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Columnar grouping preserves synchronization in neuronal networks
with distance-dependent time delays
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Neuronal connectivity at the cellular level in the cerebral cortex is far from random, with characteristics that
point to a hierarchical design with intricately connected neuronal clusters. Here we investigate computationally
the effects of varying neuronal cluster connectivity on network synchronization for two different spatial
distributions of clusters: one where clusters are arranged in columns in a grid and the other where neurons from
different clusters are spatially intermixed. We characterize each case by measuring the degree of neuronal spiking
synchrony as a function of the number of connections per neuron and the degree of intercluster connectivity.
We find that in both cases as the number of connections per neuron increases, there is an asynchronous to
synchronous transition dependent only on intrinsic parameters of the biophysical model. We also observe in
both cases that with very low intercluster connectivity clusters have independent firing dynamics yielding a low
degree of synchrony. More importantly, we find that for a high number of connections per neuron but intermediate
intercluster connectivity, the two spatial distributions of clusters differ in their response where the clusters in a
grid have a higher degree of synchrony than the clusters that are intermixed.

DOI: 10.1103/PhysRevE.101.022408

I. INTRODUCTION

Structural organization of neurons is a characteristic that
is observed throughout the brain and across different scales.
For example, in the neocortical region of the mammalian
brain, the degree of connectivity between functional areas is
nonrandom, and has been found to exhibit small-world net-
work characteristics [1–6]. These characteristics, in addition
to being intrinsic, may be functionally important since devia-
tions from nonrandom to more random network connectivities
have been found to be correlated with neuropathology [7–9].
Not only at the macroscopic scale, but also at the cellular
level neuronal networks have been found to form nonrandom
structures [6,10–12]. This similarity in network properties at
different scales suggests that basic underlying processes may
operate across scales [13].

Recent work has shown that clusters of several neurons are
synaptically connected and may be engaged in basic compu-
tational function [12,14–16]. Interestingly, these nonrandom
structures have been seen to spontaneously form in vitro [17],
suggesting that this is an intrinsic mechanism. At a compar-
atively larger scale, but still at a submillimeter scale, struc-
tures have been found where hierarchical connections form
networks of clusters [18–23]. Groups of nodes inside these
clusters or modules preferentially link to other nodes in the
same community while being sparsely connected to the rest
of the network [24]. It is found that these networks are robust
to shuffling of connections [25], while sparser connections
between modules enable efficient intermodule integration of
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information [26] and high within-module connection density
promotes communication efficiency [27].

Variations in connectivity result in different distances be-
tween connected neurons that in turn yield different delay
times between action potentials and their postsynaptic signals.
Varying delay times directly affect synchronization [28–30],
and distance-dependent time delays connect network structure
with dynamics [31,32]. Because clustering and function may
be correlated, here we investigate whether clustering offers
any advantage to the firing dynamics of a network. Previous
computational work showed that a network with hierarchi-
cal modular connectivity, but without distance dependence,
expands the phase space of spontaneous activity [20]. Time
delays always disrupted synchronization in all-connected net-
works [31], while in a distance-dependent delay model with
variable connectivity but without explicit clustering, the most
synchronized network was found to be the one with interme-
diary connectivity between long range and nearest neighbor
[32]. In more recent computational work, tuning connection
strength parameters or the number of inhibitory neurons in a
clustered neuronal network with fixed intercluster connectiv-
ity modulated the level of synchronization of the network [33].

To specifically determine how clustering affects dynamics,
here we consider a three-dimensional (3D) connected net-
work, built from a stochastic block model [34], with clusters
of tunable neuronal connectivity and distance-dependent sig-
nal delay times. We assign neurons to different clusters, re-
ferred to here as groups, and construct two types of networks:
one in which different groups are placed in a grid pattern, and
the other where neurons from different groups are spatially
intermixed. We use two independent variables in this compar-
ison: the degree of connectivity per neuron and the degree of
intergroup connectivity. We measure the performance of and
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gauge the differences between these networks by measuring
the degree of synchrony in their firing dynamics. Network
firing synchronization is important as, for example, it can
be an indicator of attention [35], response to visual stimuli
[36], and to an increase in information transfer efficiency [37].
On the other hand, a high degree of synchronization may
be related to the onset of seizures in humans with epilepsy,
as shown in the case of local hypersynchronization [38].
The measure of synchronization that we use here quantifies
different degrees of spiking synchrony. Our results suggest
that networks with neurons connected in a grid have a higher
degree of synchrony than randomly connected networks for
a large range of inter- and intracluster connectivity values
examined here.

II. METHODS

To construct the neuronal networks, we assign random 3D
positions to neurons inside a cube and assign these neurons
to groups (clusters) that are either spatially separated or
mixed. We then connect the neurons according to rules that
differentiate between neurons within their own group and
across different groups. Lastly, we perform firing simulations
where action potentials are explicitly generated. We obtain
measurements of the spiking synchrony as a function of two
independent variables: the average neuronal connectivity and
the degree of connectivity between groups. This process is
detailed below.

A. Neuronal placement, grouping, and connections

For each network, we generate a set of random neuronal
positions contained within a 3D box of side length Lb. We
then label neurons with a group ID according to two different
methods. In the first method, we overlay an n × n grid onto
the xy coordinates of the network and label each neuron with
a group ID that corresponds to the quadrant in which their
xy coordinates fall, as shown for a 2 × 2 case in Fig. 1(a).
In the second method, we randomly assign neurons to group
IDs, as shown in Fig. 1(b). We refer to these grouping
methods as grid and mixed grouping, respectively. To control
for variability when comparing data from the two grouping
methods we generate two networks, each using one of the two
different grouping methods, but both using the same number
of neurons, spatial positions, number of groups, and number
of neurons per group.

Once the neurons are placed and grouped, we connect
neurons according to one of two possible schemes depending
on whether they are excitatory or inhibitory neurons. In the
first scheme excitatory neurons are connected to other neurons
with either an intra- or intergroup connection probability.
We modulate this by using a continuous bias parameter, δ,
with value in the 0–1 range where 0 gives equal probability
to all connections independent of group, and 1 means that
all connections are intragroup connections (no connection
between different groups). The other important variable is the
average number of outgoing connections per excitatory neu-
ron m. All of our results are expressed in terms of these two
independent parameters, m and δ. They have different overall
effects: while increasing m creates a more densely connected

FIG. 1. Neuronal placement for the grid and mixed grouping.
(a) A grid grouping network where a 2 × 2 grid in the xy plane sep-
arates neurons into four different groups based on their xy positions.
(b) A mixed grouping network where neurons belong to randomly
assigned groups. The four different colors indicate the four different
groups.

network, increasing δ makes networks with increasingly iso-
lated groups.

In any given network we assign neurons an average m and
δ, which results in a symmetric connection probability matrix
P. Thus, the probability of having a connection between neu-
rons i and j, belonging to groups Gi and Gj , respectively, is

Pi j =
⎧⎨
⎩

0 i = j
pinter + pintra Gi = Gj

pinter otherwise
, (1)

where

pinter = m(1 − δ)

N − 1

pintra = mδ

M (Gi ) − 1
. (2)
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FIG. 2. Illustration of the different connections between two groups as a function of δ (with outgoing number of connections per neuron
m = 2): (a) δ = 0 with completely random connections, (b) δ = 0.5 giving bias towards intragroup connections, and (c) δ = 1 with completely
independent groups.

N is the number of neurons in the system, and M (Gi ) is the
number of neurons in the ith group. When δ = 0, we recover
a uniform random distribution of connections and when
δ = 1, all connections are within groups (see Fig. 2). The
probabilities in Eq. (2) satisfy the constraint

m = (N − 1)pinter + (M (Gi ) − 1)pintra (3)

independent of δ except in the case of saturation. Saturation
occurs when the desired number of intragroup connections
m(i)

group is greater than the total number of possible connections
within the group M (Gi ) − 1. Modifying (3) shows that the
expected value of m(i)

group is

〈mgroup〉 = m

[(
1 − 〈M〉 − 1

N − 1

)
δ + 〈M〉 − 1

N − 1

]
, (4)

where

〈M〉 = N

number of groups
. (5)

The maximum m that we can use without saturation for all
values of δ is then

m = 〈M〉 − 1. (6)

Because all connections end at another neuron in the system,
the average number of incoming connections per neuron is
also equal to m.

Connections are simply created by first assigning a random
value to each possible connection and then forming the con-
nection only if the random value is less than the probability.
The resultant distribution of actual connections per neuron
in a connected network then follows a normal distribution,
with the majority of neurons having a number of outgoing
connections close to the average, and a minority having few
or many outgoing connections (hubs). Example distributions
of the number of connections are provided in Fig. S1 in the
Supplemental Material [39].

When constructing networks that include inhibitory neu-
rons, we use the above method for all outgoing excitatory
connections, but we connect the inhibitory neurons to all
other neurons (independent of groups) based on a distance-
dependent, exponentially decaying probability [40] given by

Pi j = e−di j/D. (7)

The parameter D, a decay distance, is determined by fixing
the number of outgoing connections per inhibitory neuron, mI,
such that D is the numerical solution to

mI =
∑

i �= j e−di j/D

NI
, (8)

where di j is the Euclidian distance between the ith inhibitory
neuron and any other neuron j, and NI is the number of
inhibitory neurons in the network. Note that mI is a parameter
independent of m, which is a variable under investigation
in this work. This process still renders an average m for
excitatory neurons and mI for inhibitory neurons.

An important outcome of these probability distributions is
that most of our networks can be characterized as small-world
networks. A small-world network, as defined by Watts and
Strogatz, is one that, compared to random networks, has a
higher degree of clustering while still maintaining an equiv-
alent average path length (good global connectivity quantified
in number of hops, not Euclidian distance) between any two
neurons [41]. To show this result, we calculate the Watts-
Strogatz clustering coefficient, a measure of the fraction of
neurons connected to any one neuron that are also connected
to each other [41]. We do this for our networks and cor-
responding random networks of the same number of nodes
and edges per node. We determine average path length by
searching for the shortest path (in number of hops) between all
pairs of neurons and averaging these paths over the network.
Figure 3 shows that with increasing δ, the relative clustering
coefficient, γ , increases while the average path length, λ,
stays approximately equal to that of a random network, only
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FIG. 3. Plot showing relative clustering (γ = C/C0) and relative
average path length (λ = L/L0) as a function of δ. C, and L are the
Watts-Strogatz clustering coefficient and average path length, respec-
tively, for a connected network based on the probability distributions
described in Eq. (2) while C0 and L0 are the corresponding values for
a random network of equal size (same number of nodes and directed
edges). Each data point represents an average value over 10 systems
for each specified value of δ (there is little dependence on m, thus
only m = 25 is plotted). The small-worldness of a network can be
quantified as the ratio of relative clustering to relative average path
length (γ /λ).

increasing slightly at very high δ (at δ = 1 there are pairs of
neurons with no possible paths between them yielding infinite
path lengths). Thus, the ratio γ /λ, a measure of the degree to
which a network is a small-world network, is greater than 1 for
systems with δ > 0.2 and all values of m indicating that most
of our networks can be characterized as small-world networks.

To avoid edge effects inherent when using any finite-
sized network, for all networks we consider neuron connec-
tion lengths (Euclidian distance) according to their minimum
image distance. That is, having chosen two neurons to be
connected, we assign the distance between them to be the
minimum of: (i) their direct distance as measured using co-
ordinates within the box or (ii) the distance between one of
the neurons and the other neuron in an equivalent image of
the network.

B. Neuron model and firing dynamics

To simulate the firing of the neurons in our networks,
we use the package NEURON [42] to model the membrane
potential using a Hodgkin-Huxley mechanism. We model
the neurons using a single compartment with sodium, potas-
sium, and leaky ion currents. The specific parameters used
for the models of our pyramidal cortical neurons and in-
hibitory interneurons are taken from Destexhe et al. [43] and
McCormick et al. [44] (see Table SI [39]). The model uses an
equation for the membrane potential that depends on intrinsic
ionic currents and synaptic currents,

cm
dV

dt
= −iint − isyn. (9)

The intrinsic ionic currents (iint) are made up of sodium
(iNa), potassium (iK), and leaky currents (iL), each with their
own respective conductance, g, and reversal potential, E . In
this model the pyramidal neurons include an extra potassium
current (iM) that helps to regulate firing frequency [44]. As
the sodium and potassium channels are voltage gated, their
conductances are a function of voltage-dependent activation
and inactivation variables [n(V ), m(V ), h(V )] and a maximum
conductance ḡ. Each current is then calculated as the product
of the varying conductance and the membrane potential rela-
tive to their reversal potential,

iint = ḡNam(V )3h(V )(V − ENa) + ḡKnK (V )4(V − EK)

+ ḡMnM (V )(V − EK) + gL(V − EL ). (10)

Each activation and inactivation variable obeys its own
differential equation that is a function of membrane potential
of the form:

dn

dt
= n∞(V ) − n

τn(V )

dm

dt
= m∞(V ) − m

τm(V )
(11)

dh

dt
= h∞(V ) − h

τh(V )
.

More details on the components (n∞, m∞, h∞, τn, τm, τh) of
the activation/inactivation variables can be found in Sec. I of
the Supplemental Material [39]. The values of the parameters
that we use in the model are listed in Table SI.

Once the ith neuron’s membrane potential rises above a
threshold of 10 mV, an evoked action potential (AP), or spike,
is transmitted to each connected neuron j (0 < j � m). These
spikes result in postsynaptic currents at the target neuron, isyn,
whose conductances depend on the type of connection. More
specifically, the synaptic conductance depends on whether the
source and target neurons are excitatory (E) or inhibitory (I)
according to:

E → E gsyn = +0.45μS

E → I gsyn = +0.20μS

I → E gsyn = −0.05μS

I → I gsyn = −0.10μS.

Because our neuronal networks model only a small population
of neurons in the brain, we model external neuronal chatter
originating at farther distances as spikes drawn from a Poisson
distribution with an average stimulation interval of 35 ms.
These series of spikes are independent for each neuron and
are the only driving stimulation in each network that persists
throughout the length of the simulations. Each driving spike
also contributes to the total synaptic current, isyn, with conduc-
tance gsyn = 1 μS. For all synaptic currents, the conductances
decay exponentially obeying

dgsyn

dt
= −gsyn/τ,

where τ = 1 ms.
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To model distance-dependent signal delays, each evoked
spike arrives at the target neuron after a delay time given by

ti j = di j/v,

where v is the propagation speed of the signals and di j is
the Euclidian distance between the source and target neurons.
We model the neuronal spacing and density using values
previously used for layer III of the prefrontal cortex in rhesus
monkey brains [45].

C. Measures of spike synchrony

For each neuron, we record the times at which they gen-
erate spikes and construct a spike train. In our model, spike
trains are in general nonperiodic and may contain regions of
high and/or low frequency of spikes. We measure synchrony
between two spike trains by measuring the distance between
them, thus the larger the distance, the more dissimilar two
spike trains are. Typical approaches to calculate this quantity
include the Victor-Purpura and van Rossum distances [46–48]
that are time-scale dependent. An alternative measure, and
the one used here, is the SPIKE-distance method proposed by
Kreuz et al. [49,50]. This method is more appropriate to our
case since it is a parameter-free and timescale-independent
measure of spike train synchrony that dynamically adapts
to the timescale of the spike trains. The SPIKE distance is
bounded on the interval [0, 1], where 0 indicates identical
spike trains and 1 indicates maximally asynchronous, dissim-
ilar spike trains.

To define the bivariate SPIKE distance [49,50], consider
spike trains of two neurons with labels n = 1, 2. At any time
t , let �t (n)

P (t ) be the time between the previous spike of neuron
n and the other neuron, �t (n)

F (t ) be the time between the
following spike of neuron n and the nearest spike of the other
neuron, x(n)

P (t ) and x(n)
F (t ) be the times to the previous and

following spikes of neuron n, respectively, and x(n)
ISI (t ) be the

total interspike interval (ISI) between previous and following
spikes of neuron n (xISI = xP + xF ) (see Sec. II in the Sup-
plemental Material [39] for formal definitions). Having these
quantities, we can then calculate the local weighted spike time
difference, Sn(t ), for each neuron (the weighting makes it such
that spike time differences closer to the time, t , have a greater
contribution),

Sn(t ) = �t (n)
P (t )x(n)

F (t ) + �t (n)
F (t )x(n)

P (t )

x(n)
ISI (t )

. (12)

We can then calculate the dissimilarity profile, S(t ), by
weighting the contributions from each neuron’s Sn(t ) value by
the neuron’s interspike interval (ISI) at time t . This weighting
helps account for differences in firing frequency,

S(t ) = S1(t )x(2)
ISI (t ) + S2(t )x(1)

ISI (t )

2
〈
x(n)

ISI (t )
〉2
n

. (13)

Finally, we obtain a single value for the distance between
the pair of spike trains by simply calculating the average value
of this profile, S(t ), over the whole simulation time of length
T . This is what is called the SPIKE distance for the two

neurons under consideration,

DS = 1

T

∫ T

t=0
S(t )dt . (14)

We obtain the average SPIKE distance for any one network
simulation by calculating the average of the SPIKE distance
using every pair of neurons in the network.

Because this measure relies on the distance between spike
times from a pair of neurons, it gives a measure of simultane-
ity of spike events over a whole train of spikes. Thus it corre-
sponds most closely to a measure of event synchronization.

D. Parameters and statistics

The size of the 3D box containing each neuronal network
is Lb = 256 μm. Using neuron size and density parameters
from previous work [45], we generate 10 systems with only
excitatory neurons and 10 with additional inhibitory neurons
where all neuronal spatial locations are chosen at random. We
use each set of positions for both a grid and mixed group-
ing connected network. The networks contain on average
NE = 571 excitatory neurons and in networks that include
inhibitory neurons, we add on average NI = 139 inhibitory
neurons (lowering the average NE to 556 corresponding to
≈20% inhibitory neurons). We carry out simulations with
total time lengths each of 10000 ms and record the times of
spikes. To avoid transient behavior we discard the first 500 ms
of simulation time. We sample the [m, δ] phase space for
different values of m and δ in the range of m = [1, 45] and
δ = [0, 1). The upper limit of the m range guarantees that
our networks are well below the saturation point discussed in
Sec. II A for networks with smaller groups (nine groups lead
to saturation point m ≈ 60). For the networks with inhibitory
neurons, we test different values for mI from mI = 10, 35, 45
in Eq. (8). We select values of m and δ at random, except
in regions with higher values of m where more phase points
are sampled. We explored a large range of propagation speeds
and display results here for only v = 7.5 μm/ms, which most
accentuates the features of interest. With this propagation
speed and the connection lengths in our networks the resulting
delay times between neurons range from 1 ms to about 30 ms.

III. RESULTS

A. Networks of excitatory neurons

After a transient period, less connected systems (low m)
enter a state of noisy activity, as exemplified in Fig. 4(a),
while more highly connected systems (high m) synchronize
in networkwide coordinated events, as illustrated in Fig. 4(b).
Figure 5 shows heat map representations of the phase space
of SPIKE-distance data showing the degree of synchrony for
four group networks (2 × 2 grid vs four mixed groups). The
scale in the figure ranges from red (asynchronous; SPIKE
distance = 0.28) to blue (synchronous; SPIKE distance =
0.12). The SPIKE-distance value associated with the red re-
gion of the diagrams (≈0.28) is the same as the value obtained
in an equivalent network with totally unconnected indepen-
dent neurons; therefore this value corresponds to maximum
asynchrony given our simulation parameters. This maximum
value measured in our networks is much smaller than the
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FIG. 4. Example raster plots of neuronal spikes as a function of
simulation time for all neurons in two networks with δ = 0.5 and
two different number of connections per neuron: (a) m = 20.2 and
(b) m = 35.5.

theoretically maximum value of the instantaneous SPIKE
distance between a pair of neurons (see Fig. S2 [39] for an
illustration).

Both sets of data shown in Fig. 5 indicate a rather sharp
reduction in SPIKE distance (from red to blue) at a parameter-
dependent m′ ≈ 25 (see Fig. 6) that occurs simply because as
the number of connections (and thus current) increases [e.g.,
starting from Fig. 4(a)], at m � m′ any fluctuation will pro-
voke repeated cascades of firings [e.g., Fig. 4(b)], indicative
of a synchronous state. The location of this transition can
be estimated by using an effective firing rate of neurons, x,
and m. On average, a neuron receives n firings per unit time
that can be approximated as n = mx(1 + m/nc), where the
first term is an effective rate of input spikes arising from all
m connections, and the second term is due to firings from
the neighbors of the connected neurons (proportional to m
and inversely proportional to the minimum number of inputs

FIG. 5. Phase space diagrams of the average SPIKE distance for
the (a) 2 × 2 grid and (b) mixed groupings as a function of m and δ.
Sampled m, δ points are represented by open circles and their values
are averages over 10 networks. The underlying color map is linearly
interpolated from these data. The color scale is in units of the SPIKE-
distance metric, which ranges from 0–1.

necessary to trigger a spike, nc). At the transition n = nc and
m = m′. From our data on systems close to the transition, we
directly measure that in a given 10 ms interval, about five
excitatory inputs are needed to trigger a spike (nc 	 5) and
the average firing rate x = 0.03 (3 Hz). Solving for m′ we
obtain a value m′ = 26.5, in agreement with the transition
value observed in Fig. 6.

The transition in SPIKE distance is reflected in the firing
dynamics in these two regimes as shown in the raster plots
from each region that show a clear asynchronous to syn-
chronous transition (Figs. S3 and S4 [39]). The change be-
tween these two regimes corresponds to a transition between
two fundamentally different dynamical states of the networks.
We show this by performing an independent calculation of the
histogram of sizes of networkwide firing events (Fig. S5) in
which events are defined as spikes occurring within a small
window of time, and the size of the event is the number of
spikes in that window. When plotting the number of events of
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FIG. 6. Dependence of average SPIKE distance on connections
per neuron for the grid grouping network, highlighting the sharp
drop of the average SPIKE distance. Different values of the bias
parameter, δ, are represented by varying shades of gray.

a certain size vs the size of the events we find that networks in
the asynchronous regime exhibit a peaked distribution at small
event sizes while in the synchronous region networks exhibit a
power-law behavior [Fig. S5(a)], an indication of correlations
[51]. Further, when doing a linear fit of the log-log plot
of all such histograms throughout the entire phase space
[Fig. S5(b)] we find that the regression residuals exhibit a
sharp decrease at a similar m value as in Fig. 6.

Another feature shown in Fig. 5 that is common to both the
grid and mixed groupings is a narrow horizontal asynchronous
region above δ = 0.9 for all values of m. This is because at
high δ the groups are nearly completely unconnected from
each other and the local firing patterns, even when synchro-
nized, are not synchronized across groups. Thus, the globally
averaged SPIKE distance will not yield a value corresponding
to synchronous behavior.

By far the most important feature in this figure, and the
main focus of this paper, is the clear difference between the
two groupings at high m and δ (top-right corner). In this region
of the phase space, the mixed grouping appears asynchronous
while the grid grouping does not (see individual raster plots
shown in Figs. S3 and S4 with m = 39.14 and δ = 0.73). By
calculating the histogram of sizes of firing events we observe
that while in this region the grid grouping follows power-law
behavior (synchronous), the corresponding histogram for the
mixed grouping shows a peaked distribution (asynchronous)
at the place where they differ the most (Fig. S6).

B. Statistical significance of the difference in SPIKE distance
between grouping systems

To determine whether the differences between the two
phase space diagrams in Fig. 5 are statistically significant, we
first subtract both phase diagrams [Fig. 7(a)] and then plot
[Fig. 7(b)] the region m = [37, 45], δ = [0.65, 0.75] contain-
ing the largest SPIKE-distance differences found in Fig. 7(a).

By comparing both sets of data from Fig. 7(b) we can see
that the size of the difference in the region of interest (≈0.08)

FIG. 7. (a) Difference in the SPIKE-distance data of Fig. 5
(mixed grid). Color scale is in units of SPIKE distance. (b) Depen-
dence of the average SPIKE distance on m, for a range of δ between
0.65 and 0.75 (error bars show 1 standard deviation of the mean).
Insets show raster plots of spikes for 100 neurons spanning 5 s of
simulation time.

is much larger than the standard deviations of the means of
each set (on the order of 0.01), thus statistically significant.
Therefore in this region grid grouping is significantly more
synchronized than the mixed grouping. A reason for this
difference is shown in the raster plot for the mixed grouping
that shows continuous network activity clearly exhibiting a
hyperactive state leading to the higher value of the SPIKE
distance. We also show in the Supplemental Material (see
Sec. III of the Supplemental Material and Fig. S7 [39])
that when we split the network into smaller groups (3 × 3
grid), the difference between mixed and grid grouping is
preserved.

C. δ dependence

To understand the origin of the enhanced synchronization
in the region of interest resulting from grid grouping, we
investigate structural properties that could play a role in the
dynamics. Because the average path length (number of hops)
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FIG. 8. δ dependence of (a) the average signal distance between
pairs of neurons and (b) the average SPIKE distance for m =
[37, 40]. Insets in (b) show raster plots of spikes for 100 neurons
spanning 5 s of simulation time.

between two neurons is insensitive to δ (Fig. 3), we instead
consider the signal distance. We define the signal distance
between two neurons as the sum of the physical lengths of
each intermediary connection along the shortest path between
those neurons [52]. Figure 8(a) shows the average signal
distance as a function of δ in the range of m = [37, 40].
First, this figure shows that for networks with grid grouping,
as δ initially increases from 0, the signal distance slightly
decreases. This is because increasing δ decreases the number
of intergroup connections that are mostly long-range connec-
tions in grid networks. Second, at intermediate values of δ,
the average signal distance, a property that is related to the
effective accessible volume to neurons in a group, is lower in
the grid grouping compared to the mixed grouping because
the accessible volume is smaller than the entire box (unlike in
the mixed grouping, as δ → 1 the grid grouping volume goes
to one-quarter of the total volume). Third, for both types of
grouping, as δ increases beyond approximately δ > 0.6, the
average signal distance starts to increase instead. This is be-
cause, for these values of δ, there is a greatly reduced number

of intergroup connections resulting in a reduced number of
neurons that bridge different groups. This means that signal
distances will increase as all of the paths connecting different
groups will have to cross using the remaining bridge neurons
making the distances, on average, longer.

With this quantity in hand, we can now examine the δ

dependence in the m > 35 region, shown in Fig. 8(b). The
SPIKE distance is observed, for the grid grouping, to first
slightly decrease for 0 < δ < 0.2, level out for 0.4 < δ <

0.6, and finally sharply increase for δ > 0.6. On comparing
Figs. 8(a) and 8(b) for the grid grouping, it is clear that the
SPIKE distance is proportional to the signal distance. Thus,
shorter physical distances in the grid grouping improve the
chance of obtaining synchronized firing dynamics, which is
consistent with shorter propagation times of signals.

Looking now at the mixed grouping, the previous rationale
using signal distance does not explain the hyperactive state
with an increase in SPIKE distance in the δ = [0.65, 0.75]
region shown in Fig. 8(b). For this we need to look not
at structural properties, but to dynamics. Raster plots from
this region indicate that contrary to the grid, the hyperactive
state in the mixed grouping exhibits almost continuous spikes
[Figs. 7(b), S3, and S4]. In a typical synchronous state, raster
plots show pronounced activity followed by gaps as shown in
Fig. 4(b). Part of the reason for these gaps is the large number
of neurons in their refractory period preventing subsequent fir-
ing [see Fig. S8(a)]. In contrast, raster plots in the hyperactive
state indicate that there is a constant supply of ready-to-fire
neurons throughout the network [Fig. S8(b)]. This suggests
that there are different subgroups of neurons that take turns
on firing together, but that by cascading their spikes, the
global network lacks synchrony as defined by the SPIKE
distance.

D. Effect of inhibitory neurons

To increase the level of realism of the model, we add
inhibitory neurons to the networks as outlined in Sec. II.
Different values for the connections per inhibitory neuron
mI = 10, 35, 45 were explored having only the effect of
shifting the m value of the transition toward higher values in
the phase space. Figure 9 shows the SPIKE-distance phase
space diagrams for both grouping methods using mI = 10.

From the figure, one effect of inhibitory neurons is to
increase the overall values of the SPIKE distance as compared
to Fig. 5. It also shifts the point at which the asynchronous
to synchronous transition occurs that we can estimate from
the figure to be about m′′ ≈ 32. This shift can be understood
in terms of the effect of the number of connections on the
postsynaptic current of excitatory neurons. As a reference,
the maximum change in conductance in the purely excitatory
system is given by m′ × gEE , where m′ is the threshold
number of connections (m′ ≈ 25; from Fig. 5) and gEE =
0.45 μS. If we assume that, with inhibitory neurons, the
same change in postsynaptic current should occur, then (0.8 ×
m′′ × gEE ) + (0.8 × mI × gIE ) = (m′ × gEE ) (with 80% of
connections terminating at an excitatory neuron, and gIE =
−0.05 μS). Solving for the new threshold number of
connections gives m′′ 	 32.4, corresponding to the estimated
value above.
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FIG. 9. Phase space diagrams of the average SPIKE distance for
the (a) 2 × 2 grid and (b) mixed groupings with 20% inhibitory
neurons as a function of m and δ. Sampled m, δ points are represented
by open circles and their values are averages over 10 networks. The
underlying colormap is linearly interpolated from these data. The
color scale is in units of the SPIKE-distance metric.

Additionally, a visual comparison of Figs. 9(a) and 9(b)
suggests that the difference between the two groupings is
less than that observed in the purely excitatory networks.
However, the quantitative difference is still significant, as can
be seen in Fig. 10 for m > 40. The present reduction in
the difference between the grid and mixed grouping schemes
can be understood structurally by considering the following:
because inhibitory neurons are connected independently of
grouping, these additional connections generally increase in-
tergroup communication and reduce the structural differences
between grid and mixed groups. Dynamically, inhibitory neu-
rons prevent the mixed system from entering the hyperactive
state seen in Fig. 7; however, the raster plots still indicate a
high level of activity in the same region of the phase space (see
inset in Fig. 10). It is this highly active state that still causes
the synchronization performance of the mixed grouping to be
decreased.

FIG. 10. Dependence of the average SPIKE distance on m, for a
range of δ from 0.65–0.75 for networks with 20% inhibitory neurons.
Insets show raster plots for 100 excitatory neurons spanning 5 s of
simulation.

IV. DISCUSSION

In this work, we study the effects of structure and con-
nectivity on the firing dynamics of a network of grouped
neurons that may be important in cortical neuronal networks
[15]. For this, we connect clusters of spatially segregated
interconnected neurons similar to those observed in different
connectomes in nature [53] (grid grouping) and compare their
firing dynamics to a control case (mixed grouping). We find
that although grouped and mixed networks have a very similar
phase space, there is a region where grid grouping has a higher
degree of synchrony. This result is preserved when we shrink
the size of the groups as well as when including inhibitory
neurons in our model.

To find the origin of this phenomena, we analyzed the
average signal distances for each of the two groups and found
significant differences. However, we also found that the av-
erage signal distances also differ in regions where both phase
diagrams coincide, thus this quantity does not fully explain the
disparity in synchrony. It is when we look at the corresponding
raster plots that we find that contrary to grid grouping, mixed
grouping is susceptible to hyperexcitation characterized by
continuous uninterrupted firing in this specific region of the
phase space. Our data then suggest that grid grouping is more
robust against a transition to such a hyperactive state.

Adding inhibitory neurons has the effect of decreasing
the degree of synchronization, as seen by others [33]. This
addition also reduces the difference between the grouped
and mixed networks, an effect that can be attributed to the
inhibitory neurons connecting neurons across groups, thus
decreasing the effect of spatial groupings, and also preventing
the mixed system from a state of continuous activity.

We find an interesting and complementary conclusion
when considering the larger region of the phase diagram
where there is practically no difference in the firing dynamics
of the two groups [blue regions in Fig. 7(a)]. Our results
indicate that this similarity in dynamics exists even when
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the two groups are wired in totally different ways leading to
different average connection lengths (see Figs. S9 and S10)
and signal distances. These results suggests that, for these
regions of the phase diagram, there is a disconnection between
topology and function as defined by the SPIKE-distance mea-
sure. This nondependent behavior is akin to the observation
that orientational columns in the ocular cortex of the monkey
do not talk to each other while ocular dominance columns do
in the same region of space pointing to some independence of
morphology and function [54,55].

Nonetheless, this complementary conclusion does not rule
out a relationship between topology and synchronization as
shown by our data. First, in the region of high connections
per neuron in the grid grouping, the SPIKE distance is pro-
portional to the average signal distance. This suggests that
shorter average connections and signal paths between neurons
do play a role in making the networks more synchronous. This
is consistent with the concept of economies of connection
[56,57] that may be playing a role. Second, the area where
synchronization differs is still one where signal distances
[Fig. 8(a)] and average connection lengths (Fig. S9) differ,
with the grid grouping having lower values for both, in
contrast to the thought that highly clustered networks have a
higher connection cost than a random network [3]. This region
is one with high δ, which forms a sparse intergroup connection
scheme with shorter connections lengths where the economy
of connections may be at work. It is not hard to imagine that
given a network with the connection constraints given by this
region of phase space, biological systems faced with the cost
of wiring but with the same topological integration could in
fact choose to use the grid grouping rather than the mixed one
[3,58].

Many elements of our model are not new. Many studies
explore clustering and small-world connectivity in the context
of neuronal network simulations [22,32,33,59]. However, the
number of studies on the effects of the overlap between
clustering and distance-dependent time delays is rather small
[32]. There are in some cases differences in the results be-
tween these previous studies and ours. For example, in a
2D all-connected network researchers find that signal time
delays always disrupt synchronization [31], while we find
that by increasing intergroup connectivity, an asynchronous to
synchronous transition always occurs despite the existence of
a delay in the signal. In other cases, our results are consistent
with others, such as in a study considering distance-dependent
delays with neurons scattered in a 3D cube and with connec-
tions tunable between scale-free and nearest-neighbor con-
nections [32]. This study finds that the most synchronized
network is the one intermediary between both connectivity

regimes. Because their connectivities do not spatially separate
their connected groups, their connectivity model is more akin
to our mixed grouping, in which we also find an optimum
degree of synchronization at a rather high value of intergroup
connectivity (mid–low δ). Without time delays, it is under-
stood analytically that synchronization within groups can en-
hance the synchronizability of the network [60] and that high
intergroup connectivity can lead to this condition being met
[61], but work like ours and that of Gosak [32] show that with
the introduction of distance-dependent time delays, this effect
is not universal and is only met within a certain range of con-
nectivity conditions due to the high variability of delay times.

Our model can be modified to improve some of its sim-
plifying assumptions, such as the construction of connections
following a random process. It is known that connectivity
in the brain is not random, and that motifs (two- and three-
neuron) of highly connected neurons are overrepresented
[12]. Although considering such connectivity might introduce
changes to our phase diagrams, we do not expect that our
main conclusions would change because our results are based
on the difference between two neuronal groupings that could
in principle cancel individual changes. Nonetheless, a future
consideration of our modeling will test whether inclusion of
such a connectivity might introduce significant changes.

V. CONCLUSIONS

Our results show that a computational model of neuronal
networks with distance-dependent time delays can exhibit a
high degree of spiking synchrony throughout the network
when enough connections are formed between neurons, but
that this can be lost if the network enters a hyperactive state
characterized by continuous firing of excitatory neurons. This
state appears in networks with relatively isolated groups (high
δ) that are spatially mixed, but it does not appear when these
same groups are spatially segregated into a grid (columnar)
structure. The robustness of the grid networks is understood
in terms of properties of the distances between neurons while
the hyperactive state is understood by the group dynamics
of firing neurons. Further investigation is needed to isolate
factors that lead to the transition to this hyperactive state,
but from the presented data it is clear that networks with
grid grouping are more robust against transitioning into this
continuous activity state.
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