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Effect of repulsive links on frustration in attractively coupled networks
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We investigate the impact of attractive-repulsive interaction in networks of limit cycle oscillators. Mainly we
focus on the design principle for generating an antiphase state between adjacent nodes in a complex network. We
establish that a partial negative control throughout the branches of a spanning tree inside the positively coupled
limit cycle oscillators works efficiently well in comparison with randomly chosen negative links to establish
zero frustration (antiphase synchronization) in bipartite graphs. Based on the emergence of zero frustration, we
develop a universal 0-π rule to understand the antiphase synchronization in a bipartite graph. Further, this rule
is used to construct a nonbipartite graph for a given nonzero frustrated value. We finally show the generality of
0-π rule by implementing it in arbitrary undirected nonbipartite graphs of attractive-repulsively coupled limit
cycle oscillators and successfully calculate the nonzero frustration value, which matches with numerical data.
The validation of the rule is checked through the bifurcation analysis of small networks. Our work may unveil
the underlying mechanism of several synchronization phenomena that exist in a network of oscillators having a
mixed type of coupling.
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I. INTRODUCTION

A tug-of-war between attractive and repulsive coupling
can establish complex behavior [1–9] in a large class of
coupled oscillators. For instance, it can create resonance in
a network of spinlike dynamical variables [10] or help in
the entertainment process for biological networks [11–13].
A careful selection of negative links of attractively coupled
oscillatory system can systematically establish homogeneous
or inhomogeneous solution [14–19] or may generate diverse
chimera states ranging from clustered death to amplitude
chimera states [20–23]. On the other hand, a signed (mix-
ture of attractive-repulsive coupling) and balanced graph of
phase oscillators may uncover the underlying structure of the
networks [24] on the basis of synchronous phase clusters.
Identification of critical nodes as well as graph partitioning
in real ecological signed graphs can also be recognized from
the reorganization of synchronized clusters [25,26]. Also, the
network of Kuramoto dynamics [27] having phase lag [28]
in identical frequency environment can split the stationary
phases into several clusters [29] revealing the underlying
symmetry of the given network. On the other hand, the inhi-
bition or delayed feedback naturally suppresses (controls) the
complex synchronization pattern [30–34] or generates multi-
stability [35]. Besides, rewiring links in a network may reveal
antiphase states between the adjacent nodes in repulsively
coupled phase oscillators [36,37].

However, the emergence of antiphase state [38] between
adjacent nodes in attractive-repulsively coupled complex net-
works is not well explored till now to the best of our
knowledge. Here, we would like to understand the suitable
characteristics of a network, for which the adjacent nodes of
that network can settle themselves into an antiphase state in
the presence of a tiny fraction of repulsive links of a group of
attractively coupled limit cycle oscillators and in absence of
such attribute, the network cannot reveal antiphase states.

The manifestation of antiphase synchronization has been
profoundly studied in various physical systems, from both
numerical and experimental [39,40] points of view. One of
the premier specimens, to observe such an emergent phe-
nomenon, is the cortical neural network [41,42]. Antiphase
patterns have been found there too. Recently, antiphase collec-
tive synchronization [43] has been observed among two pairs
of electrochemical oscillators with strong internal and weak
external coupling. All these inspections attest to the necessity
of studying antiphase synchronization in coupled complex
networks. In this paper, based on the emergence of antiphase
synchronization, we would like to classify the entire class of
networks into two distinct groups of classes, one in which
adjacent nodes can exhibit such antiphase patterns, while the
oscillators of the other types of networks fail to rearrange into
such antiphase formation.

The essential term to quantify the antiphase synchroniza-
tion between two neighboring nodes i and j is to calculate
the local frustration between them and which is expressed as
f i j
local = Ci j[1 + cos(φi − φ j )], where Ci j is the elements of

the symmetric binary connectivity matrix C, i is an arbitrary
node in the network, j is the neighbor of i and φi is the
intrinsic phase of the ith node. Here, 0 � f i j

local � 2. L is the

total number of links, then F = 〈 1
L

∑
i< j f i j

local〉t
represents

the total frustration in the entire network and it accumulates
all f i j

local present in the network. Here 〈· · ·〉t stands for time
average. F = 0, i.e., nonfrustrated system implies the an-
tiphase states in the entire networks and thus, each pair of
adjacent nodes will follow antiphase (|φi − φ j | = π ) states
between them and the dynamics of the system will no longer
be able to stretch along links beyond the phase differences
of π . F = 2 signifies in-phase synchrony in the network as
|φi − φ j | = 0. The nonzero value of F reflects frustration
nature [4,22,36,37,44–46] of the system, in which most of the
adjacent nodes will be out of phase to each other, as at least
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a few links will be squeezed to a phase difference less than π

and frustrate the simultaneous minimization of the energy of
all the interacting pairs of subunits of a system. Treating F as
the elastic potential energy [4] contained within the connected
network, F captures how squeezed a link is.

We examine here how attractive-repulsively coupled oscil-
lators can impact F in a complex network. We show here that
a few number of negative links may induce zero frustration
in a bipartite graph. Therefore, the main focus of this paper
is to answer the following key questions: (i) Which links are
crucial to obtain antiphase states (F = 0) in a bipartite graph?
More precisely, we would like to identify which positive links
should be replaced with negative ones for faster decay of F
from 2 to 0? And, (ii) Can we design a nonbipartite graph that
can give us as our expected desired F (F �= 0)?

The rest of the paper is arranged as follows. In Sec. II,
we discuss the model description and how the attractive
and repulsive links are chosen in the considered network. In
Sec. III, we show the efficient arrangement of negative links
in the bipartite graph of attractively coupled limit cycle oscil-
lators. The arrangement can produce zero frustration easily.
Sections IV and V analyze the bifurcation of the oscilla-
tory nodes and establish a 0-π rule to understand the zero
frustration in bipartite graph. In Sec. VI, nonbipartite graphs
(based on 0-π rule) are constructed for desired nonzero F .
Finally, we show that our proposed rule can be implemented
for any nonbipartite graph and we can easily calculate F for
any arbitrarily chosen graph of limit cycle in presence of
attractive-repulsive coupling in Sec. VII. Lastly, we conclude
our findings in Sec. VIII.

II. MATHEMATICAL MODEL

We start with d-dimensional oscillatory agent. The dynam-
ics of each agent is used over the top of each node of the
network. The evaluation of the ith agent is captured by

ẋi = ψ (xi ) + KA

N∑
j=1

Ai jH (xi, x j )

+ KR

N∑
j=1

Bi jH (xi, x j ), i = 1, 2, . . . , N (1)

with the vector xi(t ) is the state variable, ψ : Rd → Rd given
by the system’s intrinsic dynamics, the attracting coupling
strength KA > 0 ensures in-phase synchronization for a cer-
tain threshold, and the repulsive (negative) strength KR tries
to push the entire system out of phase synchronization by dis-
turbing the in-phase synchronization manifold. The function
H (xi, x j ) is the vector coupling representing diffusive type,
i.e., H (xi, x j ) = (x j − xi ). Here Ai j and Bi j are the binary
elements encoding the information of the underlying attrac-
tive and repulsive connectivity patterns among the dynamical
agents. The total number of links of the entire network (matrix
C) is the sum of links encoded in the matrices A and B.

As a paradigmatic model, we choose Landau-Stuart (LS)
oscillators where the state dynamics of each limit cycle
oscillators is represented by

ψ (xi ) =
([

1 − (
xi2 + yi2

)]
xi − ωiyi[

1 − (
xi2 + yi2

)]
yi + ωixi

)
, (2)

where H (xi, x j ) = [x j − xi, 0]T is the coupling function and
ω = ωi = 3 is identical intrinsic frequency of each node. The
intrinsic and instantaneous phase of each node is calculated
by tan φi = yi

xi .
To address the first question raised in Sec. I, we start

with a small network [Fig. 1(a) or 1(d)], having the size
N = 12 nodes and total links L = 19. To test the impact of
attractive-repulsive interactions, we introduce negative cou-
pling (KR < 0) on randomly chosen NL = 11 (approximately
60% of the total links) links shown by red color in Fig. 1(a).
The remaining L − NL links (black arcs) are coupled through
weak positive interaction KA.

If we introduce positive strength over all links, the
coupled oscillators will oscillate with a common rhythm
(not shown here) by adjusting themselves with common
phase even with identical amplitude. However, if we replace
NL(= 11) attractive links by negative strength (KR = −0.1)
(red links), the coherent phase distribution is scattered and
out of phase emerges in the system. For instance, the nodes
connected for an arbitrarily chosen link (link between nodes 4
and 7) reflects the lag synchronization with slightly distorted
amplitude fluctuations between them shown in Fig. 1(b).
Keeping the entire links structure fixed, if we increase the
negative strength KR = −4, the population reaches to steady
states [Fig. 1(c)] and it neither shows in-phase nor antiphase
synchronization as all the emerging fixed points (FPs) are
either in the third or fourth quadrant of the phase space.
The phase differences between the existing links are not in the
difference of π . Therefore, F gives a positive nonzero value
0.3 for both cases [Figs. 1(b) and 1(c)]. This signifies that
the links are either in in-phase mode or out-of-phase mode
leading to the existence of at least few frustrated links with
f i j
local > 0 and hence, weak frustration (F > 0) in the entire

network. A distinct and qualitatively different feature (F = 0)
appears for another arrangement of negative links [Fig. 1(d)
in red color], in which any arbitrary node stays in antiphase
with its nearest neighbor either in a lower negative coupling
[Fig. 1(e) shown for the node 4 and its neighbor 7] or in
higher negative strength [Fig. 1(f)]. In the higher negative
strength, the FPs stay opposite to each other in the phase space
(second and fourth quadrants). The obtained results give us
a hint that proper choices of negative links in the network
is essential for constructing a network with zero frustration,
i.e., an emergence of antiphase synchronization ( f i j

local = 0)
between two adjacent nodes, an interesting impact of negative
links in positively coupled networks never explored before
to the best of our knowledge. The objective of this paper
is to link the network structure with the dynamical process
such a way that we can understand the underlying mechanism
of obtaining zero (F = 0) and nonzero frustrations (F > 0)
of positive-negatively coupled environment of limit cycle
oscillators with fixed point and oscillation states.

III. EFFICIENT ARRANGEMENT OF REPULSIVE LINKS
FOR OBTAINING ANTIPHASE (F = 0) IN A

BIPARTITE GRAPH

To proceed further, we first focus on our network described
in Fig. 1. The underlying network is bipartite by nature. A
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FIG. 1. Impact of different arrangement of repulsive links. A network with N = 12 nodes and L = 19 links are considered in (a) and
(d) where the black lines are attractive links, the red (gray) ones are the repulsively coupled (NL = 11) links. The underlying architecture
remains same for both. Due to different choices of repulsive links, same KA and KR lead to different scenarios shown in (b), where node 4 (time
series in blue line) and 7 (time series in red line) are slightly lagged to each other, however they are opposite to each other (antiphase) shown
in (e). For more higher coupling, the entire network reaches to inhomogeneous steady states portrayed in (c) and (f). In the cases of (e) and (f),
the frustration index F is zero but, F > 0.3 for (b) and (c). KA = 0.001 and KR = −0.1 are chosen for (b) and (e). KA = 0.001 and KR = −4
are taken for (c) and (f).

graph G is called bipartite if its vertex set V can be decom-
posed into two disjoint subsets U and V such that every link
in G joins a node in U with a node in V , i.e., U ∩ V = φ,
where φ is the null set and U ∪ V = V . The nodes of the
network described in Fig. 1 can be split into two disjoint
sets: U = {1, 3, 4, 5, 8, 10, 11} and V = {2, 6, 7, 9, 12}. The
comparative observation in Fig. 1 helps us to conclude that
repulsive links, chosen in the Fig. 1(d), are somehow more
influential (effective) than other choices of random repulsive
links [Fig. 1(a)]. We also observe that the repulsive links,
chosen in Fig. 1(d), is the minimally connected subgraph,
which touches all the nodes manifested as a spanning tree
in the given network. However, the randomly chosen links
in Fig. 1(a) cannot form a spanning tree (as the links fail to
cover all the nodes) and F never reaches to the minimum value
F ≈ 0.

We aim here to find the partial negative control in a bipar-
tite graph of limit cycle oscillators to obtain F = 0 either in
oscillatory regime or in steady-state regime. The signature that
we have gotten from our observed results (cf. Fig. 1), which
directs us to use the partial negative control in the bipartite
graph with a proper arrangement, i.e., passing the negative
links through a spanning tree embedded in the considered
graph. Therefore, we hypothesize that finding a spanning tree
and passing the negative strength through it gives a faster zero
frustration (antiphase state) compared to randomly chosen
negative links in a bipartite graph of limit cycle oscillators.

To validate our hypothesis, we start with two bipartite
graphs having size N = 100 with average degree 〈k〉 = 12
(Net1) and 〈k〉 = 6 (Net2). We strategically select N − 1
repulsive links in two different ways: (i) one set of links is
chosen through a spanning tree and (ii) other sets of links
are chosen randomly. The negative coupling strength (KR) of
each branch in the tree is changed continuously (adiabatically)
from 0 to −4. We fix the coupling strength of each attractive
link at KA = 0.2. It is clear that the repulsive spanning tree
can induce zero frustration [Fig. 2(a) with unfilled red circles
for Net1 and unfilled black squares for Net2] in the bipartite
graphs. However, randomly chosen negative links cannot in-
duce zero frustration [shown in Fig. 2(a) with filled red circles
(Net1) and filled black squares (Net2)]. The result of getting
F = 0 in the bipartite network is consistent with previous
work [37] where an evolutionary process to construct non-
frustrated (F = 0) networks of phase repulsive dynamics for a
certain upper limit on the number of edges is designed. On the
other hand, in our study, only replacing a certain fraction of
attractive links by negative ones can induce such phenomena.

Next, to study the effect of network size N , we perform
numerical simulations on eight networks ranging from N =
10 to N = 2 × 103 shown in Fig. 2(b). In all cases, calculated
F through random paths of length (N − 1) give nonzero
F , whereas if we pass the repulsive coupling through the
branches of an underlying spanning tree, the numerically
calculated F is always close to zero. This confirms that our
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FIG. 2. Comparison of frustration index where links are chosen by randomly and through spanning tree. (a) Two networks (Net1 and Net2)
of same size (N = 100) are considered. Red and black filled circle are drawn by considering randomly chosen (N − 1) links. Impact of negative
spanning tree is shown with unfilled circles and squares. (b) Spanning tree creates zero frustration in larger networks. (c) Synchronization order
parameters (R, RU , RV ) as a function of repulsive strength KR. 50 independent numerical realizations are taken to obtain these observations
of (a) and (b). Here KA = 0.2. (d)–(f) Impact of spanning tree in weak coupling. The coupling parameters are set in oscillatory regime
and antiphase is clearly established. (d) and (e) limit cycles and time series of x arbitrarily chosen nodes from the two disjoint subsets
U and V in red and blue lines, respectively. (f) Antiphase synchronization between xU and xV for several arbitrarily chosen nodes. Here,
KA = 0.01, KR = −0.1.

method is performing well even in large complex networks.
50 independent statistical realizations are used to produce
the Fig. 2(b). It should be noted that with increasing N , the
basin of attraction becomes much constricted [45] and hence,
one should start with suitable initial conditions to enhance
the probability of reaching F = 0 through repulsive spanning
tree. Another important observation of this figure is that the
deviation of the calculated F through randomly chosen edges
of length (N − 1) is comparatively wide for larger N , as such
dynamics can have multiple inhomogeneous steady states
leading to a wide range of F values, however, they never reach
to zero.

It is clear now that nodes in same subset (either U or V )
will be in in-phase states, and they will be antiphase to each
other, which is further confirmed by the order parameters
Reiψ = 1

N

∑N
j=1 eiφ j

, RU eiψ ′ = 1
N1

∑
l∈U eiφl

, and RV eiψ ′′ =
1

N2

∑
k∈V eiφk

, where ψ,ψ ′, ψ ′′ are the common phases appear
in the time of unison and R, RU , RV are the degree of synchro-
nization of the whole set V = U ∪ V , U , and V , respectively.
Here, the number of nodes in the subsets U and V are N1

and N2, respectively, and N1 + N2 = N . In Fig. 2(c) (for the
network Net1), we observe that the order parameter in each
subsets will follow the in-phase solution (RU ≈ 1, RV ≈ 1) at
KR = −4.0, where, as the global order parameter R eventually
reaches to zero, as phases of the two subsets follow antiphase

to each other. This feature (R ≈ 0) is consistent with F ≈ 0.
Note that the emergence of antiphase between adjacent nodes
is calculated through the stationary phases obtained from
steady states as it stabilizes the systems to stable fixed points.
These fixed points are called inhomogeneous steady states
or oscillation death [15,47–49]. These coupling-dependent
fixed points manifest oscillation quenching by breaking the
system’s symmetry. Interestingly, the spanning tree can do
the same effect (F and R will be zero) in limit cycle regime
considered at lower negative strength KR = −0.1, when KA =
0.01. We consider a sparse diluted bipartite graph having size
N = 100 with average degree 〈k〉 = 3. Trajectories oscillating
in the limit cycle regime are depicted with a phase space
diagram in Fig. 2(d). In Fig. 2(e), few time series are randomly
chosen from the two subsets U (red color) and V (blue).
The antiphase synchronization manifold is confirmed from
Fig. 2(f).

It is also clear that a network having arbitrarily chosen
degree sequences cannot always lead us into antiphase state
(F ≈ 0) as the several graphs will not have bipartite structure.
The nonbipartite graph contains odd cycles and thus, the set
of all vertices V can not be partitioned into two disjoint sets,
i.e., the nodes within a subset can be connected to each other
reflecting the in-phase solution ( f i j

local > 0). Therefore, F will
be deviated from the global minimum zero value. For instance,
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FIG. 3. Ring network of four nodes. Repulsive links are shown
by red arcs and the black edge represents attractive interaction. Red
links form a spanning tree in the given graph (ring). Figure is drawn
using the software Gephi [51].

if one considers a triangle, which is a nonbipartite graph and
assigns all links as negative, the total F can never be zero
[37]. Let us assume the cardinality of the sets are, respectively,
|U | = N1 and |V | = N2. Hence, the maximum number of
possible links is N1N2, so that the network remains bipartite.
Using N1 + N2 = N , we get g(N1) = N1(N − N1), which is
maximized at N1 = N

2 and the maximum value of g is N2

4 . So,
any network can not be rearranged in a bipartite configuration,
because at most N2

4 links are contained by a bipartite graph
with N nodes. Therefore, the previous observation [37] in the
restriction on the number of total edges in a network having
zero frustration is due to the breaking of bipartite structure of
a network. A natural question appears to be what will be the
impact of negative spanning tree in a nonbipartite graph of
limit cycle oscillators? Of course, the presence of odd-cycles
in a nonbipartite graph will resist to set F to zero. Although
we will show (in Secs. VI and VII) that we can efficiently
calculate the nonzero value of F for any arbitrarily chosen
nonbipartite graph and easily construct sparse nonbipartite
graph for any nonzero desired frustration value (F > 0).

We have avoided multistability (emergence of coexist-
ing fixed points) [35,36,50] by adiabatically increasing the
negative coupling strength for all numerical calculations. A
connected graph can have more than one spanning tree, but
all spanning trees are connected by N − 1 edges and we would
like to explore the contribution of different repulsive trees in
near future. To understand the stationary phase distributions
of the steady states of LS limit cycle oscillators, we perform
the bifurcation analysis of simple bipartite graph in the next
section. For instance, Fig. 1(f) confirms that the entire network
(a bipartite graph) reaches to steady states for strong negative
coupling and follows some symmetric condition as the most of
the fixed points are situated either in second or fourth quadrant
and the frustration index F is zero. In the next section, we
describe the bifurcation nature for a small bipartite graph,
which will reflect why the nodes are in two opposite quadrants
in the phase space.

IV. BIFURCATION ANALYSIS IN A SMALL
BIPARTITE GRAPH

We consider a simple even cycle ring network with four
nodes (Fig. 3). A randomly chosen spanning tree inside

FIG. 4. Bifurcation diagram of N = 4 coupled Landau-Stuart
oscillators (using the network drawn in Fig. 3) with KA = 0.2 and
ω = 3.0. Here, red thick lines: stable fixed points; dashed black lines:
unstable fixed points; SN : saddle-node bifurcation.

the graph is shown by red arcs. We set the attractive cou-
pling strength at KA = 0.2 and negative strength at KR =
−4.0. These four coupled LS oscillators [Eq. (1)] have
five real fixed points (FPi : i = 1, 2, . . . , 5) in which two
of the fixed points (say FP1: x1 = −x4 = −3.827, y1 =
−y4 = −0.8033, x2 = −x3 = 2.797, y2 = −y3 = 1.057, and
FP2: x1 = −x4 = 3.827, y1 = −y4 = 0.8033, x2 = −x3 =
−2.797, y2 = −y3 = −1.057) are stable nodes whereas the
other three fixed points are unstable foci. We are only inter-
ested to study the behavior of these two stable nodes. Notice-
ably, we observe that the derived stable fixed points FP1 and
FP2 maintain a relation in the form x1 = −x4, y1 = −y4 and
x2 = −x3, y2 = −y3. Also for FP1, (x1, y1) and (x3, y3) are in
the same quadrant (third quadrant in the phase space) whereas
(x2, y2) and (x4, y4) stay in the first quadrant. This feature is
also applicable for FP2 where (x1, y1) and (x3, y3) are in the
first quadrant and the rest are in the third quadrant. Clearly,
the nodes that are disconnected, i.e., not neighbors to each
other, lie within same quadrant. This unique and interesting
observation is consistent with the graph, as the nodes are split
into two disjoint sets: U = {1, 3} and V = {2, 4}. Note that,
the system may undergo multistability, i.e., may change the
value of xi. However, the repulsive tree solely determine the
sign of the stable fixed points. For instance (for a given initial
condition) if one gets x1 and y1 as positive (negative), x3 and
y3 will also be positive (negative). The same features occur
for x2, y2 and x4, y4. This observation is also demonstrated
with the help of the bifurcation diagram Fig. 4. Numerical
bifurcation diagram of Fig. 4 using XPPAUT [52] yields
that the stable nodes coexist, further if we increase KR, the
node comes closer to unstable fixed point and eventually an-
nihilate around KR ≈ −2.0 through saddle-node bifurcation.
In the next section, we calculate the stationary phases of
all the nodes. Using the unique appearance of fixed points
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FIG. 5. Regular bipartite graph with six nodes. K3,3 with five
repulsive links (red arcs) and 4 attractive links (black arcs). Here
U = {1, 2, 3} and V = {4, 5, 6}. We assign 0 phase for U set and
π for V set (or vice versa).

in the phase space, we establish a 0-π rule, which further
confirms the emergence of antiphase state among neighboring
nodes (i.e., zero frustration) for any bipartite graph.

V. 0-π RULE TO DETERMINE THE ZERO FRUSTRATION
IN BIPARTITE GRAPH

We calculate the stationary phase value (tan θ i = yi

xi ) of
each node in the given network (Fig. 3) at KR = −4.0. The
stationary phase values up to four decimal places are: θ1 =
−2.9347, θ2 = 0.3613, θ3 = −2.7803, and θ4 = 0.2069 of
the nodes 1, 2, 3, and 4, respectively. Though these phase
values are not unique (can be altered for different initial
conditions as noted in the bifurcation diagram Fig. 4), but
one significant property is observed: the modulus of phase
difference between two nodes (if link exists) is always π for
all the links, therefore the frustration index F will be zero
irrespective of that of the initial conditions. This will happen
when |θ i − θ j | � π for θ i ∈ U = {1, 3} and θ j ∈ V = {2, 4},
where U and V are disjoint sets (U ∩ V = φ). We notice that
this inspection helps us to apply a change of origin in the (r, θ )
plane without changing the directions of the axes. For in-
stance, here the origin (0,0) can be translated to (0,−0.3612)
so that in the new transformed coordinate system, we can
acquire π as the phase of each nodes of U and phase 0 is
set for the vertices of V . Similarly, for the utility graph K3,3

(Fig. 5), we find that the final phase values for the chosen
spanning repulsive tree are θ1 = 0.1445, θ2 = 0.3401, θ3 =
0.3401, θ4 = −2.8015, θ5 = −2.8015, and θ6 = −2.9971,
which again imply |θ i − θ j | � π for θ i ∈ U = {1, 2, 3} and
θ j ∈ V = {4, 5, 6} eventually determines F as zero. Thus,
with a suitable phase shifting, we can allocate π as the phase
of each nodes of U and phase 0 is set for the vertices of V
(or vice versa). This whole observation (bifurcation analysis
and obtained θ values for each node) enables us to establish a
0-π rule for any arbitrary bipartite graph to predict F without
investigating the local dynamical units at higher negative
strength. Note that, this rule is also verified for Figs. 1(f), 2(b),
and 2(d) (for sufficient repulsive strength in three bipartite
graphs) in which any arbitrary node will stay in antiphase
with respect to its nearest neighbors. In this context, the local
frustration f i j

local will be zero as |θ j − θ i| = π which further
implies F = 0.

VI. DESIGNING A NONBIPARTITE NETWORK FOR
DESIRED FRUSTRATION

The unique feature of F having zero value for bipartite
graph elucidates us to formulate a design principle of con-
structing a nonbipartite graph having desired (given) frustra-
tion Fdesired for a given tree. As discussed above, the disjoint
nodes of a spanning tree will be distributed with two phase
values: either 0 (say for U ) or π (say for V ). Now, the
additional attractive link randomly attached to any two nodes
of the tree may give us two values of local frustration: zero, if
both of them have different phases to each other (two nodes
are not chosen from the same set, i.e., one is chosen from
U and the other one is from V ) or 2, if two nodes either in
zero phase or in π phase (nodes are chosen from the same
set, i.e., either both are from U or from V ). Assume, we have
a spanning tree of N nodes with negative links and we would
like to construct a network such that we will eventually reach a
desired frustration (Fdesired) index. For this, suppose we have to
add m (say) number of minimum links such that we can reach
Fdesired. Therefore, the underline condition is Fdesired ≈ 2m

L .
Here L is the total number of links in the network, i.e., m +
(N − 1) = m + NL = L. The number 2 appears in numerator
due to the contribution of positive links in the local frustration
term in the time of network construction. In the Appendix,
we describe each step in details for the construction of our
network. Note that, the algorithm is based on the following
hypothesis that a spanning tree will have two phase values:
0 for U and π for V or vice versa and link will be added
between two nodes if and only if their phase difference is zero.
Based on this hypothesis, we have added links (between the
nodes in the tree) continuously unless we reach our desired
F . The required number of attractive links (m) for a given F
are shown in the Fig. 6. The Fdesired of the newly constructed
network perfectly matches with the numerically calculated F
by considering LS dynamics over the top of the same network
(shown with yellow circles). In conclusion, we can state that
for a given tree one can easily construct a network by adding

FIG. 6. Network construction from a given spanning tree with
Fdesired. Red line represents the analytical curve as per our proposed
mechanism (based on 0-π proposition) for network construction with
the help of given F and a given spanning tree of length N − 1 =
99. Yellow circles are the verification by assigning Landau-Stuart
oscillators as the local unit dynamics on the top of our constructed
network.
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few edges, which can give us our desired frustration index F .
The approach is simple and it creates a little dense network
from the highly diluted graph (a tree only) to shift the F value
from zero to a desired one. Finally, we obtain the relation
between Fdesired and m as follows:

m =
⌈

(N − 1)Fdesired

2 − Fdesired

⌉
, 0.0 � Fdesired < 2.0. (3)

By suitable isometric translation operator in the Euclidean
space, one can reach XY = C2, where X = 2 − Fdesired, Y =
m + (N − 1), and C2 = 2(N − 1). It is clear that m and Fdesired

follow a hyperbolic growth (for a given N) to each other,
which is clear from the Fig. 6. Note that, we need to add more
number of attractive links to obtain higher Fdesired and our
algorithm always predicts the lower most m for a desired F .
One can obtain exact in-phase synchronization, i.e., (F = 2),
the network needs significantly large number of positive links
(m) to completely diminish the effect of negative strength
connected through the tree.

However, our algorithm creates a strong restriction on the
upper bound of F in a network of N oscillators. If N number
of nodes connected in a negative spanning tree, then we can
add at most 2

(N/2
2

)
number of attractive links. The reason

is that a bipartite graph will have maximum N2

4 links if the
disjoint sets are equally divided, which is discussed earlier.
This information further restricts on the upper bound of
Fdesired. For instance, m = 2

(N/2
2

) = 2450 number of attractive
links can be added as per our algorithm for any network of
N = 100 oscillators. Hence, maximum Fdesired = 2m

m+(N−1) =
4(N/2

2 )
2(N/2

2 )+(N−1)
� 1.92 can be obtained. In fact, this is the largest

upper bound of Fdesired with the presence of repulsive spanning
tree, as one can add more links [>2

(N/2
2

)
] by connecting two

disjoint sets U and V , which are in antiphase among them-
selves. Therefore, these additional edges do not contribute
in f i j

local (= 0), but those links increase L and consequently,
reduce F . As a conclusion, we can never reach to complete
in-phase synchronization, i.e., Fdesired = 2 as our analytical
expression given in Eq. (3) has singularity at Fdesired = 2.

VII. CALCULATION OF F FOR ARBITRARY NETWORK

The constructed nonbipartite graph described in the last
section has two types of links: repulsive links in the spanning
tree contribute zero in the frustration index F , and the m
attractive links (edges within the same set U or V ) only
contribute on f i j

local. However, an arbitrary chosen graph [e.g.,
networks used in Fig. 2(a)] will also have links, which may
not contribute in the local frustration index f i j

local as those
additional links connect random nodes between the subsets U
and V . The maximum number of these types of links will be
N2

4 − (N − 1), i.e., the difference between the maximum num-
ber of bipartite links possible in the network and a spanning
tree, which is a part of that bipartite graph. However, these
inactive links may create multistability [50] in 0 − π states
of the nodes and may perturb the value of f i j

local and hence
changes the value of F . To test our 0-π proposition in the

considerably dense networks, we have designed several small
graphs of size 6. We also check how different spanning trees
as repulsive links work inside a graph.

We start with four different networks of six nodes with
total number of links: (i) 12 links (first column), (ii) 10 links
(second column), (iii) 9 links (third column) and (iv) 7 links
(fourth column) in Fig. 7. We have identified two separate
spanning trees for each network with different links. The
branches of spanning trees for each network are shown with
red arcs and the attractive links in black arcs. Each of the
spanning trees will have N − 1 = 5 links irrespective of the
variation of link density. However, the same network may
reveal different F , which solely depends on the choice of
spanning tree and its attractive counterpart.

For instance, (i) Figs. 7(a) and 7(b) have 12 links in which
Fig. 7(b) gives lesser frustrated index (F = 0.66) than the
other choice of a spanning tree shown in Fig. 7(a) in which
F = 1.2. The same type of features is revealed for L = 10
shown in Figs. 7(c) and 7(d). Two trees are generated and
a comparison reflects that F becomes lesser for a spanning
that possess larger diameter. We would like to explore the
impact of different trees in detail for a large network in the
near future. We have also used more diluted graphs where
L = 9 [Figs. 7(e) and 7(f)] and L = 7 [Figs. 7(g) and 7(h)].
Next, we calculate the frustration value of the entire net-
work utilizing the 0-π rule mentioned above. As we have
shown, a network can reveal zero frustration if and only
if the network is bipartite and a spanning tree inside the
graph is required to pass the negative signals adiabatically.
We assume here that the underlined tree (which itself is
bipartite) will always lead to zero frustration. For instance, in
the small graph considered in Fig. 7(a), we assign the local
θ values (through the considered tree shown by red lines)
on the vertices as follows: V 1 = 0,V 2 = π,V 3 = π,V 4 =
π,V 5 = π , and V 6 = π . Therefore, the frustration of the tree
will be zero, which can be calculated by accumulating all
the local (link) frustration values f 1,6 + f 1,2 + f 1,3 + f 1,4 +
f 1,5 = 0. Based on this assumption, the total frustration
in the entire network that appears from the sole contribu-
tion of attractive links is F = f 2,6+ f 5,2+ f 5,3+ f 5,4+ f 3,4+ f 2,3+ f 5,6

12 =
2+2+2+2+2+2+2

12 � 1.1666. In a similar manner, we calculate
here the total frustration (from the attractive links) of the
graph represented in Fig. 7(b) by setting the θ values of the
vertices of the spanning trees V 1 = 0,V 2 = π,V 3 = 0,V 4 =
π,V 5 = 0,V 6 = π . Therefore, the total frustration of the en-
tire network will be like F = f 1,6+ f 1,3+ f 1,4+ f 1,5+ f 2,5+ f 2,6+ f 3,5

12 =
0+2+0+2+0+2+2

12 � 0.67. The numerically calculated (by con-
sidering LS dynamics over the top of the network) F values
mentioned in Figs. 7(a)–7(h) are all closely matched with our
calculation based on the 0-π rule.

However, as we have mentioned earlier, these types of
dynamical graphs are multistable by nature, which may give
different F index of graph G [36,37]. To avoid such spuri-
ous effect, we have calculated the F index by adiabatically
increasing the negative strength unless the total frustration
value saturates in a specific value. Note that most of these
graphs contain the inactive links (as corresponding f i j

local = 0),
but the numerical results fit with our 0-π proposition for
appropriate high negative coupling strength. We have also
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FIG. 7. Numerically calculated F for 8 different networks with size N = 6. Each column represents the same network architecture
containing different spanning trees. Branches of the tree are represented using red arcs and the attractive links are shown using black arcs.
Using bipartiteness of the tree, 0 and π phases are assigned to each node of the network. Figures are drawn using the software Gephi [51].
(KA = 0.2 and KR = −4.0).

checked this phenomenon in a network of 100 oscillators
(shown in Fig. 8).

Diverse spanning trees (we have traced nine unique trees)
have been chosen for that static network. The yellow lines
are the theoretically predicted F and the blue lines ob-
tained numerically. In higher negative strength (KR � −4),
the theoretical value of F closely match with the numerically
calculated F .

FIG. 8. Theoretical prediction of F based on 0-π proposition.
Prediction of F for a network of N = 100 nodes with average degree
〈K〉 = 4. Here 9 different spanning trees are considered. Yellow line
is the analytically predicted F and blue curve is the numerically
obtained F .

VIII. CONCLUSIONS

Our work undermines that a group of amplitude oscillators
placed over a bipartite network can lead us to antiphase states
(F = 0) if the negative links are passed through the branches
of a spanning tree. Noticeably, we establish that such partial
use of repulsive interactions on undirected complex networks
helps to achieve the highest phase difference of π between
two adjacent amplitude oscillators depending on network
topology. This negative control in a bipartite graph is simple,
elegant and cost effective, which can outperform the other
random choices of negative links. Next, we investigate the role
of spanning trees in a bipartite graph of limit cycle in a broader
level: we construct a 0-π rule to understand the zero frus-
tration. We also uncover the construction of a weakly dense
nonbipartite graph for the desired F with the help of 0-π rule.
Finally, we have shown that the negative spanning tree of any
nonbipartite graph can successfully determine the nonzero F
value. Our approach can be easily implemented to other limit
cycle and Kuramoto dynamics. Also, we can implement the
attractive-repulsive technique in phase-frustrated Kuramoto
oscillator [29] in which the mixed coupling can be constructed
through the heterogeneous phase-frustrated values contained
within the coupling function. We would like to explore the
impact of phase lag to generate antiphase states in the near fu-
ture. Our investigation also points out to the fact that zero frus-
tration (F = 0), i.e., antiphase synchronization emerges only
in the bipartite network, whereas the nonbipartite network
reveals positive F value irrespective of the setting of negative
links within the considered graph. Thus, the dynamical mea-
sure F serves as a unique fingerprint to distinguish between
bipartiteness and nonbipartite structure of a network. In our
designed bipartite network of attractive-repulsively coupled
amplitude oscillators, oscillators tend to organize their phase
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values as colors in a solution of two-colorable graph, which
is validated using several bipartite networks of various sizes
and different average degrees throughout the paper. The study
may unfold the coherent and de-synchronization phenomena
broadly in an environment of attractive-repulsive interaction.
Our perceived study may be helpful to understand underlying
frustrated dynamical behavior of neuronal networks [42].
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APPENDIX: ALGORITHM FOR DESIGNING SUITABLE
NETWORK FOR DESIRED FRUSTRATION BASED ON

0-π RULE

Suppose, the value of F at the steady state is given for
a network and the configuration of the underlying repulsive
tree is also supplied to us, though the exact architecture of the
original network of N nodes is unknown. So, with the help
of that two specified information, which are namely (i) the
spanning tree of that network and (ii) the value of F , we would
like to design network. Then one can address the question in
the following way, how to construct a network of N nodes
having the congruent underlying tree, which can give us the
desired F? To proceed further, we initiate an algorithm in such
a fashion that it will help us to create a new network of N
nodes containing the same underlying spanning tree, which
will adapt itself by adding appropriate links until the desired
frustration F is reached.

The steps of the algorithm are depicted below precisely:
(1) Fdesired and a spanning tree of a network with N nodes

are given as inputs.

(2) The vertex set of the spanning tree is decomposed into
two disjoint and independent sets U and V .

(3) We assign π as the phase of each node of U and phase
0 for the vertices of V (or vice versa).

(4) Two nodes i and j are chosen arbitrarily either from
the set U or from V , so that there is no link in between those
nodes at prior.

(5) A link is added between these two chosen nodes i and
j, and F is calculated for the constructed network using our
0-π proposition.

(6) If F < Fdesired, then go to step (4) and repeat the
process. Otherwise, the process is terminated.

Our constructed network is capable of giving rise to the
given Fdesired, which we verify by assigning Landau-Stuart
oscillators as the local unit dynamics on the newly constructed
network and integrate it with Runge-Kutta-Fehlberg method
with an error estimator of order O(h5), where h = 0.01 is the
step length. We avoid the multistability effect by adiabatically
changing the negative strength from 0 to −4 until the F is
reached to asymptotically saturated value. We have collected
the numerical frustration index F from the saturated domain
to match with our theoretical prediction.

To attain the given Fdesired with the given spanning tree
using our algorithm, we need total number of attractive links
m, which satisfies the following relation,

Fdesired = 2m

L
,

i.e.,

Fdesired = 2m

m + (N − 1)
,

which gives

m =
⌈

(N − 1)Fdesired

2 − Fdesired

⌉
, 0.0 � Fdesired < 2.0 . (A1)
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