve numerous chem-
ical reaction events, e.g., those from repressors falling off
DNA to RNA polymerase elongating nascent transcripts, and
even to protein translation, as well as protein polymeriza-
tion, and other regulated components involved in gene ex-
pression such as repressors, TFs and mediators. All these
subprocesses can affect the final expression level of a gene.
Each process including the protein synthesis and the pro-
duction of protein homomultimers that bind the promoter
site can be viewed as a multistep process and described by
a sequence of chemical reactions. If all biological details
including reactions and the corresponding reaction rate pa-
rameter values are available, the involved reaction processes
can be described as Markovian ones, implying that all the
waiting-time distributions between inter-reaction events are
exponential. But unfortunately, it is difficult or even impos-
sible to access the complete information for this Markovian
modeling due to some unobservable variables. Nevertheless,
we can alternatively integrate a sequence of reactions with
exponential waiting times into a single reaction with non-
exponential waiting time or with molecular memory. This
treatment in generally does not lose the essential property
of reaction kinetics. Therefore, we introduce a stochastic
model of the genetic toggle switch with molecular memory,
which consists of the following four reactions [referring to
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FIG. 2. (a) Schematic of a genetic toggle switch model, where gene A(B) is transcribed into mRNA and further translated into protein A(B).
Dimer A2, formed by protein polymerization, binds to promoter B and inhibits the gene B activity, thus repressing the transcription of this gene.
Similarly, dimer B2 binds to promoter A and represses the expression of gene A. (b) A generalized genetic toggle switch model corresponding
to (a), which consists of four chemical reactions involving protein generation and degradation for which the waiting-time distributions are
characterized by γ distribution ψX

g (t ; n) and exponential distribution ψX
deg(t ; n) (X = A, B), respectively.
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Fig. 2(b)]:

Gene-A
ψA

g (t ;n)−−−−→ Gene-A + Protein-A,

Protein-A
ψA

deg(t ;n)−−−−→ ∅,
(2)

Gene-B
ψB

g (t ;n)−−−−→ Gene-B + Protein-B,

Protein-B
ψB

deg(t ;n)−−−−→ ∅,

where ψX
g (t ; n) is the probability density function of the

reaction waiting time for the synthesis of protein A or B, and
ψX

deg(t ; n) is that for the degradation of protein A or B. Here
n=(nA, nB)T represents the system’s state vector at time t with
nA, nB being the molecule numbers of reactive proteins A and
B at time t , and T represents transpose. In the following, we
assume that ψX

g (t ; n) obeys a γ distribution with parameter kX

and rate function λX
g (n) (an inverse scale parameter), which

is a nonexponential waiting-time distribution if kX �= 1. In
addition, we assume that ψX

deg(t ; n) follows an exponential
distribution. Thus, the four reaction waiting-time distributions
are given by

ψA
g (t ; n) =

(
λA

g (n)
)kA

�(kA)
t kA−1e−λA

g (n)t ,

ψB
g (t ; n) =

(
λB

g (n)
)kB

�(kB)
t kB−1e−λB

g (n)t , (3a)

ψA
deg(t ; n) = λA

degnAe−λA
degnAt ,

ψB
deg(t ; n) = λB

degnBe−λB
degnBt , (3b)

where �(kA), �(kB) are γ functions with kA > 0, kB > 0.
The rate function λX

g (n) (X = A, B) is described by a Hill
function that explains the mutual repression characteristic of
proteins A and B, that is, λA

g (n) = gA/(1 + rAnH
B ), λB

g (n) =
gB/(1 + rBnH

A ), where gA, gB represent the maximal produc-
tion rates of proteins A and B respectively, λA

deg, λ
B
deg are the

degradation rates of proteins A and B, respectively, rA, rB are
repression strengths representing the ratio of the promoter
binding rate to the dissociation rate of protein A (B), and H is
a Hill coefficient. Note that H = 1 implies the noncooperative
binding of a single protein, that is, a protein binding to any site
does not affect the others even if several binding sites exist,
while H > 1 implies the cooperative binding of two or more
of the same proteins, that is, the first protein molecule bound
can facilitate the binding of the second one [45]. We term the
gene model shown in Fig. 2(b) as a gTSM. Note that shape
parameters kA,kB can determine not only the shapes of the
waiting-time distributions but also the relationship between
the gTSM and the conventional TSM, e.g., the former reduces
to the latter if two γ distributions are exponential ones (i.e., if
kA = 1,kB = 1). We emphasize that the gTSM with H = 1 is
nothing but a genetic toggle switch model without cooperative
binding.

C. A mathematical model

According to the chemical CTRW theory [42] and the
stationary generalized chemical master equation (sgCME)

theory [32], we can firstly derive the sgCME for the gTSM
(see Appendix A for details). If the stationary joint probability
distribution function of the protein molecule number exists
and is denoted by p(n) = p(nA, nB), the sgCME takes the
form (

E−1
A − 1

)(
KA

g (nA, nB)p(nA, nB)
)

+ (EA − 1)
(
KA

deg(nA, nB)p(nA, nB)
)

+ (
E−1

B − 1
)(

KB
g (nA, nB)p(nA, nB)

)
+ (EB − 1)

(
KB

deg(nA, nB)p(nA, nB)
) = 0, (4)

where E is a step operator, defined by its effect
on an arbitrary function f (nA, nB) as E−1

A f (nA, nB) =
f (nA − 1, nB),EA f (nA, nB) = f (nA + 1, nB), and functions
KX

g (nA, nB) and KX
deg(nA, nB) represent the effective transition

propensity functions for the generation and degradation reac-
tion of proteins X (X = A, B), respectively, which depend only
on state (nA, nB) and is independent of the prior history. Im-
portantly, we can show that KX

g (nA, nB) and KX
deg(nA, nB) are

explicitly expressed by the given waiting-time distributions,
that is,

KX
i (n) =

∫ +∞
0 ψX

i (t ; n)
∏

{Y , j}�={X,i}
[
1 − �Y

j (t ; n)
]
dt∫ +∞

0

∏
Y∈G, j∈R

[
1 − �Y

j (t ; n)
]
dt

,

X ∈ G = {A, B}, i ∈ R = {g, deg}, (5)

where �X
i (t ; n) is the cumulative distribution function cor-

responding to the waiting-time distribution ψX
i (t ; n), i.e.,

�X
i (t ; n) = ∫ t

0 ψX
i (τ ′; n)dτ ′. By substituting Eq. (3) into

Eq. (5), we obtain

KA
g (n) =

λA
g (n)

∑kB−1
β=0

(
β + kA − 1

β

)
(ωB(n))β (ωA(n))kA−1

∑kA−1
α=0

∑kB−1
β=0

(
α + β

α

)
(ωA(n))α (ωB(n))β

,

(6a)

KB
g (n) =

λB
g (n)

∑kA−1
α=0

(
α + kB − 1

α

)
(ωA(n))α (ωB(n))kB−1

∑kA−1
α=0

∑kB−1
β=0

(
α + β

α

)
(ωA(n))α (ωB(n))β

,

(6b)

where ωA(n) = λA
g (n)/�(n), ωB(n) = λB

g (n)/�(n) with
�(n) = λA

g (n) + λB
g (n) + λA

degnA + λB
degnB. Note that if

ψX
deg(t ; n) follows an exponential distribution, the effective

reaction propensity functions of proteins A and B are
KA

deg(n) = λA
degnA and KB

deg(n) = λB
degnB, respectively.

And the corresponding sgCME reduces to the common
stationary CME if all reactions are exponential distributions.
Interestingly, the sgCME [i.e., Eq. (4)] successfully converts
the original non-Markovian problem into a Markovian one
where the effective reaction propensity functions [i.e., Eq. (6)]
explicitly encode non-Markovian effects. Thus, analysis and
numerical methods for solving Eq. (4) are routine. Moreover,
one can obtain analytical solutions in some special cases
[32]. In most cases, however, we need to resort to numerical
methods. Here we propose a stationary generalized finite
state projection algorithm, which can be used to calculate an
approximate joint probability distribution of proteins A and
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FIG. 3. It is shown how bistability is generated in the sgTSM. (a) A bifurcation diagram, where protein concentration xA is taken as a
function of kA(= kB ). (b),(c) Nullclines for protein concentrations xA and xB under different parameter conditions. In the state space, there
is only one stable steady state in (b), and there are two stable steady states and one unstable steady state in (c). (d) A three-dimensional
bifurcation diagram corresponding to (a), where xA and xB are taken as functions of kA(= kB ). (e) A heat map for the Euclidean distance between
two stable steady states as a function of kA and kB. In (a)–(e), the other parameter values are set as H = 1, rA = rB = 0.5, λA

deg = λB
deg = 1,

gA = 15kA, gB = 15kB. Note that H = 1 correspond to a genetic toggle switch without cooperative binding.

B by solving a truncated version of stochastic process (see
Appendix B for details).

Recall that for a given TSM, the equations governing the
dynamics of the first-order raw moments of the state variables
have been derived from the common CME [14]. These equa-
tions can help us to roughly analyze the macroscopic behavior
of the TSM before we further perform stochastic analysis.
Similarly, the reaction rate equations for the gTSM can also
be used to analyze the corresponding macroscopic behavior.
Specifically, the stationary generalized reaction rate equation
(sgRRE) is given by

SK (xA, xB) = 0, (7)

where xA, xB represent the concentrations of proteins
A and B, S = [1 −1 0 0

0 0 1 −1

]
is a stoichiometric ma-

trix, and K(xA, xB) = (KA
g (xA, xB), KA

deg(xA, xB), KB
g (xA, xB),

KB
deg(xA, xB))T is a four-dimensional vector. Note that Eq. (7)

is equivalent to

KA
g (xA, xB) − KA

deg(xA, xB) = 0

KB
g (xA, xB) − KB

deg(xA, xB) = 0, (8)

where the effective transition propensity function KX
i (xA, xB)

is calculated according to Eq. (5).

III. RESULTS

A. Molecular memory can induce bistability

We start by numerically investigating how molecular mem-
ory affects macroscopic behaviors of proteins A and B in
the gTSM. Numerical results for the steady state of Eq. (8)
are demonstrated in Fig. 3. In numerical simulations, we
set kA/λA

deg and kB/λB
deg as constants so that the average

waiting times remain unchanged, where kA,kB are the corre-
sponding shape parameters of γ distributions ψA

g (t ; n) and
ψB

g (t ; n) in Eq. (3a) respectively, while λA
deg, λ

B
deg are the

degradation rates of proteins A and B in Eq. (3b), respec-
tively. Note that if kA = kB = 1, the system described by
Eq. (2) is a common TSM, which corresponds to a Marko-
vian process since both ψX

g (t ; n) and ψX
deg(t ; n), X = (A, B),

are exponential distributions. However, if kA �= 1 or/and
kB �= 1, the TSM corresponds to a non-Markovian process
with waiting-time distribution ψA

g (t ; n) or ψB
g (t ; n) being

nonexponential.
From Figs. 3(a) and 3(d), we observe that there is only one

stable steady state when kA = kB = 1 that corresponds to the
common TSM without molecular memory, whereas there are
two stable steady states and one unstable steady state when
kA = kB > 1 that corresponds to a non-Markovian process
with molecular memory. Figures 3(b) and 3(c) also verify
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waiting times, where parameter values are set as kA = kB = 1, gA = gB = 15; (c) and (f) correspond to nonexponential waiting times, where
parameter values are set as kA = kB = 5, gA = gB = 75. In (a)–(f), the other parameter values are set as H = 1, λA

deg = λB
deg = 1, rA = rB = 0.5,

gA = 15kA, gB = 15kB.

these results due to the intersection of two nullclines under
parameter conditions. This suggests that bistability exists
in the sgRRE after molecular memory is introduced to the
genetic switch model without cooperative binding. In order
to obtain the region of parameter space for bistability, we nu-
merically compute the Euclidean distance between two stable
steady states (defined as a bistability index) in a large region of
parameter pair kA and kB. The results are shown as a heatmap
in Fig. 3(e). From this subfigure, we observe that the distance
between two stable steady states first has an increasing trend
with increasing kA and kB, and then remain nearly a constant
with the further increase of these two parameters. We also
observe that there is a very sharp boundary for kA = kB � 3.
This is possibly because parameters kA and kB are set as
integers, but if they are set as real numbers, this boundary will
not be so sharp.

It should be noted that if kA = kB = 1 and H = 1, the
gTSM can reduce to the common TSM without cooperative
binding, mainly since H = 1 indicates the noncooperative
binding of TFs. On the other hand, it has been theoretically
proven that the cooperative binding is a necessary condition
for the generation of bistability. The absence of the coopera-
tive binding only yields a single stable steady state and implies
that the two TFs coexist in our case [46]. Figure 3 indicates
that after molecular memory is introduced into the TSM, the
bistability can occur. This is a very interesting result, and
implies that molecular memory can induce bistability in the
gTSM.

B. Molecular memory can induce bimodal distribution

In the above subsection, we have analyzed the determin-
istic counterpart of the gTSM, focusing on how bistability
is generated by molecular memory. Here, we investigate the
stochastic counterpart of the gSTM, focusing on how molecu-
lar memory induces bimodal protein distributions. To analyze
memory effect on switching states due to transitions from
a steady state to another, we calculate the joint probability
distribution p(nA, nB; t ) with different parameter values of
kA and kB, and simulate switching dynamics. Figure 4(a)
demonstrates the (global) peak modes of the stationary dis-
tribution p(nA, nB), which correspond to the most probable
number of proteins nB as a function of kA(= kB). We observe
that the distribution has only one peak if kA = kB = 1 that
corresponds to the common TSM without molecular memory,
but the distribution is bimodal otherwise. Note that kA = kB �
2 corresponds to non-Markovian processes with molecular
memory, which are assumed to be characterized by nonexpo-
nential waiting-time distributions ψA

g (t ; n) and ψB
g (t ; n) given

in Eq. (3a). These results indicate that molecular memory can
induce bimodal distribution in the stochastic framework, and
the distribution p(nA, nB) is bimodal if kA = kB � 2. Further,
if kA �= kB, the distribution p(nA, nB) in the gTSM also has
the bimodal characteristic, seen in Fig. 4(d), which is similar
to the case of kA = kB. From Fig. 4(b), we observe that the
distribution p(nA, nB) is unimodal for a symmetric parameter
pair of kA = kB = 1, since the distribution has only one local
maximum at the molecule number (nA, nB) ≈ (10, 10) of
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FIG. 5. (a) The distance between two probability peak points as a function of parameter pair kA and kB. (b) The probability difference
between double probability peak points as a function of parameter pair kA and kB. (c)–(e) The stationary joint probability distributions of
proteins A and B, obtained by a numerical method (see Appendix). (f)–(h) Time series of the difference nA − nB between the levels of proteins
A and B corresponding to (c)–(e), obtained by stochastic simulation. In (a)–(h), all parameters are set as H = 1, rA = rB = 0.5, λA

deg = λB
deg = 1,

gA = 15kA, gB = 15kB, where kA = 6, kB = 4 in (c),(f), kA = kB = 6 in (d),(g), and kA = 6,kB = 8 in (e),(h), respectively.

proteins A and B in this case. However, the distribu-
tion p(nA, nB) exhibits two peaks (nA, nB) ≈ (10, 0) and
(nA, nB) ≈ (0, 10) if kA = kB = 5 in Fig. 4(c). These two peak
states correspond to the dominant numbers of proteins A and
B, respectively. In addition, Fig. 4(d) shows the regions in
the kA − kB plane, where switching behavior occurs. Clearly,
there is a bimodal distribution region where kA � 2 and kB �
2 are simultaneously satisfied. In Fig. 4, parameters kA and kB

are set as integers, but if they are nonintegers, we also obtain
qualitatively similar results.

We now turn to the analysis of switching dynamics. Fig-
ures 4(e) and 4(f) show two representative time series of the
difference nA − nB for the gTSM. We observe that there are no
obvious transition behaviors but there are only noise-induced
fluctuations in this difference if kA = kB = 1 [Fig. 4(e)]. We
can clearly see two switching states from Fig. 4(f), where
one protein is strongly repressed compared to the other one.
These states correspond to the probability maxima in Fig. 4(c).
Thus, we conclude that bimodality can arise in stochastic
cases without cooperativity, due to the effect of molecular
memory.

C. Unbalanced memory can induce asymmetric bimodality

In the above subsection, we have shown that molecular
memory can lead to the bimodal joint distribution of proteins
A and B. Here, we further quantify bimodality by the distance
between double peak points of the probability [Fig. 5(a)]
and the probability difference between these peak points
[Fig. 5(b)]. The distance index is defined as a simple Eu-

clidean distance D1 =
√

(n(1)
A − n(2)

A )
2 + (n(1)

B − n(2)
B )

2
(called

the bimodality index) where (n(1)
A , n(1)

B ) and (n(2)
A , n(2)

B ) are
two peak points, respectively. A higher value of D1 indi-
cates a larger gap between two gene phenotypic clusters.
Figure 5(a) shows the bimodality index D1 as a function of
kA and kB. We observe that D1 is larger in some parameter
regions of kA > 1 and kB > 1, which implies that unbalanced
memories can affect D1. The probability difference index is
defined as a distance D2 = |P(n(1)

A , n(1)
B ) − P(n(2)

A , n(2)
B )| where

P(n(1)
A , n(1)

B ) and P(n(2)
A , n(2)

B ) are the stationary joint probabil-
ities of nA and nB at two peak points respectively. A higher
value of D2 indicates a larger imbalance between the number
of two populations. Figure 5(b) shows the bimodality index D2
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as a function of kA and kB. We find that under the condition of
kA > 1 and kB > 1, the bigger the difference between kA and
kB, the bigger D2.

In addition, we performed numerical calculations and
stochastic simulations, obtaining the stationary probability
distributions [Figs. 5(c)–5(e)] and tracking the protein status
over time [Figs. 5(f)–5(h)] at different values of kA and kB.
All these results demonstrate that unbalanced memories can
induce asymmetric bimodal distributions in the gTSM without
cooperative bindings.

IV. DISCUSSION

As a representative bistable example, the conversional
genetic toggle switch model without molecular memory has
been extensively studied with the aim to answer how bistabil-
ity is generated and how intrinsic variability induces stochas-
tic switching between stable states. On the other hand, molec-
ular memory extensively exists in biomolecular interacting
systems, but its effect remains elusive and even unexplored.
Here we have studied a generalized genetic toggle switch
model with molecular memory but without cooperative bind-
ing, using a generalized chemical master equation theory
[32]. We have shown that molecular memory can give rise to
nontrivial results. Specifically, molecular memory can induce
bistability in the deterministic system of the genetic toggle
switch without cooperative binding, whereas molecular mem-
ory cannot only induce the bimodal protein distribution but
also adjust the symmetry of the two peaks of this probability
in a stochastic framework. Our study indicates that molecular
memory, which exists extensively in gene regulation, is an
important factor impacting gene expression.

The above results could have important biological impli-
cations. First, introducing molecular memory into biological
regulatory systems such as genetic toggle switch models
would well explain cell fate differentiation and fate decision.
Second, molecular memory can significantly contribute to
genetic variability as shown in this paper, and is therefore
an unneglectable source of noise in gene expression. Third,
molecular memory can induce phenotypic switching in the
gSTM without cooperative binding as shown above. Molec-
ular memory can even adjust which part of the cell population
survives in this environment since we have shown that the
unbalanced memory can induce asymmetric bimodality of
the protein distribution. Therefore, molecular memory can be
taken as an effective strategy for a population of genetically
identical cells that survive in a noisy environment.

It is worth pointing out that the mathematically tractable
framework developed in this paper for a generalized genetic
toggle switch with molecular memory characterized by non-
exponential waiting-time distributions lays a solid theoretical
foundation for analyzing stochastic dynamics of the under-
lying system. The similar framework can also be extended
to other biochemical processes including other genetic toggle
switches [19,47,48] such as exclusive switch, genetic switch
with bound repressor degradation or protein-protein interac-
tions. As such, one can expect discovery of new biological
knowledge. In addition, the lifetimes of stable steady states
and the optimal transition paths connecting these stable steady
states are also important quantities underlying the memory

effect [49,50]. The corresponding mechanism studies are on-
going in our laboratory, based on the mathematical framework
developed here.

Finally, we point out that there are some other approaches
or models that are used to model molecular memory, such as
queuing model [34,35] and delay model [36–38]. A detailed
comparison between these models is outside the scope of this
article and will be therefore discussed elsewhere.
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APPENDIX A: DERIVING THE sgCME FROM THE gTSM

In this Appendix, we derive a stationary CME from the
gTSM based on the CTRW theory [32,42]. In contrast to
the conventional TSM that models a Markovian process, the
gTSM models a non-Markovian process (since complex gene
expression involves a multistep process, creating a molecular
memory between chemical reaction events).

In order to reduce complexity, we characterize a genetic
toggle switch by the waiting time of chemical reactions, where
the waiting time for protein synthesis is assumed to obey a
γ distribution while protein decay time is assumed to follow
an exponential distribution. Thus, a simple genetic toggle
switch model with molecular memory can be described by
four chemical reactions given by Eq. (2) in the main text. The
stoichiometric numbers of the state change for four reactions
are vA

g =(1, 0)T vA
deg=(−1, 0)T , vB

g =(0, 1)T , vB
deg=(0,−1)T

respectively. Let v=(vA
g , vA

deg, v
B
g , vB

deg)2×4 represent a 2 × 4
stoichiometric matrix, where the ith column element is the
state change for the ith reaction. Let ψX

g (t ; n) be the probabil-
ity density function of the reaction waiting time for proteins
A and B produced, and ψX

deg(t ; n) be protein degradations,X =
A, B, which are given by Eq. (3) in the main text.

Next, we discuss the probability that the system is at state
n at time t , denoted by p(n; t ). For convenience, we denote
by symbol � ≡ {{X, i}|X ∈ G = {A, B}, i ∈ R = {g, deg}} all
chemical reactions in the gTSM, i.e., � consists of four
chemical reactions. Then, the stoichiometric matrix of the re-
action system is v = (vX

i )2×4, {X, i} ∈ �. The corresponding
cumulative distribution functions �X

i (t ; n) for four reaction
waiting-time distributions ψX

i (t ; n), {X, i} ∈ �, are, respec-
tively, expressed by

�A
g (t ; n) = 1 −

kA−1∑
α=0

(
λA

g (n)
)α

α!
tαe−λA

g (n)t ,

�B
g (t ; n) = 1 −

kB−1∑
β=0

(
λB

g (n)
)β

β!
tβe−λB

g (n)t ,

�A
deg(t ; n) = 1 − e−λA

degnAt ,

�B
deg(t ; n) = 1 − e−λB

degnBt . (A1)
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To determine the probability that the system is at state n
at time t , we first assume that φX

i (t ; n) represents the joint
probability density function of one reaction {X, i} in the
system with {X, i} ∈ �, defined by

φX
i (t ; n) = ψX

i (t ; n)
∏

{Y , j}�={X,i}

[
1 − �Y

j (t ; n)
]
, {X, i} ∈ �,

(A2)

and the corresponding cumulative distribution function of
φX

i (t ; n) is calculated by �X
i (t ; n) = ∫ t

0 φX
i (t ′; n)dt ′, where

φX
i (t ; n) satisfies the probabilistic conservative condition∑

{X,i}∈�

∫ ∞
0 φX

i (t ′; n)dt ′ = 1.
Furthermore, we define Rk (t ; n) as the probability density

function of its waiting time for which the system reaches state
n after undergoing k reaction steps. Based on the renewal the-
ory [24,33], the probability density function of next reaction
step can be given by

Rk+1(t ; n) =
∫ t

0

∑
{X,i}∈�

Rk
(
t ′; n − vX

i

)
φX

i

(
t − t ′; n − vX

i

)
dt ′,

(A3)

where R0(t ; n) = p(n; t )δ(t ) with δ(t ) being the Dirac δ func-
tion. Note that, if system is at state n at time t after going
through arbitrarily many reaction steps, the corresponding
probability density function of its waiting time, denoted by
R(t ; n), is given by

R(t ; n) =
∞∑

k=0

Rk (t ; n). (A4)

Thus, the probability p(n; t ) can be expressed by two parts: the
one is the probability that the system arrives at state n at earlier
time t ′, and the other is the probability that the system has not
a reaction that occurred within the remaining time t − t ′, over
the time interval [0, t]. That is,

p(n; t ) =
∫ t

0
R(t ′; n)

⎡
⎣1 −

∑
{X,i}∈�

�X
i (t − t ′; n)

⎤
⎦dt ′, (A5)

where the equality 1 − ∑
{X,i}∈� �X

i (t − t ′; n) =∏
{Y , j}∈� [1 − �Y

j (t ; n)] holds.
Based on the CTRW theory, we introduce a memory func-

tion MX
i (t ; n) for every reaction {X, i} ∈ �, which is defined

by the Laplace transform as [24,32,42]

M̃X
i (s; n) = sφ̃X

i (s; n)

1 − ∑
{X,i}∈� φ̃X

i (s; n)
, (A6)

where φ̃X
i (s; n) is Laplace transform of φX

i (s; n). Therefore,
combining Eq. (A3)–(A6) yields

sp̃(n; s) = p(n; 0) +
∑

{X,i}∈�

M̃X
i

(
s; n − vX

i

)
p̃
(
n − vX

i ; s
)

−
∑

{X,i}∈�

M̃X
i (s; n) p̃(n; s), (A7)

which is a gCME in the Laplace domain. Interestingly, if we
take the inverse Laplace transform in Eq. (A7), we obtain a
gCME in the time domain

∂ p(n; t )

∂t
=

∫ t

0

(
E−1

A − 1
)(

MA
g (t − t ′; n)p(n; t ′)

)
dt ′

+
∫ t

0
(EA − 1)

(
MA

deg(t − t ′; n)p(n; t ′)
)
dt ′

+
∫ t

0

(
E−1

B − 1
)(

MB
g (t − t ′; n)p(n; t ′)

)
dt ′

+
∫ t

0
(EB − 1)

(
MB

deg(t − t ′; n)p(n; t ′)
)
dt ′. (A8)

Next, we use Eq. (A7) in the Laplace domain to de-
rive a sgCME for the sgTSM. For this, we apply the final
value theorem to derive a practical equation from Eq. (A7).
After introducing two limit functions p(n) = limt→∞ p(n; t )
and KX

i (n) = lims→0M̃X
i (s; n), and taking the limit s → 0 of

Eq. (A7) multiplied s on both sides, we get

(
E−1

A − 1
)(

KA
g (n)p(n)

) + (EA − 1)
(
KA

deg(n)p(n)
)

+ (
E−1

B − 1
)(

KB
g (n)p(n)

) + (EB − 1)
(
KB

deg(n)p(n)
) = 0,

(A9)

where p(n) is a stationary probability in the gTSM system and
KX

i (n) is the mean reaction propensity function of the reaction
{X, i} ∈ � [The expression of KX

i (n) will be deduced latter].
Notably, this function KX

i (n) is memoryless since it does
not depend on the prior history of the reaction process. For
convenience, Eq. (A9) is called the stationary CME (sgCME)
for the genetic toggle switch with molecular memory.

Substituting the Laplace transforms of φX
i (t ; n) into the

Eq. (A6) yields

M̃X
i (s; n) =

∫ +∞
0 e−stψX

i (t ; n)
∏

{Y , j}�={X,i}
[
1 − �Y

j (t ; n)
]
dt∫ +∞

0 e−st
∏

{Y , j}∈�

[
1 − �Y

j (t ; n)
]
dt

.

(A10)

After taking the limit s → 0 of M̃X
i (s; n), the expression of

KX
i (n) is given by

KX
i (n) =

∫ +∞
0 ψX

i (t ; n)
∏

{Y , j}�={X,i}
[
1 − �Y

j (t ; n)
]
dt∫ +∞

0

∏
{Y, j}∈�

[
1 − �Y

j (t ; n)
]
dt

,

{X, i} ∈ �. (A11)

Thus, the mean reaction propensity function KX
i (n) of four

chemical reactions in the sgCME can be calculated by the
Eq. (A11).

Substituting the expression ψX
g (t ; n) [Eq. (3a) in the main

text] into Eq. (A11), and combining their cumulative distribu-
tions, we find that the explicit expression of KX

g (n) is given
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by

KA
g (n) =

(λA
g (n))kA

(kA−1)!

∑kB−1
β=0

(λB
g (n))β

β!
(β+kA−1)!

(λA
g (n)+λB

g (n)+λA
degnA+λB

degnB )β+kA

∑kA−1
α=0

(λA
g (n))α

α!

∑kB−1
β=0

(λB
g (n))β

β!
(α+β )!

(λA
g (n)+λB

g (n)+λA
degnA+λB

degnB )α+β+1

, (A12a)

KB
g (n) =

(λB
g (n))kB

(kB−1)!

∑kA−1
α=0

(λA
g (n))α

α!
(α+kB−1)!

(λA
g (n)+λB

g (n)+λA
degnA+λB

degnB )α+kB

∑kA−1
α=0

(λA
g (n))α

α!

∑kB−1
β=0

(λB
g (n))β

β!
(α+β )!

(λA
g (n)+λB

g (n)+λA
degnA+λB

degnB )α+β+1

. (A12b)

That is, we have

KA
g (n) =

λA
g (n)

∑kB−1
β=0

(
β + kA − 1

β

)
(ωB(n))β (ωA(n))kA−1

∑kA−1
α=0

∑kB−1
β=0

(
α + β

α

)
(ωA(n))α (ωB(n))β

,

(A13)

KB
g (n) =

λB
g (n)

∑kA−1
α=0

(
α + kB − 1

α

)
(ωA(n))α (ωB(n))kB−1

∑kA−1
α=0

∑kB−1
β=0

(
α + β

α

)
(ωA(n))α (ωB(n))β

,

where ωA(n) = λA
g (n)/�(n), ωB(n) = λB

g (n)/�(n), �(n) = λA
g (n) + λB

g (n) + λA
degnA + λB

degnB, λA
g (n) = gA/(1 + rAnH

B ),
λB

g (n) = gB/(1 + rBnH
A ). Similarly, since ψX

deg(t ; n) follows an exponential distribution [Eq. (3b) in the main text], its mean
reaction propensity function can be reduced to

KA
deg(n) = λA

degnA, KB
deg(n) = λB

degnB. (A14)

Equations (A9) and (A13)–(A14) altogether define the sgCME for the gTSM with molecular memory.

APPENDIX B: A NUMERICAL ALGORITHM FOR COMPUTING PROBABILITY DISTRIBUTION

Motivated by the final state projection method [51], we derive a stationary generalized finite state projection, which is capable
of computing the stationary probability distribution in the gTSM.

First, we set 0 � i � mA, 0 � j � mB. For convenience, if we denote i ≡ nA, j ≡ nB, then Pi j ≡ p(nA, nB). In addition, we
denote

P̃i j = (
Pi,0, Pi,1, · · · , Pi,mB

)T

= ((
P0,0, P1,0, · · · , PmA,0

)T
,
(
P0,1, P1,1, · · · , PmA,1

)T
, · · · ,

(
P0,mB , P1,mB , · · · , PmA,mB

)T)T
, (B1)

where the conservative condition
∑mB

j=0

∑mA
i=0 Pi j = 1 holds. Then, the sgCME, Eq. (A9), can become

KA
g (i − 1, j)Pi−1, j + KA

deg(i + 1, j)Pi+1, j + KB
g (i, j − 1)Pi, j−1 + KB

deg(i, j + 1)Pi, j+1

− [
KA

g (i, j) + KB
g (i, j) + KA

deg(i, j) + KB
deg(i, j)

]
Pi j = 0. (B2)

Thereby, the matrix form of this truncated equation is given by

M
Pi j = 0 (B3)

where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0 U 1
deg

L0
g D1 U 2

deg

L1
g D2 U 3

deg

. . .
. . .

. . .

LmB−2
g DmB−1 U mB

deg

LmB−1
g DmB

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B4)

with

D j = Aj
g + Aj

deg − L j
g − U j

deg, 0 � j � mB, (B5)
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which satisfies the following matrix:

L j
g = diag

(
KB

g (0, j), KB
g (1, j), KB

g (2, j), · · · , KB
g (mA, j)

)
, (B6)

U j
deg = diag

(
KB

deg(0, j), KB
deg(1, j), KB

deg(2, j), · · · , KB
deg(mA, j)

)
, (B7)

Aj
g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−KA
g (0, j)

KA
g (0, j) −KA

g (1, j)

KA
g (1, j) −KA

g (2, j)

. . .
. . .

KA
g (mA − 1, j) −KA

g (mA, j)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B8)

Aj
deg =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−KA
deg(0, j) KA

deg(1, j)

−KA
deg(1, j) KA

deg(2, j)

−KA
deg(2, j)

. . .

. . . KA
deg(mA, j)

−KA
deg(mA, j)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B9)

By solving the algebraic equation Eq. (B3) with conservative condition
∑mB

j=0

∑mA
i=0 Pi j = 1, we can obtain a numerical P̃i j .
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Phys. Rev. Lett. 111, 058104 (2013).
[30] T. Jia and R. V. Kulkarni. Phys. Rev. Lett. 106, 058102

(2011).
[31] J. Klafter and R. Silbey, Phys. Rev. Lett. 44, 55 (1980).
[32] J. J. Zhang and T. S. Zhou, Proc. Natl. Acad. Sci. USA 116,

23542 (2019).
[33] N. Kumar, A. Singh, and R. V. Kulkarni, PLoS Comput. Biol.

11, e1004292 (2015).
[34] A. Schwabe, K. N. Rybakova, and F. J. Bruggeman, Biophys. J.

103, 1152 (2012).
[35] S. J. Park, S. Song, G. S. Yang, P. M. Kim, S. Yoon, J. H. Kim,

and J. Sung, Nat. Commun. 9, 297 (2018).

022409-11

https://doi.org/10.1126/science.1161427
https://doi.org/10.1126/science.1161427
https://doi.org/10.1126/science.1161427
https://doi.org/10.1126/science.1161427
https://doi.org/10.1038/nature03524
https://doi.org/10.1038/nature03524
https://doi.org/10.1038/nature03524
https://doi.org/10.1038/nature03524
https://doi.org/10.1016/j.cell.2011.07.026
https://doi.org/10.1016/j.cell.2011.07.026
https://doi.org/10.1016/j.cell.2011.07.026
https://doi.org/10.1016/j.cell.2011.07.026
https://doi.org/10.1371/journal.pcbi.1006592
https://doi.org/10.1371/journal.pcbi.1006592
https://doi.org/10.1371/journal.pcbi.1006592
https://doi.org/10.1371/journal.pcbi.1006592
https://doi.org/10.1126/science.1114383
https://doi.org/10.1126/science.1114383
https://doi.org/10.1126/science.1114383
https://doi.org/10.1126/science.1114383
https://doi.org/10.1073/pnas.1305423110
https://doi.org/10.1073/pnas.1305423110
https://doi.org/10.1073/pnas.1305423110
https://doi.org/10.1073/pnas.1305423110
https://doi.org/10.1146/annurev-micro-091213-112852
https://doi.org/10.1146/annurev-micro-091213-112852
https://doi.org/10.1146/annurev-micro-091213-112852
https://doi.org/10.1146/annurev-micro-091213-112852
https://doi.org/10.1038/srep31505
https://doi.org/10.1038/srep31505
https://doi.org/10.1038/srep31505
https://doi.org/10.1038/srep31505
https://doi.org/10.1038/nature02298
https://doi.org/10.1038/nature02298
https://doi.org/10.1038/nature02298
https://doi.org/10.1038/nature02298
https://doi.org/10.1529/biophysj.106.101717
https://doi.org/10.1529/biophysj.106.101717
https://doi.org/10.1529/biophysj.106.101717
https://doi.org/10.1529/biophysj.106.101717
https://doi.org/10.1016/j.jtbi.2003.11.003
https://doi.org/10.1016/j.jtbi.2003.11.003
https://doi.org/10.1016/j.jtbi.2003.11.003
https://doi.org/10.1016/j.jtbi.2003.11.003
https://doi.org/10.1111/j.1365-2958.2005.04488.x
https://doi.org/10.1111/j.1365-2958.2005.04488.x
https://doi.org/10.1111/j.1365-2958.2005.04488.x
https://doi.org/10.1111/j.1365-2958.2005.04488.x
https://doi.org/10.1186/s12918-017-0483-4
https://doi.org/10.1186/s12918-017-0483-4
https://doi.org/10.1186/s12918-017-0483-4
https://doi.org/10.1186/s12918-017-0483-4
https://doi.org/10.1109/TCBB.2014.2368982
https://doi.org/10.1109/TCBB.2014.2368982
https://doi.org/10.1109/TCBB.2014.2368982
https://doi.org/10.1109/TCBB.2014.2368982
https://doi.org/10.1126/science.1178962
https://doi.org/10.1126/science.1178962
https://doi.org/10.1126/science.1178962
https://doi.org/10.1126/science.1178962
https://doi.org/10.1186/1741-7007-10-89
https://doi.org/10.1186/1741-7007-10-89
https://doi.org/10.1186/1741-7007-10-89
https://doi.org/10.1186/1741-7007-10-89
https://doi.org/10.1103/PhysRevLett.96.188101
https://doi.org/10.1103/PhysRevLett.96.188101
https://doi.org/10.1103/PhysRevLett.96.188101
https://doi.org/10.1103/PhysRevLett.96.188101
https://doi.org/10.1103/PhysRevLett.115.208101
https://doi.org/10.1103/PhysRevLett.115.208101
https://doi.org/10.1103/PhysRevLett.115.208101
https://doi.org/10.1103/PhysRevLett.115.208101
https://doi.org/10.1073/pnas.1008965107
https://doi.org/10.1073/pnas.1008965107
https://doi.org/10.1073/pnas.1008965107
https://doi.org/10.1073/pnas.1008965107
https://doi.org/10.1021/jp045523y
https://doi.org/10.1021/jp045523y
https://doi.org/10.1021/jp045523y
https://doi.org/10.1021/jp045523y
https://doi.org/10.1126/science.1144331
https://doi.org/10.1126/science.1144331
https://doi.org/10.1126/science.1144331
https://doi.org/10.1126/science.1144331
https://doi.org/10.1126/science.1198817
https://doi.org/10.1126/science.1198817
https://doi.org/10.1126/science.1198817
https://doi.org/10.1126/science.1198817
https://doi.org/10.1371/journal.pbio.1000607
https://doi.org/10.1371/journal.pbio.1000607
https://doi.org/10.1371/journal.pbio.1000607
https://doi.org/10.1371/journal.pbio.1000607
https://doi.org/10.1007/s00285-008-0178-y
https://doi.org/10.1007/s00285-008-0178-y
https://doi.org/10.1007/s00285-008-0178-y
https://doi.org/10.1007/s00285-008-0178-y
https://doi.org/10.1103/PhysRevLett.111.058104
https://doi.org/10.1103/PhysRevLett.111.058104
https://doi.org/10.1103/PhysRevLett.111.058104
https://doi.org/10.1103/PhysRevLett.111.058104
https://doi.org/10.1103/PhysRevLett.106.058102
https://doi.org/10.1103/PhysRevLett.106.058102
https://doi.org/10.1103/PhysRevLett.106.058102
https://doi.org/10.1103/PhysRevLett.106.058102
https://doi.org/10.1103/PhysRevLett.44.55
https://doi.org/10.1103/PhysRevLett.44.55
https://doi.org/10.1103/PhysRevLett.44.55
https://doi.org/10.1103/PhysRevLett.44.55
https://doi.org/10.1073/pnas.1913926116
https://doi.org/10.1073/pnas.1913926116
https://doi.org/10.1073/pnas.1913926116
https://doi.org/10.1073/pnas.1913926116
https://doi.org/10.1371/journal.pcbi.1004292
https://doi.org/10.1371/journal.pcbi.1004292
https://doi.org/10.1371/journal.pcbi.1004292
https://doi.org/10.1371/journal.pcbi.1004292
https://doi.org/10.1016/j.bpj.2012.07.011
https://doi.org/10.1016/j.bpj.2012.07.011
https://doi.org/10.1016/j.bpj.2012.07.011
https://doi.org/10.1016/j.bpj.2012.07.011
https://doi.org/10.1038/s41467-017-02737-0
https://doi.org/10.1038/s41467-017-02737-0
https://doi.org/10.1038/s41467-017-02737-0
https://doi.org/10.1038/s41467-017-02737-0


BAOHUA QIU, TIANSHOU ZHOU, AND JIAJUN ZHANG PHYSICAL REVIEW E 101, 022409 (2020)

[36] M. Barrio, A. Leier, and T. T. Marquez-Lago, J. Chem. Phys.
138, 104114 (2013).

[37] A. Leier and T. T. Marquez-Lago, Proc. R. Soc. A. 471,
20150049 (2015).

[38] A. Grönlund, P. Grönlund, and J. Elf, Nat. Commun. 2, 419
(2011).

[39] E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167
(1965).

[40] V. M. Kenkre, E. W. Montroll, and M. F. Shlesinger, J. Stat.
Phys. 9, 45 (1973).

[41] U. Landman, E. W. Montroll, and M. F. Shlesinger, Proc. Natl.
Acad. Sci. USA 74, 430 (1977).

[42] T. Aquino and M. Dentz, Phys. Rev. Lett. 119, 230601
(2017).

[43] K. Thurley, L. F. Wu, and S. J. Altschuler, Cell Syst. 6, 355
(2018).

[44] T. S. Gardner, C. R. Cantor, and J. J. Collins, Nature (London)
403, 339 (2000).

[45] M. I. Stefan and N. Le Novère, PLoS Comput. Biol. 9,
e1003106 (2013).

[46] J. Cherry and F. R. Adler, J. Theo. Biol. 203, 117 (2000).
[47] M. Strasser, F. J. Theis, and C. Marr, Biophys. J. 102, 19 (2012).
[48] B. Barzel and O. Biham, Phys. Rev. E. 78, 041919 (2008).
[49] Y. Xu, Y. Zhu, J. Shen, and J. Su, Physica A 416, 461 (2014).
[50] H. Chen, P. Thill, and J. Cao, J. Chem. Phys. 144, 175104

(2016).
[51] B. Munsky and M. Khammash, J. Chem. Phys. 124, 044104

(2006).

022409-12

https://doi.org/10.1063/1.4793982
https://doi.org/10.1063/1.4793982
https://doi.org/10.1063/1.4793982
https://doi.org/10.1063/1.4793982
https://doi.org/10.1098/rspa.2015.0049
https://doi.org/10.1098/rspa.2015.0049
https://doi.org/10.1098/rspa.2015.0049
https://doi.org/10.1098/rspa.2015.0049
https://doi.org/10.1038/ncomms1422
https://doi.org/10.1038/ncomms1422
https://doi.org/10.1038/ncomms1422
https://doi.org/10.1038/ncomms1422
https://doi.org/10.1063/1.1704269
https://doi.org/10.1063/1.1704269
https://doi.org/10.1063/1.1704269
https://doi.org/10.1063/1.1704269
https://doi.org/10.1007/BF01016796
https://doi.org/10.1007/BF01016796
https://doi.org/10.1007/BF01016796
https://doi.org/10.1007/BF01016796
https://doi.org/10.1073/pnas.74.2.430
https://doi.org/10.1073/pnas.74.2.430
https://doi.org/10.1073/pnas.74.2.430
https://doi.org/10.1073/pnas.74.2.430
https://doi.org/10.1103/PhysRevLett.119.230601
https://doi.org/10.1103/PhysRevLett.119.230601
https://doi.org/10.1103/PhysRevLett.119.230601
https://doi.org/10.1103/PhysRevLett.119.230601
https://doi.org/10.1016/j.cels.2018.01.016
https://doi.org/10.1016/j.cels.2018.01.016
https://doi.org/10.1016/j.cels.2018.01.016
https://doi.org/10.1016/j.cels.2018.01.016
https://doi.org/10.1038/35002131
https://doi.org/10.1038/35002131
https://doi.org/10.1038/35002131
https://doi.org/10.1038/35002131
https://doi.org/10.1371/journal.pcbi.1003106
https://doi.org/10.1371/journal.pcbi.1003106
https://doi.org/10.1371/journal.pcbi.1003106
https://doi.org/10.1371/journal.pcbi.1003106
https://doi.org/10.1006/jtbi.2000.1068
https://doi.org/10.1006/jtbi.2000.1068
https://doi.org/10.1006/jtbi.2000.1068
https://doi.org/10.1006/jtbi.2000.1068
https://doi.org/10.1016/j.bpj.2011.11.4000
https://doi.org/10.1016/j.bpj.2011.11.4000
https://doi.org/10.1016/j.bpj.2011.11.4000
https://doi.org/10.1016/j.bpj.2011.11.4000
https://doi.org/10.1103/PhysRevE.78.041919
https://doi.org/10.1103/PhysRevE.78.041919
https://doi.org/10.1103/PhysRevE.78.041919
https://doi.org/10.1103/PhysRevE.78.041919
https://doi.org/10.1016/j.physa.2014.08.042
https://doi.org/10.1016/j.physa.2014.08.042
https://doi.org/10.1016/j.physa.2014.08.042
https://doi.org/10.1016/j.physa.2014.08.042
https://doi.org/10.1063/1.4948461
https://doi.org/10.1063/1.4948461
https://doi.org/10.1063/1.4948461
https://doi.org/10.1063/1.4948461
https://doi.org/10.1063/1.2145882
https://doi.org/10.1063/1.2145882
https://doi.org/10.1063/1.2145882
https://doi.org/10.1063/1.2145882

