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Organoids are prototypes of human organs derived from cultured human stem cells. They provide a reliable
and accurate experimental model to study the physical mechanisms underlying the early developmental stages of
human organs and, in particular, the early morphogenesis of the cortex. Here we propose a mathematical model
to elucidate the role played by two mechanisms which have been experimentally proven to be crucial in shaping
human brain organoids: the contraction of the inner core of the organoid and the microstructural remodeling of
its outer cortex. Our results show that both mechanisms are crucial for the final shape of the organoid and that
perturbing those mechanisms can lead to pathological morphologies which are reminiscent of those associated
with lissencephaly (smooth brain).
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I. INTRODUCTION

The characteristic convoluted shape of the human brain
was first reported in the Edwin Smith papyrus, an Egyptian
manuscript dated 1700BC that compares brain convolutions
to the corrugations or wrinkles found in molten metal [1]. The
description, development, and function of these convolutions
have also been major topics of research since the early 1800s
[2].

The visible upper part of the convolutions are called gyri
and their deep groves are referred to as sulci. Geometrically,
the convolutions increase the surface area of the brain for
a given volume. From a functional point of view, it is be-
lieved that they have the strategic functions of increasing
the number of neuronal bodies located in the cortex and of
facilitating the connections between neurons and hence re-
ducing the traveling time of electric signals between different
regions.

Although different explanations have been proposed, the
mechanisms behind gyrification are not fully understood. It
is now accepted that intrinsic mechanical forces, rather than
external constraints, are responsible for the emergence of
folding in the human brain [3]. Recent observational studies
[4,5] further support the role of the rapid tangential expansion
of the cortex during development as the primary driver for
folding [2,6–9].

At the simplest physical level, the onset of folding can
be understood as an initial build up of elastic energy in the
compressed upper cortex and its partial release by a wrin-
kling deformation of the film and substrate. Experimentally,
this instability can be observed in the constrained polymeric
swelling of a circular shell bounded to an elastic disk which
triggers the same type of wrinkling pattern [10–14]. Simi-
lar experiments performed on a two-layered brain prototype
made of polymeric gels with differential swelling properties
reproduce folds similar to the gyri and sulci of a real brain
[15].

Yet the human brain is too complex to be used as an exper-
imental platform to unravel the detailed cellular mechanisms
leading to folding. An alternative approach is to use human
brain organoids.

Brain organoids are self-organized and collective structures
produced in vitro from the culturing of human stem cells that
mimic the early development of the human brain. In particular,
when cultured in a mostly flat geometry, these organoids de-
velop wrinkling patterns as shown recently by Karzbrun et al.
[16] (Fig. 1). Moreover, these authors identified two possible
mechanisms for surface folding during cortical development:
the contraction of the organoid lumen and the nuclei motion of
neuronal progenitor cells within the cortical layer–interkinetic
nuclear migration (INM) [17,18].

The cortex is populated by progenitor cells (that will later
become neurons) radially oriented across the layer. Their
nuclei move up and down across the cells following the cell
cycle: first apical-ward (toward the lumen) and then basalward
(toward the outer surface of the cortex). Karzbrun et al. [16]
found that the nuclei accumulate in the basal zone of the
cortex. This accumulation induces a swelling in proximity
of the outer surface and causes the onset of the wrinkling.
Computer simulations and physical arguments were proposed
but without fully integrating the remodeling and contraction
processes. Alternative models were proposed in Refs. [19,20].

Different morphologies can be obtained by varying these
two effects. The key problem is then to develop a physical
model to understand the relative role of each effect in creating
folding patterns in brain organoids. Here we use morphoelas-
ticity [21], the theory of growing and remodeling continua, to
model brain organoids and explore various parameter regimes.

II. THE MODEL

The organoid is modeled as a two-dimensional (2D) con-
tinuum morphoelastic structure made of an inner disk, the
lumen, which serves as the core of the organoid, and a

2470-0045/2020/101(2)/022403(8) 022403-1 ©2020 American Physical Society

https://orcid.org/0000-0002-7538-9490
https://orcid.org/0000-0002-6266-1221
https://orcid.org/0000-0002-6436-8483
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.022403&domain=pdf&date_stamp=2020-02-06
https://doi.org/10.1103/PhysRevE.101.022403


BALBI, DESTRADE, AND GORIELY PHYSICAL REVIEW E 101, 022403 (2020)

lumenlumen

γc

cortex

FIG. 1. Left: Morphology of a growing human brain organoid
(adapted from Ref. [16], scale bar is 100 μm). Right: A two-
dimensional morphoelastic model. The black circles represent the
nuclei that move up and down radially while the lumen can contract
in the hoop direction.

surrounding ring, the cortex. We introduce a cylindrical co-
ordinate system so that a material point at position X ∈ R2

with components (R,�) in the initial configuration B0 is at
position x ∈ R2 with components (r, θ ) in the final, deformed,
configuration B. The deformation x = x(X) from B0 to B
defines the associated deformation gradient F = ∂x/∂X.

To model the contraction of the lumen (shrinking) and the
remodeling of the cortex, we use the multiplicative decom-
position of the deformation gradient. Hence F is split into
the product of a tensor G, describing the natural growth or
remodeling of the tissue and introducing a virtual intermediate
incompatible state, and of an elastic deformation tensor A,
restoring the compatibility of the structure, while possibly
introducing residual stresses [21].

Specifically, the lumen undergoes a uniform contraction
that results in an isotropic shrinking in the plane, while
microstructural changes occur at constant volume within the
cortex due to the radial motion of cell bodies. The tensor G
for the lumen and the cortex is

GL = diag(γL, γL ) and GC = diag(γC, 1/γC ), (1)

respectively, where γL < 1 is a measure of the volumetric
contraction of the lumen and γC is the remodeling stretch
associated with microstructural changes in the cortex. Experi-
mentally, γL can be assessed by a continuous measurement of
the volume and γC by following the motion of the nuclei in
the cortex.

Figure 2(a) illustrates the deformation resulting from the
contraction of the lumen and Fig. 2(b) shows how a slice of
the organoid deforms when remodeling occurs in the cortex.
This form of GC captures the observed back and forth motion
of the nuclei of neuron progenitor cells, because it generates
inward or outward forces within the cortex, as we show later.

Note that the multiplicative decomposition of the deforma-
tion gradient has been extensively employed within the the-
ory of morphoelasticity to model successfully morphogenetic
processes in biological soft tissues such as pattern formation
in tubular organs and spherical growth [10,22–25]. In those
models, the morphological transitions were associated with
the onset of an elastic instability generated by differential
growth between different tissue layers. The novelty here is
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FIG. 2. Schematic illustration of (a) the contraction of the lumen
and (b) the remodeling of the cortex (small dots represent nuclei).

that we elucidate the role played by two distinct biological
processes in shaping the brain: on the one hand, the contractile
shrinking of the lumen and, on the other hand, the internal
remodeling of the cortex.

Both the lumen and the cortex are assumed incompressible
and a simple base solution for the deformation maintaining
the circular symmetry is

r = γLR, θ = � for R ∈ [0, Rm)

r =
√

R2 + a, θ = � for R ∈ [Rm, R0], (2)

where a = r2
m − R2

m is the unique unknown parameter (to
be specified from the mechanical equilibrium) and Rm, R0

(rm, r0) are the interface and outer radii in the undeformed
(deformed) configuration, respectively. The initial geometry
of the structure is defined by the nondimensional aspect ratio
H = R0/Rm.

We assume that both the lumen and the cortex follow
a hyperelastic, isotropic, and neo-Hookean behavior so that
each tissue has a strain energy density in the form WN =
μN [tr(AN AT

N ) − 3]/2 (N = L,C), where μL and μC are the
shear moduli of the lumen and cortex, respectively. The
Cauchy stress for each tissue is then σN = μN AN AT

N − pN I,
where pN are the Lagrange multipliers introduced by the
constraint of incompressibility and I is the identity tensor.

The elastic equilibrium problem is given by:

d

dr
σNrr (r) + 1

r
[σNrr (r) − σNθθ (r)] = 0, N = L,C, (3)

with boundary and continuity conditions

σCrr (r0) = 0, and σLrr (rm) = σCrr (rm). (4)
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The solution to (A1) with (4) is

σCrr (r) =
∫ r0

r
μ

BCrr (r) − BCθθ (r)

r
dr,

σCθθ (r) = μ[BCθθ (r) − BCrr (r)] + σCrr (r),

σLrr (r) = σLrr (rm), σLθθ (r) = σLθθ (rm). (5)

This solution shows that the Cauchy stress is constant
within the lumen because the deformation is homogeneous
there (details given in Appendix A). The hoop stress σCθθ is
negative within the cortex, indicating that the outer layer is
under circumferential compression.

We expect that for some critical values of the parameters,
the organoid will buckle to release the build-up of com-
pressive residual stress in the cortex. Further, when γC <1
a positive radial stress is generated and the force gradient
favors the outward nuclei motion. When γC >1 the radial
stress component is negative and contributes to pushing the
nuclei inwardly, according to the observed cyclic outward or
inward nuclear motion within the cortex.

Next we study the stability of the symmetric solution
in (2) and (A3). We perturb the current position vector x
with components in (2) by superposing an incremental [26]
deformation δx. The perturbed position vector is x̃N =xN +
εδxN (N = L,C), where ε is small, and the associated elas-
tic deformation gradient is ÃN = AN + ε�N AN , where �N =
∂δxN/∂xN is the incremental displacement gradient. Accord-
ingly, we define the perturbed stress σ̃N =σN +εδσN where:

δσN =AN :�T
N + pNδFN − δpN I (6)

is the push-forward of the incremental nominal stress. Here
AN =AN (∂2WN/∂A2

N )AN is the fourth-order tensor of the
instantaneous elastic moduli and δpN is the increment of the
Lagrange multiplier. Note that AL is constant because the de-
formation is homogenous within the lumen. The incremental
problem then amounts to solving

div δσN = 0 and tr �N =0, N = {L,C} (7)

the latter being the incremental incompressibility condition.
We seek a wrinkling solution of the form:

{δrN , δpN } = {UN (r), PN (r)} cos(m θ )

δθN = VN (r) sin(m θ ), (8)

where δrN , δθN are the components of the incremental dis-
placement δxN and m is the wave number of the perturbation.

To tackle the incremental problem (7), which is a second-
order linear system of three partial differential equations
with boundary conditions, we transform it into a first-order
linear system of four ordinary differential equations (ODEs)
with initial conditions. From (7) and (8) we find that the
incremental stress components have the forms: (δσN )rr =
	Nrr (r) cos(m θ ) and (δσN )rθ =	Nrθ (r) sin(m θ ) and we
rewrite (7) as

d

dr
ηN (r) = 1

r
MN (r)ηN (r), N = {L,C}, (9)

where ηN (r)={UN (r), r�N (r)}T and the 4 × 4 MN is the so-
called Stroh matrix [27–30]. Note that (9) is a system of ODEs
with variable coefficients.
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FIG. 3. Critical instability threshold γ cr
C and wave number mcr

against the initial aspect ratio H =R0/Rm at varying stiffness ratios
μC/μL ={5, 10, 20, 30, 40} with fixed γL = 1 [(a) and (b)] and at
varying γL ={0.91, 0.93, 0.95, 0.98, 1} with fixed μ = 10 [(c) and
(d)].

In the lumen, because ML has constant components, we
have:

ηL(r) = c1rm−1η(1)(r) + c2rm+1η(2)(r), (10)

where m−1 and m+1 are the eigenvalues of ML and η(i)(r)=
{ηUi(r), η�i(r)}T with i={1, 2} are the associated eigenvec-
tors.

To solve numerically the Stroh problem in the cortex
(method given in Appendices B and C), we fix H and μ, and
by iterating over the wave number m and either γC or γL, we
solve for η from r0 to rm with null initial condition until the
outer boundary conditions are satisfied.

III. RESULTS

Figure 3 shows the critical instability thresholds of the
cortex remodeling stretch γ cr

C against the initial aspect ratio
R0/Rm at varying lumen volumetric changes γL and varying
stiffness ratios μC/μL with the associated critical wave num-
ber mcr.

From Figs. 3(a) and 3(b) we conclude that the stiffer
the cortex, the higher the critical remodeling thresholds γ cr

C .
Therefore, disks with a stiff ring will buckle earlier (in the
sense that the remodeling in the cortex introduces less circum-
ferential compression to trigger the instability) than those with
a soft ring. These results are in accordance with those found
for a substrate with a growing layer [31].

Another interesting aspect arises from Fig. 3(a): When
the lumen does not contract (γL = 1.0), the cortex instability
thresholds γ cr

C are independent of the initial thickness of the
cortical ring, i.e., the aspect ratio H . However, the instability
patterns [mcr in Fig. 3(b)] do depend on the thickness of the
cortex (particularly for very thin rings).

Finally, as the lumen contracts [upper curves in Fig. 3(c),
γL < 1], the critical thresholds γ cr

C for the cortex decrease,
indicating that the more the lumen contracts, the earlier
the cortex will buckle. This behavior is expected from the
mechanics viewpoint, because lumen contraction leads to a
compressive circumferential stress in the cortex.
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FIG. 4. Effect of contraction inhibition on the final morphology of the organoid: [(a) and (d)] control and drug-treated organoids (digitized
from Ref. [16], scale bars are 100 μm); [(b) and (e)] instability patterns predicted by our model from an initial organoid with H = 1.05,
γC = 1 and by setting μC/μL = 0.85 in (b), and μC/μL = 40 in (e); [(c) and (f)] magnitude of the incremental displacements UN (r),VN (r),
(N = L,C) within the organoid (orange and purple, respectively), computed using the same parameters as in (b) and (e) and taking ε = 0.02.

In Fig. 4, we show the final morphologies obtained from
two disks with the same initial aspect ratio H =1.05 but with
different stiffness ratios μ. In Fig. 4(e) the lumen is softer
than the cortex (μC/μL =40) and the opposite scenario is
modeled in Fig. 4(b) (μC/μL =0.85). The critical threshold
for the instability in Fig. 4(e): γ cr

L =0.95 is much higher than
that in Fig. 4(b), γ cr

L =0.57, indicating that disks with softer
cores buckle at lower contraction thresholds.

IV. DISCUSSION

These results are able to capture the effect of contraction
inhibition of the cytoskeleton observed in human organoids.
Indeed, in Ref. [16] organoids treated with Blebbistatin (a
drug used to reduce the contractility of the lumen) were
found to have a softer core [Case (e)] than control organoids
[Case (b)]. Moreover, our model predicts that the critical wave
number for a disk with a soft core, mcr = 8, is lower than
that of a disk with a stiffer core, mcr = 16. Hence our model
predicts the experimental result that treated organoids display
less folds than control ones [compare Figs. 4(a) and 4(b) with
Figs. 4(d) and 4(e)]. This is in line with results obtained by
differential growth models where both the lumen and the ring
grow but at different rates [14]. By contrast in our study, the
lumen and the ring undergo two different mechanisms: The
former contracts and the latter remodels according to the INM.

Furthermore, by comparing the magnitude of the instability
patterns in Figs. 4(c) and 4(f) we can observe that in Case
(b) (hard lumen), the pattern is more pronounced at the outer
radius r0 than at the contact radius rm, whereas in Case (e)
(soft lumen) the trend of the magnitude is reversed. The model
thus encapsulates the experimental observation that when the
contractility of the organoid is disrupted, the apical surface

(i.e., the interface between the lumen and the cortex) corru-
gates more than the basal one (outer surface of the organoid).

Our model also predicts the experimentally observed linear
scaling law between the critical wavelength λcr and the initial
thickness t of the cortex, in agreement with previous models
[32,33]. In Fig. 5, we compare quantitatively the predictions
of our model with the data reported in Ref. [16] for the
LIS1 + /− mutation. In the thickness range 50–150 mm,
Karzbrun et al. [16] report linear factors (slopes) between the
wavelength and the thickness for the control and the mutant
organoids of amounts 0.8 and 1.9, respectively. Moreover,
they find that the LIS1 + /− mutation induces a reduction of
the lumen stiffness by a factor 2. To validate our model, we
calculate the predicted wavelength of the instability pattern
for disks with stiffness ratio μC/μL =0.48 (blue line) and for
disks with halved lumen stiffness μL, i.e., μC/μL =0.9 (or-
ange line). The slopes predicted by our models are 0.75 (blue
line, obtained by setting μC/μL = 0.48) and 1.93 (orange
line, obtained by halving the lumen ratio, so that μC/μL =
0.9), showing good agreement with the experimental observa-
tions.

Furthermore, the LIS1 mutation not only softens the lumen
of the organoid, but it also slows the inward motion of the
nuclei. This leads to an accumulation of nuclei at the outer
surface of the cortex and introduces a compression along
the circumference of the cortical ring. In effect, our model
predicts that for disks with stiffness ratio μC/μL =0.9 (orange
points, mutant), the critical remodeling threshold of the cortex
γ cr

C = 0.61 is higher (i.e., buckling occurs earlier) than for the
case μC/μL =0.48 (blue line, control) where γ cr

C = 0.54 [see
Fig. 5(b)]. Therefore, our model accurately predicts the effect
of the LIS1 mutation of reducing the stiffness of the lumen
and perturbing the INM.
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FIG. 5. LIS1 + /− mutation. (a) Wavelength λ of the instability pattern vs initial thickness t of the cortical layer. Data with error bars
(reproduced from Ref. [16]) and our model predictions (lines) for control [blue (dark grey)] and for LIS1 + /− mutant organoids [orange
(light grey)]; the blue line is obtained by setting μC/μL = 0.48 and the orange line by setting μC/μL = 0.9. The slopes of the two lines are
also shown (the offsets are discarded for a proper visual display). The last data points of each set are considered as outliers [16]. (b) Associated
instability thresholds for the cortex remodeling parameter γ cr

C .

V. CONCLUSION

Our model predicts the onset of wrinkling in human brain
organoids, usually associated with the early gyrification in
the human brain. We find that both the contraction of the
lumen and the motion of the nuclei of neuron progenitor cells
within the cortex play a crucial role in the early stages of brain
development. Disruption of any of these mechanisms results
in alteration of the final folding pattern and leads to brain
malformation.

In particular, this model gives new insights on the role
played by the microstructural remodeling of the cortex in de-
termining the lissencephaly pathology, a mutation associated
with a smoother cortex.

Our results suggest that a reduced contractility of the core
and a slower motion of nuclei both induce a delay in the
onset of the instability and trigger a smoother instability
pattern. This model and recent works on brain mechanics
further emphasize the crucial role of mechanical forces in
brain development and function [34].
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APPENDIX A: THE STRESS PROFILE OF THE RADIALLY
SYMMETRIC SOLUTION

As shown in the main text, the elastic equilibrium problem
is given by:

d

dr
σNrr (r) + σNrr (r) − σNθθ (r)

r
= 0, N = {L,C} (A1)

with

σCrr (r0) = 0 and σLrr (rm) = σCrr (rm). (A2)
The solution to (A1) and (A2) is

σCrr (r) =
∫ r0

r
μ

BCrr (r) − BCθθ (r)

r
dr, (A3)

σCθθ (r) = μ[BCθθ (r) − BCrr (r)] + σCrr (r), (A4)

σLrr (r) = σLrr (rm), (A5)

σLθθ (r) = σLθθ (rm). (A6)

The solution is shown in Fig. 6 in two scenarios: [Fig. 6(a)]
growth of the lumen and [Figs. 6(b) and 6(c)] remodeling of
the cortex. In the first two cases, the circumferential stress is
negative within the cortex, indicating that the outer layer is
under circumferential compression. Figures 6(b) and 6(c) also
show that when γC <1 a positive radial stress is generated
and the force gradient favors the outward nuclei motion.
On the other hand, when γC >1 the radial stress component
is negative and contributes to pushing the nuclei inwardly,
according to the observed cyclic outward or inward nuclear
motion within the cortex.

APPENDIX B: THE STROH FORMULATION

The Stroh formalism is an analytical technique that al-
lows to transform the incremental problem (a system of four
partial differential equations (PDEs) with boundary condi-
tions) into a system of six ODEs with initial conditions. It
is based on the assumption that the incremental displace-
ments δxN = (δrN , δθN )T , the incremental stress components
(δσN )rr, (δσN )rθ and the Lagrange multiplier δpN can be
written in the separable form:

(δrN , δpN , (δσN )rr ) = (UN (r), PN (r), 	Nrr (r)) cos(m θ )

(δθN , (δσN )rθ ) = (VN (r), 	Nrθ (r)) sin(m θ ) (B1)

with N ={L,C}. Then the incremental problem takes the
following form:

dηN (r)

dr
= 1

r
MN (r)ηN (r), N = {L,C}, (B2)

where ηN (r)= (UN (r), r�N (r))T , UN (r) = (UN (r),VN (r))T

is the displacement vector, and �N (r) = (	Nrr (r), 	Nrθ (r))T

is the traction vector and the 4 × 4 block-matrix MN is the
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FIG. 6. Axial-symmetric solution to the elastic problem in Eqs. (A1) and (A2). The radial (green solid) and circumferential (red dashed)
components of the Cauchy stress. (a) The lumen undergoes contraction: γL = 0.8, γC = 1. [(b) and (c)] The cortex undergoes remodeling:
γL = 1, γC = 0.8 (b) and γC = 1.2 (c). The aspect ratio and the stiffness ratio are fixed: H = 1.1, μC/μL = 10.

so-called Stroh matrix. Within the lumen, we have

dηL(r)

dr
= 1

r
ML(r)ηL(r), lim

r→0
UL(r) = 0, (B3)

where the Stroh matrix has the following block-form:

ML =
(

ML1 ML2

ML3 −MT
L1

)
(B4)

with

ML1 =
( −1 −m

m[1 − σCrr (rm )/μL] 1 − σCrr (rm )/μL

)
, ML2 =

(
0 0
0 1/μL

)
,

ML3 =
(−[σCrr (rm) − 2μL][m2σCrr (rm) + 2μL]/μL −m

[
σ 2

Crr (rm) − 4μL
]

−m[σCrr (rm)2 − 4] −[σCrr (rm) − 2][σCrr (rm) + 2m2]

)
. (B5)

We note that the blocks in Eq. (B5) are independent on r, and therefore Eq. (B3) becomes an ODE with constant coefficients and
its solution can be written in terms of the eigenvalues and eigenvectors of ML. Now ML has four eigenvalues: m±1 and −m±1,
and thus the solution has the following form:

ηL(r) = c1η
(1)(r)rm−1 + c2η

(2)(r)rm+1 + c3η
(3)(r)r−m−1 + c4η

(4)(r)r−m+1, (B6)

where η(i)(r), i = {1, . . . , 4} are the eigenvectors of ML. We discard the mode m = 1 for which the matrix ML has a repeated
eigenvalue, indicating the presence of rigid body motions. For m � 2 we can then use the fact that the perturbation must decay
with r → 0 (thus c3 and c4 must be zero) so that (B6) reduces to:

ηL(r) = c1η
(1)(r)rm−1 + c2η

(2)(r)rm+1 =
(

ηU1(r) ηU2(r)
η�1(r) η�2(r)

)(
c1rm−1

c2rm+1

)
, (B7)

where η(i) ={ηUi(r), η�i(r)}T , i={1, 2} and ηUi(r) and η�i(r) are 2 × 1 (column) vectors containing the displacement and the
traction components, respectively, of the eigenvector η(i).

Within the cortex, the Stroh problem is written as follows:

dηC (r)

dr
= 1

r
MC (r)ηC (r), (B8)

with initial conditions:

ηC (rm) = ηL(rm), (B9)

�C (r0) = 0. (B10)

Equation (B9) is the continuity condition at the interface between the lumen and the cortex, and Eq. (B10) imposes a traction-free
condition at r0. The blocks of the Stroh matrix MC in Eq. (B8) are given by:

MC1 =
( −1 −m

m pC (r)
ACrθrθ (r)

pC (r)
ACrθrθ (r)

)
, MC2 =

(
0 0
0 1

ACrθrθ (r)

)
,

MC3 =
⎛
⎝αC (r) + m2ACθrθr (r) − p2

C (r)m2

ACrθrθ (r) m[αC (r) + ACθrθr (r)] − m p2
C (r)

ACrθrθ (r)

m[αC (r) + ACθrθr (r)] − m p2
C (r)

ACrθrθ (r) m2αC (r) + ACθrθr (r) − p2
C (r)

ACrθrθ (r)

⎞
⎠ (B11)
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and MC4 = −MT
C1, where we have defined αC (r) =

ACrrrr (r) + ACθθθθ (r) + 2pC (r). In summary, the solution
to the Stroh problem within the lumen has the form of
Eq. (B7). However, to solve the problem within the cortex
we need to implement a robust numerical scheme. Since the
initial conditions in Eq. (B10) are on the stress components,
numerical stiffness issues arise and standard numerical
techniques fail to converge. Therefore, we use the impedance
matrix method which allows to implement a robust and stable
numerical procedure.

APPENDIX C: THE IMPEDANCE METHOD AND THE
RICCATI EQUATION

We introduce the conditional impedance matrix ZN (r, ri),
N = {L,C} which is related to the displacement and traction
vectors through:

ZN (r, ri )UN (r) = r�N (r), N = {L,C}. (C1)

The term conditional refers to the fact that the impedance
matrix depends on the condition at ri. We now transform the
general form of the Stroh problem in Eq. (B2) into the Riccati
equation. On substituting (C1) into (B2), we obtain:

dUN

dr
= 1

r
(MN1UN + MN2ZN UN ), (C2)

d (ZN UN )

dr
= 1

r

(
MN3UN − MT

N1ZN UN
)
. (C3)

By differentiating and substituting (C2) into (C3) we get the
Riccati equation:

r
dZN

dr
= −ZN MN1 − ZN MN2ZN + MN3 − MT

N1ZN . (C4)

Now we choose to use the conditional impedance matrix
ZC (r, r0), which is obtained by integrating Eq. (C4) within
the cortex from r0 to rm, using the initial condition at r0 which
[from (B10)] is written as follows:

ZC (r0, r0) = 0. (C5)

By using (B9), the continuity condition of the traction vector
reads:

rm�L(rm) = rm�C (rm) = ZC (rm, r0)UC (rm)

= ZC (rm, r0)UL(rm) (C6)

and then by substituting Eq. (B7), Eq. (C6) reduces to:

det[(η�1(rm), η�2(rm)) − ZC (rm, r0)(ηU1(rm), ηU2(rm))] = 0.

(C7)
For fixed values of H and μ, we generate two iterative loops
over γN (either γC or γL) and m. Inside the two loops we
integrate (C4) with the initial condition (C5), until the stop
condition (C7) is satisfied. This algorithm allows to get the
critical thresholds γ cr

N of the instability and the associated
wave numbers mcr.
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