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In the past 20 years network science has proven its strength in modeling many real-world interacting systems
as generic agents, the nodes, connected by pairwise edges. Nevertheless, in many relevant cases, interactions are
not pairwise but involve larger sets of nodes at a time. These systems are thus better described in the framework
of hypergraphs, whose hyperedges effectively account for multibody interactions. Here we propose and study a
class of random walks defined on such higher-order structures and grounded on a microscopic physical model
where multibody proximity is associated with highly probable exchanges among agents belonging to the same
hyperedge. We provide an analytical characterization of the process, deriving a general solution for the stationary
distribution of the walkers. The dynamics is ultimately driven by a generalized random-walk Laplace operator
that reduces to the standard random-walk Laplacian when all the hyperedges have size 2 and are thus meant
to describe pairwise couplings. We illustrate our results on synthetic models for which we have full control of
the high-order structures and on real-world networks where higher-order interactions are at play. As the first
application of the method, we compare the behavior of random walkers on hypergraphs to that of traditional
random walkers on the corresponding projected networks, drawing interesting conclusions on node rankings in
collaboration networks. As the second application, we show how information derived from the random walk
on hypergraphs can be successfully used for classification tasks involving objects with several features, each
one represented by a hyperedge. Taken together, our work contributes to unraveling the effect of higher-order
interactions on diffusive processes in higher-order networks, shedding light on mechanisms at the heart of biased
information spreading in complex networked systems.
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I. INTRODUCTION

From social systems and the World Wide Web to eco-
nomics and biology, networks define a powerful tool to
describe many real-world systems [1–3]. Over the past 20
years of network science [4,5], many interacting systems
with different functions were shown to exhibit surprisingly
similar structural properties, at different scales. Interestingly,
the complex architecture of real-world networks was found
to significantly interfere with the dynamical processes hosted
on them, from social dynamics [6] to synchronization [7].
As a consequence, properly tailored dynamical processes are
now routinely employed to extract information on the a priori
unknown structure of the underlying graphs architectures.

Networks materialize as pairwise interactions, represented
by edges, among generic agents, the nodes: By their very first
definition they are thus bound to encode binary relationships
among units. However, an increasing amount of data indicates
that, from biological to social systems, real-world interactions
often occur among more than two nodes at a time. This phe-
nomenon is not properly described by the traditional paradigm
constrained on pairwise interactions and highlights the need
for extended notions in the realm of network theory. In recent
years, an emerging stream of research has been focusing on
developing higher-order network models that account for di-
verse kinds of higher-order dependences, as found in complex
systems.

Let us here observe that the current high-order framework
bears some ambiguity, as it has been occasionally assumed
to embrace features which are more specifically stemming
from interactions [8], e.g., temporal and/or memory effects
[9,10], or reflect the multiplex nature of the examined system
[11–13]. Here the term “higher order” is exclusively meant to
refer to agents interacting in groups of arbitrary numerosity
[14–17], a process often modeled via simplicial complexes
[18–20] or hypergraphs [21–23], and nontrivial mathematical
generalization of the ordinary networks.

Our focus is on hypergraphs, where relationships among
agents are described as collections of nodes assembled in
sets, called hyperedges, made by any number of nodes. Hy-
pergraphs provide a natural representation for many higher-
order real-world networks [20,24]. In social systems they can,
for instance, be suited to describe collaboration networks,
where nodes denote authors and hyperedges stand for groups
of authors, who have written papers together. Alternatively,
hypergraphs can be invoked to describe face-to-face social
networks where individuals can interact in groups of arbitrary
sizes [25]. In biology, hypergraphs allow one to properly
model biochemical reactions simultaneously involving more
than two species or conveniently describe higher-order inter-
actions among different families of proteins [15]. Crucially,
in all these examples, interactions among agents occur in
groups of arbitrary size and cannot be split into disjoint
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FIG. 1. (a) Hypergraph and (b)corresponding projected network.
In the projected network each hyperedge Eα becomes a complete
clique of size |Eα|, thus with |Eα|(|Eα| − 1)/2 pairwise interactions.

pairwise interactions. Differently from simplicial complexes,
a higher-order interaction described by a hypergraph, e.g., a
single three-body interaction, does not require the existence
of all lower-order interactions, e.g., the three pairwise interac-
tions associated with the same triangle [19]. Heterogeneous
hypergraphs have been sometimes studied by mapping the
nodes belonging to a hyperedge into a clique of suitable size.
However, the drawback of this procedure is that it eventually
yields a projected network, e.g., shown in Fig. 1, where
only pairwise interactions are ultimately accounted for (see
Appendix A).

Linear dynamics [26–28] and specifically random walks
[29] constitute a simple although powerful tool to extract
information on the relational structure of interacting systems.
In particular, random walks on complex networks [30] have
been proven useful to compute centrality scores [31], finding
communities [32] and providing a taxonomy of real-world
networks [33]. In the simplest case, at each time step, a walker
jumps from the node where it belongs to one of its adjacent
neighbors, traveling across one of the available edges, chosen
at random with uniform probability. Many variations of this
fundamental process have been considered. These include
more sophisticated dynamical implementations, which allow
one to target the walks towards nodes with given structural
features [34], let them interact at the nodes of the network
[35], investigate nonlinear transition probabilities [36] and
crowded conditions [37], and consider the temporal [38–40]
or multilayer [41,42] dimensions of the edges under different
network topologies.

Random walks have been defined on simplicial complexes
[43], but because of the cumbersome combinatorics involved,
applications have been limited to higher-order interactions
of the lowest dimensions, i.e., triangles. Moreover, walkers

are in general allowed to hop between edges or even high-
order structures. This is at variance with the setting that we
here aim at exploring, where hops can solely occur among
nodes which join in a given high-order structure. In parallel,
also random walks on a hypergraph have been considered by
assuming that all the hyperedges are made by an identical (and
constant) number of nodes [44,45]. The first random-walk
Laplacian defined on hypergraphs can be probably traced back
to the seminal paper by Zhou et al. [46]. Each hyperedge is
endowed with an arbitrary weight, acting as a veritable bias
to the walker dynamics. As observed by the authors of [46],
assigning the weights is an outstanding open problem, which
deserves to be properly addressed. In this work, we will prove
that a physically motivated choice for the aforementioned
weights naturally emerges when framing the problem on solid
microscopic grounds.

Interestingly, more complicated nonlinear dynamics
have also been recently studied on simplicial complexes
[16,20,47,48] or in a pure multibody frame [49]. Once again,
however, the focus is placed on low-dimensional simplicial
complexes (triangles). Recently, several dynamics, includ-
ing epidemic spreading [16,47,50] and synchronization [36],
have been shown to produce new collective behaviors when
higher-order interactions are assumed to shape the networked
arrangement.

Starting from this setting and elaborating on the above, we
propose in this work a class of random walks evolving on
generic heterogeneous hypergraphs as dictated by a plausible
physical model and without any limitation on the sizes of
the hyperedges. In this framework, multibody proximity is
associated with highly probable exchanges among agents
belonging to the same hyperedge, and walkers mitigate their
inclination to explore the system with a tendency to naturally
spend more time in highly clustered cliques and communities.
This feature is reminiscent of bias in information spreading,
which is known to be affected by the phenomenon of echo
chambers [51]. Similarly to the standard random walk, at
each time step a walker sitting on a node selects a node
from its neighborhood, i.e., a node belonging to the one of
the hyperedges where it happens to be, with a probability
of jump weighting the size of the hyperedges and taking
into account the number of hyperedges to which the selected
node belongs. In this way, higher-order interactions between a
group of nodes drive the process and the weights postulated in
[46] take nontrivial values, as stemming from the microscopic
dynamics.

We will in particular provide an analytical description of
the process, by deriving a general formula for the stationary
distribution of the walk, and show that the dynamics is driven
by a generalized Laplace operator that reduces to the standard
random-walk Laplacian when all hyperedges have size 2 and
the hypergraph results in a traditional network.

As already stated, random walks can be used to rank
nodes, based on the stationary occupancy probability of walk-
ers across the network. Because of these implications, it is
therefore interesting to compare the stationary distribution, as
obtained within the framework introduced herein, with that
displayed by standard random walkers on the corresponding
projected network. Because of the tight interactions among
agents belonging to the same hyperedge, the probability to
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find a walker on a given node is in principle different when
confronting the outcome of the two aforementioned processes.
As a consequence, we expect a different order in the ranking
to be obtained for the same node, depending on the dynamical
process employed in the analysis. This observation opens
up the possibility for an alternative definition of centrality
for systems where the high-order structure is known to be
relevant. In particular, we will provide direct evidence for our
claims working with coauthorship networks, as extracted from
the arXiv online preprint server. Our second application, to
which we alluded above, concerns a classification task which
is borrowed from [46]. Indeed, it is well known that one can
model a data set by resorting to networks and then make use
of the associated Laplacian eigenmaps [52] to embed the data
on a lower-dimensional space, while hopefully preserving
relevant information, in the spirit of a generalized principal
component analysis. Working in the lower-dimensional space
allows one to cluster together objects. However, when objects
to be classified share annotated features, the use of binary
relationships, i.e., the usual network, results in a dramatic loss
of information. One can thus obtain a better embedding via
hypergraphs and invoke the spectral characteristics of the as-
sociated Laplacian to achieve more effective clustering scores
[46,52]. Inspired by the analysis in [46], we will here consider
the problem of separating items taken from different databases
in the UCI Machine Learning Depository in distinct classes,
by using within the scope a set of annotated features. Hence
here nodes are items and hyperedges features. We will show
that the presence of high-order interactions among features
as encoded via the proposed Laplacian operator yields a very
effective embedding with just a few of the most significative
directions. Our results are in line (and in some cases more
accurate) than those reported in [46].

Summing up, we here introduce and discuss a generaliza-
tion of the random-walk picture to higher-order networked
systems, where hyperedge weights are naturally assigned, thus
removing any ambiguity in their values. Finally, we hint at
important exploitations of this dynamical framework working
along two paradigmatic directions, ranking, and classification
of data.

II. MODEL

A. Incidence and adjacency matrices of the hypergraph

Let us consider a hypergraph H(V, E ), where V =
{1, . . . , n} is the set of n nodes and E = {E1, . . . , Em} the set
of m hyperedges, with Eα an unordered collection of nodes,
i.e., Eα ⊂ V ∀α = 1, . . . , m. We observe that whenever Eα =
{i, j}, i.e., |Eα| = 2, the hyperedge is actually a “standard”
edge, denoting a binary interaction among nodes i and j. A
hypergraph where |Eα| = 2 ∀α reduces to a network.

We can define the associated incidence matrix of the hy-
pergraph eiα , carrying the information about how nodes are
shared among hyperedges, as

eiα =
{

1 for i ∈ Eα

0 otherwise. (1)

We note that the same matrix exists for networks. However,
while in regular networks each column can have only two

nonzero entries, as each edge can contain two nodes only,1 in
hypergraphs each column can display several nonzero entries,
i.e., a hyperedge can contain several nodes.

Starting from the above matrix, one can construct the n × n
adjacency matrix of the hypergraph A = eeT , whose entry Ai j

represents the number of hyperedges containing both nodes
i and j. We note that often the adjacency matrix is defined
by setting to 0 the main diagonal. Let us also define the m ×
m hyperedges matrix C = eT e, whose entry Cαβ counts the
number of nodes in Eα ∩ Eβ . Observe that in the literature the
number of nodes in a given hyperedge Cαα is often called the
degree of the hyperedge, while the node degree stands for the
number of hyperedges containing the node

∑
α eiαeiα .

B. Transition probability

To describe a random-walk process, we need to define the
transition probability to pass from a state, here represented
by the node on which the walker belongs, to any other state,
compatible with the former, in one time step. In the case
of simple unbiased random walks on networks, one assumes
the walker to take with equal probability any link emerging
from the node that is initially occupied. Hence, the transi-
tion probability can be readily computed as Ai j/ki, where
ki = ∑

j Ai j is the degree of the origin node. When dealing
with hypergraphs, choosing with uniform probability any of
the neighboring nodes, namely, all the nodes belonging to
hyperedges connected with the origin node, is not a sensible
choice. In this way, in fact, the real structure of the systems is
not incorporated into the dynamical picture. On the contrary,
nodes belonging to the same hyperedge exhibit a higher-
order interaction and we consequently assume that spreading
among them is more probable than with nodes associated with
other hyperedges; because of this, the information can thus
spend long periods inside the same hyperedge. For instance,
gossip can spread faster, because of group interaction among
individuals, than as follows successive binary encounters;
similarly, ideas can circulate more effectively among collab-
orators, the coauthors of a joined publication, as compared to
the setting where exchanges in pairs are solely allowed for.
Roughly speaking a walker sitting on a node “assigns” to all
its neighbors a weight that senses the size of the hyperedges
and corrects for the number of shared hyperedges. Thus, to
compute the transition probability to jump from i to j, we
count the number of nodes, excluding i itself, belonging to
the same hyperedge of i and j. Recalling the definition of the
matrix C, this can be written as

kH
i j =

∑
α

(Cαα − 1)eiαe jα = (eĈeT )i j − Ai j ∀ i �= j (2)

and kH
ii = 0, where Ĉ is a matrix whose diagonal coincides

with that of C and it is zero otherwise (see Appendix B).
By normalizing so as to impose a uniform choice among the
connected hyperedges, we get the expression for the transition

1We do not consider here hyperedges with size 1 because they
correspond to isolated nodes, i.e., nodes that cannot take part in the
examined process.
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probabilities

Ti j = (eĈeT )i j − Ai j∑
� �=i kH

i�

= (eĈeT )i j − Ai j∑
� �=i(eĈeT )i� − kH

i

, (3)

where kH
i = ∑

� �=i Ai� is the hyperdegree of the node i, a
measure reminiscent of the node degree, which takes into
account both the number and the size of hyperedges in which
i is involved.

When the hypergraph is a network, all hyperedges have two
nodes. Hence

(eĈeT )i j =
∑

α

Cααeiαe jα = 2
∑

α

eiαe jα = 2Ai j (4)

and Eq. (3) reduces to the standard transition probability for a
random walk on networks

Ti j = 2Ai j − Ai j

2kH
i − kH

i

= Ai j

ki
, (5)

where we used the fact that, under this assumption, kH
i = ki.

Remark. For a lazy random walk we observe that one
can straightforwardly generalize the above mechanism as to
include the possibility for the walker to remain on the same
node

T (lazy)
i j = k(lazy),H

i j∑
� k(lazy),H

i�

, (6)

where now

k(lazy),H
i j =

∑
α

Cααeiαe jα ∀ i, j. (7)

C. Stationary solution

Having computed the transition probabilities, we can
proceed further by formulating the dynamical equation
which rules the temporal evolution of the probability p(t ) =
(p1(t ), . . . , pn(t )) of finding the walker on a given node after
t > 0 steps. The process is governed by the equation

pi(t + 1) =
∑

j

p j (t )Tji, (8)

where the term on the right-hand side combines the proba-
bility to be in any node j at time t and the probability to
perform a jump towards the target node i, during the next time
of iteration. As

∑
j Ti j = 1 for all i, the stationary probability

distribution p(∞) is thus the left eigenvector associated with
the eigenvalue λ1 = 1 of T.

Given T, it is possible to obtain an exact analytical so-
lution for the stationary state p(∞) which encapsulates the
higher-order structure of the system. Indeed, a straightforward
computation (see Appendix C) yields

p(∞)
j =

∑
� �= j (eĈeT ) j� − kH

j∑
m �=�

[
(eĈeT )m� − kH

m

] (9)

for all j = 1, . . . , n. By defining dH
j = ∑

� �= j kH
j�, one can

rewrite the previous equation as p(∞)
j = dH

j /
∑

j dH
j , which

is reminiscent of the typical expression for the stationary

distribution for the random walk on networks. Indeed, when
the hypergraph is a standard binary network dH

j = k j , i.e.,
the node degree, and we recover exactly the well-known
expression q(∞)

j = k j/
∑

l kl for the stationary solution of the
walk.

We observe that

Li j = δi j − Ti j = δi j − kH
i j∑

� �=i kH
i�

(10)

is a different random-walk Laplacian that generalizes the
random-walk Laplacian for networks. Moreover, the former
reduces to the latter in the case |Eα| = 2 for all α.

We observe that the formalism readily extends to the case
of continuous-time random walks, where the evolution of the
probability is given by

ṗi(t ) =
∑

j

p j (t )Tji −
∑

j

piTi j .

Similarly to the case of networks, such as
∑

j Ti j = 1, it is
possible to rewrite the preceding equation as

ṗi =
∑

j

p j (Tji − δi j ) = −
∑

j

p jL ji ,

where L is the above-defined Laplace matrix. In the following,
for the sake of definiteness, we limit our analysis to exploring
the properties of discrete-time random walks on synthetic and
real-world hypergraphs, leaving the continuous-time case to
future work.

We denote by D the diagonal matrix with entries dH
i =∑

j �=i kH
i j and by KH the matrix characterized by elements kH

i j .
We can introduce the symmetric Laplacian Lsym as

Lsym = I − D−1/2KH D−1/2 ,

which is well defined since kH
i j � 0. Here Lsym is similar to

the operator introduced via the relation (10); indeed, L =
D−1/2LsymD1/2. The operator L introduced herein is hence a
properly defined Laplacian: It is in fact non-negative definite;
it displays real eigenvalues and the smallest eigenvalue is
identically equal to zero, as it readily follows by virtue of the
proven similarity to Lsym.

Before turning to discussing the applications, we will
briefly draw a comparison with the setting proposed by Zhou
et al. [46] and show how this materializes in a natural solution
for the problem of weight determination. The Laplacian op-
erator Lz introduced in [46] removing the possibility for the
walker to stay put on the node can be cast in the form

Lz
i j = δi j −

∑
α

wα

Wi(Cαα − 1)
eiαe jα, (11)

where wα identifies the arbitrary weight of the hyperedge
Eα , Wi = ∑

α wαeiα is the total weight of the hyperedges
containing the node i, i.e., weighted node degree, and Cαα

stands for the number of nodes in the hyperedge Eα . A
simple calculation, as detailed in the following, shows that the
operator L can be eventually recovered from Lz by imposing
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FIG. 2. The (m, k)-star-clique network. (a) Hypergraph made by m + k = 13 nodes, divided into m = 7 hyperedges of size 2 and one large
hyperedge of size k = 6. The node h belongs to all the 2-hyperedges, while the node c belongs to one 2-hyperedge and to the 6-hyperedge.
(b) Projected network where hyperedges are mapped into complete cliques, and the 6-hyperedge becomes thus a 6-clique. (c) Dependence on m
of the asymptotic probability of finding the walker on the node h (circles) or on the node c (squares), in the projected network (green symbols)
and in the hypergraph (orange symbols). The asymptotic probabilities q(∞)

i and p(∞)
i are reported for three values of m: (d) m = 3 < k̂, (e)

k̂ < m = 15 < k̃, and (f) k̃ < m = 35, where k̂ = 6 and k̃ = 26.

the nontrivial weights wα = (Cαα − 1)2. In fact,

Lz
i j = δi j −

∑
α

(Cαα − 1)2

(Cαα − 1)
∑

β (Cββ − 1)2eiβ
eiαe jα

= δi j −
∑

α

Cαα − 1∑
β (Cββ − 1)2eiβ

eiαe jα

= δi j − kH
i j∑

β

∑
� �=i e�β (Cββ − 1)eiβ

= δi j − kH
i j∑

� �=i kH
i�

= Li j,

where use has been made of the definition (2) for kH
i j and

the fact that Cββ − 1 = ∑
� �=i e�β . As anticipated, a natural

choice for the weights as postulated in [46] can be envis-
aged, which follows a sensible microscopic modeling of the
random-walk dynamics. Let us observe that in the case of a
lazy random walk, a similar result can be obtained by setting
wα = Cαα (Cαα − 1).

By invoking Theorem 4 in [53], we can finally conclude
that our process is equivalent to a random walk on a weighted
projected network, where the weight of the link i j is given
by kH

i j , that is, the weights scale extensively with the region
of influence of the nodes, namely, the size of the hyperedge
they belong to. It is indeed quite remarkable that a properly

weighted binary network encapsulates the higher-order in-
formation, as stemming from the corresponding hypergraph
representation. Observe that authors in [53] also consider an
extension of the Zhou et al. model, where nodes bear a given
weight, tuned so as to reflect the hyperedge characteristics.
Again, the introduced weights are abstract quantities and do
not reflect a physically motivated choice.

III. RESULTS

Since the creation of the PageRank algorithm [54,55],
random walks on networks have been routinely applied to
compute centrality scores [31]. Indeed, they can be used to
rank nodes according to the probability to be visited by the
walker; the larger the walker, the more important or central the
node. In this section we show that high-order interactions can
strongly modify the ranking, as resulting from a random-walk
process on hypergraphs, with respect to the homologous es-
timate as computed for the corresponding projected network.
This fact can thus bear relevant implications for ranking real
data, stemming from a dynamical process which is better
explained in terms of hypergraphs. In this case, in fact, the
applications of ranking tools tailored to pairwise interactions
might produce misleading results (see Appendixes C and E).

To illustrate the effect of a nontrivial higher-order structure,
we consider a simple hypergraph made by m hyperedges of
size 2 all intersecting in a common node h; a different node,
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i j
dH

i = 3 < dH
j = 4

ki = 3 > kj = 2

i j

(a)

i j

(b)

dH
i = 6 < dH

j = 9

ki = 4 > kj = 3

i j

FIG. 3. Examples with ranking inversion. We propose two typ-
ical examples of high-order structures that locally produce two
different rankings: (a) an example involving three 2-hyperedges and
one 3-hyperedge and (b) the case with one 3-hyperedge and two
2-hyperedges compared with a 4-hyperedge. In both cases the first
configuration will be ranked above the second one, when using the
random walks on hypergraphs, while the opposite holds when the
random walkers run on the projected networks.

say, c, belongs to one such 2-hyperedges and to a hyperedge
of size k [see Fig. 2(a) for the case m = 7 and k = 6].

The random walk on the projected network will rank nodes
according to their degree, i.e., q(∞)

i ∼ ki. Hence, for m > k,
the node h, with kh = m, is ranked first, followed by the c
node, kc = k, and all others [see the green curves in Fig. 2(c)].
In contrast, the random walk on the hypergraph ranks nodes
taking into account higher-order relations. Since from Eq. (9)
we get p(∞)

h ∼ m and p(∞)
c ∼ 1 + (k − 1)2, h is the top node as

long as m > 1 + (k − 1)2 [see the orange curves in Fig. 2(c)].
In conclusion, for a fixed size of the hyperedge k, if the “hub”
node is too small [see Fig. 2(d)] m < k̂ = k + 1 or the hub
is very large [see Fig. 2(f)] m > k̃ = 1 + (k − 1)2, then both
processes will rank nodes in the same way. However, there
exists a range of intermediate values k̂ < m < k̃ for which the
top ranked node on the hypergraph is the c node while the
random walk on the projected network returns the h node as
the top rank [see Fig. 2(e)].

This phenomenon of ranking inversion can be roughly
stated as follows: With the aim of maximizing the probability
of occupancy of a given node, it is preferable for this latter
to be connected to nodes organized into a few large hyper-
edges than many parceled units. More precisely, the analytical
expression for p(∞) indicates that the ranking provided by
the random walkers on the hypergraph is proportional to
dH

i = ∑
j kH

i j , while it is well known that the ranking that
follows the usual random walks on the projected network
scales proportionally to the node degree ki. Two nodes, say,
i and j, are thus ranked differently by the two processes, if
ki > k j but dH

i < dH
j . As we will now show, the presence of

high-order structures can induce a ranking inversion.
A simple example where this occurs is shown in Fig. 3(a).

The node i belongs to the intersection of three 2-hyperedges.
Thus its degree (in the projected network) is given by ki = 3.
Moreover, dH

i = 3, because, locally, the hypergraph reduces
to a standard network; on the other hand, the node j belongs
to a 3-hyperedge, and hence k j = 2, because it is part of a 3-
clique, but dH

j = 4. Hence, ki > k j but dH
i < dH

j . Nodes j will
be consequently ranked above i using the generalized random

walks on the hypergraph, while the opposite happens if one
relies on random walks on the projected network.

The above construction can be readily generalized, as
shown by the example presented in Fig. 3(b). Here i belongs to
a 3-hyperedge and to two 2-hyperedges, and hence ki = 4 and
dH

i = 6; node j instead belongs to a 4-hyperedge, and thus
k j = 3 and dH

j = 9. So again ki > k j while dH
i < dH

j .
To further characterize the impact of the high-order inter-

actions on diffusion on larger systems, we consider a second
synthetic model where all nodes have the same number of
neighbors, which are arranged in a tunable number of trian-
gles, i.e., hyperedges of size |Eα| = 3. The model interpolates
between the case where the number of triangles is zero f = 0,
meaning that all interactions involve simple pairs, and the case
where there are no pairwise interactions but only three-body
ones, f = 1. More precisely, we start with a one-dimensional
(1D) regular lattice where nodes are connected to four neigh-
bors (two on the left and two on the right). Each nodes hence
has degree 4 and takes part in two distinct triangles, i.e.,
hyperedges with size 3, and f = 1. Then, with probability
p, we iteratively swap the ending points of the links with
a crisscross rewiring, i.e., preserving the node degree, pro-
gressively eliminating 3-hyperedges, hence triangles. In the
limit of high rewiring triangles have a negligible probability
to be formed and one eventually obtains a regular random
graph with degree k = 4. In the process, we control that no
hyperedge of size greater than 3 is created, so the competition
is only between two-body and three-body interactions.

As the degree sequence is unchanged throughout this pro-
cess and every node shares the same number of links, the
asymptotic distribution of walkers on the projected network
is uniform and given by qi = 1/N for all i, where N is the
number of nodes, set to 500 in the example below, no matter
the value of f . This is also the case for the random walk on
the hypergraph, in the two limiting cases f = 0 and f = 1;
indeed, in the former case the hypergraph and the projected
network coincide because all the hyperedges have size 2. In
the latter setting, all nodes are involved in the same number
of higher-order interactions and thus they are all equivalent.
However, for the walk on hypergraphs the stationary state
changes at the intermediate stages of f . In order to quantify
the heterogeneity of the stationary state we rely on the Gini
coefficient, which is defined as the average absolute difference
between all pairs of elements in the vector p, divided by the
average

G(p) =
∑N

i=1

∑N
j=1 |pi − p j |

2N
∑N

i=1 pi

. (12)

The Gini coefficient for the stationary state of a random walk
on the above-described hypergraph is reported in Fig. 4(a).
For the limiting values f = 0 and f = 1 the stationary state
on the hypergraph coincides with the one on the projected
network and the Gini index is 0 since the asymptotic solu-
tion is homogeneous. However, high-order structures arising
for intermediate values of the fraction of triangles induce
a heterogeneity in the occupation of the different nodes at
equilibrium, which is thus different from the one obtained for
the associated projected network.
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FIG. 4. Impact of the three-body interaction on the asymptotic
solution of the random walk on the hypergraph. (a) Gini coefficient
for the stationary state of the random walk on hypergraphs as a
function of the fraction of hyperedges of size three, f . Recall that
the model does not allow for hyperedges of size larger than 3.
(b) For the same networks as in (a), the modified Jaccard index to
compare the rankings of nodes for the hypergraph and the projected
network. Different colors (blue, red, and green), correspond to dif-
ferent numbers of nodes chosen for the comparison, i.e., the top 100,
the top 300, and all 500 nodes, respectively.

A standard metric to compare lists is the Jaccard index, a
measure of the fraction of elements that are common between
two lists with respect to the total number of involved elements
J (A, B) = |A ∩ B|/|A ∪ B|. As the Jaccard index does not take
into account the order of the elements as appearing in the
two confronted lists, we compare the rankings of the two sta-
tionary distributions by means of a modified Jaccard index Ĵ ,
recently introduced in [56]. Here differences at the top of the
ranking induce a stronger change than differences associated
with the lower-ranked elements. Let us observe also that the
Jaccard index is unable to detect a permutation in the order of
the elements on a list, while the modified one does. In Fig. 4(b)
we show the average modified Jaccard index Ĵ for the M-top
ranking, M = 100, 300, 500, as a function of the fraction f
of 3-hyperedges existing in the system. The results are in
agreement with the ones obtained via the Gini coefficient; for
f = 0 and f = 1 the rankings coincide and thus Ĵ achieves
its maximum value, i.e., 1, while for intermediate values of
f the index Ĵ drops down, reflecting differences among the

rankings. Moreover, we can appreciate the presence of a large
turnover in the top lists: Indeed, the Ĵ associated with small
M, i.e., comparing relatively few nodes in the top list, is much
smaller than that for large M, i.e., longer lists.

To take one step forward, we consider a synthetic model
where high-order structures are not limited to three-body
interactions, but larger hyperedges are allowed for. We thus
build a third model which interpolates from a 1D ring to a
fully connected network. More precisely, we start from a 1D
ring where all the nodes have degree 2 and then progressively
increase its density as measured by the total number of links
� until the process terminates with a complete network, corre-
sponding to a hypergraph with a single hyperedge containing
all the nodes. Links are added at random avoiding self-loops
and multiple links. We note that, differently from the previous
case, at intermediate values of � this model presents a much
wider variety in the size of the hyperedges (or cliques in the
projected network), which are no longer limited to two-body
and three-body interactions. For this reason, the structure of
the ranking difference is definitely more complex and rich
than what one could eventually guess by just looking at the
number of 3-hyperedges, 4-hyperedges, or 5-hyperedges (see
Fig. 5).

In the initial configuration of a 1D ring, the stationary so-
lutions of the hypergraph and the projected network coincide,
because of the absence of higher-order interactions. Similarly,
they are also equivalent in the opposite limit, i.e., when the
fully connected network is generated. For an intermediate
number of added links, the two processes result instead in
different rankings. In Fig. 5 we report Ĵ as a function of the
total number of links �, to compare the M-top rankings, as
obtained by using the random walk on the hypergraph and
on the projected network, respectively. We report in particular
results for three values M = 5, 10, 20. The behavior of the
threes curves is qualitatively similar. Indeed, they all reach the
value 1, i.e., perfect matching of the respective rankings for
� = 20 (initial 1D ring). Then, even the addition of just a few
links makes the rankings change abruptly and Ĵ consequently
drops to low values. This is associated with the creation of
small hyperedges with size equal to 3 [see Fig. 5(b)]. Adding
more links reduces the differences, namely, Ĵ increases, up
to � = 190 (complete network), where again the rankings
coincide and the index equals 1. This is associated with the
birth of larger hyperedges. We note that Ĵ for M = 5 is
much smaller than the same quantity computed with M = 10
(rank half of the nodes) and M = 20 (rank all the nodes),
meaning that there is a strong turnover in the top positions.
The heterogeneity in the stationary solutions of this model,
as well as the star-clique example, is further investigated in
Appendix D, where the corresponding Gini coefficients are
shown.

IV. APPLICATIONS

A. Node ranking

In the preceding section we showed that the hypergraph
and the projected network can exhibit different stationary so-
lutions because of ranking inversion (see previous discussion).
We thus decided to analyze the impact of this observation in
real networks of scientific collaborations, in our opinion one

022308-7



TIMOTEO CARLETTI et al. PHYSICAL REVIEW E 101, 022308 (2020)

FIG. 5. Impact of high-order structures on the asymptotic distri-
bution of walkers for the random walk on (a) the hypergraph and
(b) the projected network. Using the algorithm presented in the text,
by iteratively adding links we create hypergraphs that interpolate
from a regular 1D ring (where each of the N = 20 nodes is connected
with its two neighbors) to a complete graph. We then perform
the random-walk process on the hypergraph and on the associated
projected network and compare the resulting ranking (the top 5 blue,
the top 10 red, and the top 20 green, i.e., the whole set of nodes) using
Ĵ [in (b)]. For a small number of available links �, the hypergraph
does not present many hyperedges and thus the ranking is very
close, Ĵ ∼ 1. As � starts to increase, a few hyperedges of size 3 are
created [see the circles in (a)] and the rankings estimated with the
two alternative methods deviate, the values of Ĵ dropping in turn.
However, as � increases even more, larger high-order structures, e.g.,
4- and 5-hyperedges, emerge [see squares and diamonds in (a)] and Ĵ
steadily increases. For a large ensemble of added links � � 170, the
rankings become similar and Ĵ ∼ 1.

of the most representative examples of high-order structures
in human interactions. The analyzed data have been gathered
from the arXiv database (see Appendix E for more details).
Human collaborations are often schematized as resorting to
pairwise interaction, a working ansatz which amounts to ig-
noring the organization in teams. At variance, we have instead

built a hypergraph where researchers (i.e., nodes) coauthoring
an article are part of the same hyperedge.

We have determined the largest connected component of
the hypergraph and that of the projected network, considered
maximal and unique hyperedges (to have a fair comparison
with the cliques), and computed (i) the stationary distribution
p(∞) for the random walk on the associated hypergraph and
(ii) the stationary distribution q(∞) for the random walk on
the corresponding projected network. We then normalize the
computed stationary probabilities by their relative maximum
so as to favor a comparative visualization. In Fig. 6 we plot
p(∞)

i /max j p(∞)
j vs q(∞)

i /max j q(∞)
j for the case of arXiv-astro

and arXiv-physics. In Fig. 15 the same comparison is drawn
for the complete arXiv data set.

Authors are ranked differently, according to the two cri-
teria, the one based on hypergraphs being more sensitive to
the organization in groups. If the computed rankings were
(almost) the same, the data would (almost) lie on the main
diagonal; deviation from this results in novel information
conveyed by the random walk on the hypergraph. The unitary
square in the plane (q(∞)

i , p(∞)
i ) can be divided into four

smaller squares (see Fig. 6). The majority of the authors lie
in the bottom left square [0, 1/2] × [0, 1/2]: These authors
have therefore written a few papers with a small number
of coauthors. Three other regions can however be identified
which roughly correspond to the bounded squares: [1/2, 1] ×
[0, 1/2] (bottom right), [0, 1/2] × [1/2, 1] (top left), and
[1/2, 1] × [1/2, 1] (top right). Authors in the top right square
are top ranked in both processes; they have hence written
a large number of papers with different collaborators (large
degree), but they have also contributed to a relevant number
of papers with many coauthors, i.e., large hyperedge size.
Scholars in the bottom right square are better ranked by the
random walk on the network; this means that they have written
several papers but with a small number of coauthors [see,
e.g., Fig. 6(b), corresponding to physics]. Finally, researchers
in the top left square manifest a complementary attitude;
they have participated in a small number of papers, but
written by many authors [see e.g., Fig. 6(a), corresponding
to astro].

As a further consideration, we can bring to the fore dif-
ferent “habits” of publication and writing papers that au-
thors exhibit in each domain, despite the distribution of node
degrees, i.e., number of different collaborators per author,
and of hyperedges size, i.e., number of coauthors in papers,
showing a quite similar shape across domains, e.g., broad
tails (see Appendix E). This is particularly relevant for the
high-energy particle (hep) archive, one among the oldest ones
and divided into four subcategories: experimental (ex), lattice
(lat), phenomenology (ph), and theory (th) (see Fig. 7). In-
deed, hep-ex and hep-ph populate mainly the top right square,
while hep-lat and hep-th are more present in the top right
and bottom right squares. Researchers belonging to the former
community therefore tend to write several papers with many
coauthors, while those associated with the latter have papers
with many different collaborators, each one coauthored by a
small number of scholars. This is also confirmed by the largest
degree found in the four subcategories (see Table I), which is
as large as ∼1200 for hep-ex and hep-ph, while it is almost
one-fourth the size for hep-lat and hep-th.
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FIG. 6. Comparison of the rankings in the arXiv community for the case of (a) astro and (b) physics. We report the scatter plot of the
normalized rankings obtained with the random walk on network q(∞)

i and the one computed using the random walk on hypergraphs p(∞)
i for

(a) arXiv-astro and (b) arXiv-physics.

The comparison drawn may allow one to introduce apt cor-
rections to usual bibliographic indicators, by properly weight-
ing the participation to large collaborations, as opposed to
research activities carried out in small groups. Recall that the
hypergraph Laplacian is equivalent to the Laplacian obtained
from a properly weighted projected network, which inherits
the high-order structures of the hypergraph [53]. Assessing the
higher-order ranking therefore amounts to applying the usual
tools to this latter weighted binary graph, a conclusion which
points to an immediate operative translation of the methods
introduced herein.

B. Classification task

To further test the interest of a generalized random-walk
process biased to account for hyperedged communities within
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FIG. 7. Publication habits of arXiv-hep. We report the scatter
plot of the normalized rankings obtained with the random walk on
the projected network q(∞)

i and the one computed using the RW on
hypergraphs p(∞)

i for the four subdomains of the arXiv-hep domain.

a plausible microscopic framework, we consider the classi-
fication task studied by Zhou et al. [46]. We anticipate that
the obtained classification outperforms that obtained under the
usual random-walk framework, which ignores the annotated
hyper structures.

A standard pipeline to analyze a data set starts with the
determination of pairwise similarities between the objects
to eventually be classified. This implies defining a network
that can be studied by means of standard spectral methods.
However, similarities often involve groups of objects. In this
respect, hypergraphs define the ideal mathematical platform
to account for the inherent complexity of the classification
problem. More precisely, one can make use of spectral meth-
ods based on the hypergraph Laplace matrix to eventually
obtain a classification which effectively accounts for high-
order interaction as displayed in the data [57].

Following [46], we consider an ensemble of gilled mush-
rooms from the Agaricus and Lepiota genera and we aim
at classifying them into two classes, definitely edible and
definitely poisonous (which indeed contains also unknown ed-
ibility and not recommended), given their description. Specif-
ically, we used the mushroom database taken from the UCI
Machine Learning Depository [58], containing 8124 mush-
rooms, each one endowed with 22 features, such as cap shape,
cap color, odor, and so on (see Appendix F for a complete
description of the data set). Here nodes are mushrooms and
hyperedges features; we will show that the presence of high-
order interactions among features allow one to obtain a very
satisfying embedding using only two or three dimensions, a
result which is better that the one reported by Zhou et al.
[46] for an ad hoc choice of the free weight parameters, i.e.,
unitary ones. To this end we build a hypergraph using the
above recipe; we compute its random-walk Laplacian and
eventually its ensuing spectrum. We list the eigenvalues in
ascending order and rename accordingly the eigenvectors. We
use the first left eigenvectors,2 associated with the smallest

2In principle, also the right eigenvectors can be used for classifica-
tion purposes.
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TABLE I. Some figures for the arXiv subdomains. The first column shows the subdomain of the arXiv server, while the second one stands
for the period of time for which we have extracted the information. Columns 3, 4, and 5 display, respectively, the number of nodes, the number
of maximal unique hyperedges, and the number of links in the largest connected component, while in parentheses we show the same values
for the whole hypergraph or network. In column 6 we report the size of the largest hyperedge and in the seventh column the maximum degree.

arXiv Period Nodes Hyperedges Links max |Eα| max ki

astro-ph 1992–2018 185579 (195729) 136918 (201270) 4602315 (4617912) 81 2732
cond-mat 1992–2018 221415 (243749) 141611 (207939) 1520895 (1551863) 63 1426
cs 1993–2018 136146 (187689) 84184 (139334) 534462 (607560) 65 406
econ 2017–2018 113 (1147) 63 (612) 214 (1295) 5 36
gr-qc 1992–2018 32088 (40316) 25321 (45378) 216355 (228811) 80 511
hep-ex 1992–2018 48460 (55634) 12310 (23249) 1418268 (1435372) 83 1228
hep-lat 1992–2018 10275 (12483) 7439 (14143) 85194 (87254) 72 346
hep-ph 1992–2018 62885 (70324) 50403 (86150) 814746 (823705) 74 1244
hep-th 1992–2018 41814 (51045) 42410 (74136) 144710 (154737) 57 206
math 1992–2018 112203 (159595) 106583 (194312) 279891 (313402) 60 336
nlin 1993–2018 19491 (30445) 12428 (23503) 52089 (64890) 46 312
physics 1996–2018 188142 (240866) 68805 (116611) 1859156 (1950143) 80 891
q-bio 2003–2018 23630 (45103) 9926 (21191) 93127 (142136) 54 176
q-fin 2008–2018 3136 (8721) 2155 (6042) 6851 (13078) 11 66
stat 2008–2018 39422 (57955) 23377 (39366) 130665 (158435) 65 228

eigenvalues, as coordinates of a Euclidean space where to
embed the data (see Fig. 8). We observe that since we use
a random-walk Laplacian, the first eigenvector, i.e., the one
associated with the 0 eigenvalue, is not homogeneous and
it contains nontrivial information on the structure of the
examined sample. Classes are identified by different colors:
Edible mushrooms are reported in blue and poisonous in red.
One can visually appreciate that homologous colors cluster in
space, hence suggesting that the embedding yields an accurate
classification. Indeed, the ground-truth partition of animals
into these seven classes and the one obtained by performing
a k-means clustering in this three-dimensional space have
an adjusted Rand index (ARI) [59] equal to 0.32. For the
sake of comparison, the clustering obtained using the method
proposed in [46] returns an ARI equal to 0.14, while the one
obtained using the eigenvectors of the Laplacian of the pro-
jected network have an ARI equal to 0.008. In the latter case
the method is less efficient. The classification task is difficult

FIG. 8. Classification of the mushrooms according to their fea-
tures. We report a 3D embedding of the mushroom data set, namely,
using the first three eigenvectors. Each combination color refers to a
known class, red for poisonous and blue for edible.

with such a small number of dimensions if the hyperedges are
not at play, and the clusters found are not correlated to the
ground-truth partition.

We applied our method (and compared it to the one pro-
posed in [46]) to other data sets, ranging from very small
to medium sizes, all taken from the UCI Machine Learning
Depository [58]: Associate the right contact lenses with a
patient (this is a very small data set with only 24 items and 4
features each), determine the animal given distinctive features
(this data set contains 101 animals, each one described by 20
features), and evaluate a car (1728 cars and 6 attributes). In all
the examined cases the obtained results are more accurate or
in line with the one presented in [46] (see Appendix F for a
complete description of the data sets).

V. CONCLUSION

Summing up, we have here introduced and studied a class
of random walks on hypergraphs which take into account
the presence of higher-order interactions. In deriving the
transition rates we assumed that the size of the hyperedge
linearly correlates with the probability for the walker to per-
form a jump. In principle, one can relax this assumption and
introduce nonlinear transition rates, but exploring further gen-
eralizations is left for future investigations. We provided an
analytical expression for the ensuing stationary distribution,
based on the structural features of the networked system, and
compared it to the distribution associated with a traditional
random walk performed on the corresponding projected net-
work. More precisely, we proposed a self-consistent recipe
grounded in a microscopic physical random process biased
by the hyperedges sizes to assign weights to hyperedges. We
further characterized the dynamics by comparing the two pro-
cesses on several synthetic and real-world networks, by means
of both numerical simulations and analytical arguments. We
showed that our process produces stationary distributions
different from those obtained for the corresponding projected
network and that prove sensitive to higher-order structure
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FIG. 9. (a) Simple hypergraph with nodes V = {1, 2, 3} and hy-
peredges E1 = {1, 2} and E2 = {1, 3} and (b) nonsimple hypergraph
with nodes W = {a, b, c} and hyperedges E3 = {a, b, c} and E4 =
{a, b}.

in a networked architecture. Our framework was applied to
collaboration networks, yielding insights into node ranking
and centrality measure, which allow for a richer characteri-
zation of individual performances as compared to traditional
methods. Moreover, we showed that information embedded in
the higher-order walk can be used to achieve accurate classi-
fication. In particular, we applied our method to successfully
cluster into different families animals with different features,
each one representing a hyperedge. The same procedure fails
if a simple random walk on the corresponding projected
network is considered. Importantly, the proposed Laplacian is
equivalent to that stemming from a properly tuned weighted
network [53]. Higher-order rankings and refined classifica-
tions hence could be immediately obtained by supplying to
conventional tools and analysis schemes the weighted ad-
jacency matrix that characterizes the graph with pairwise
edges associated with the hypergraph construction. Taken all
together, our work sheds light on dynamical processes on
networks which are not limited to pairwise interactions and
on the complex interplay between the structure and dynamics
of higher-order interaction networks. Future applications to
machine-learning-based approaches to classification are also
envisaged.
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APPENDIX A: PROJECTED NETWORK

A hypergraph is simple if each hyperedge does not contain
any other hyperedge. We report in Fig. 9 two examples; the
hypergraph H1 with nodes V = {1, 2, 3} and hyperedges E1 =

b

a

c

b
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π(H2) πw(H2)

1

1

1

2

1

1

(a) (b)

FIG. 10. We propose (a) a standard projection and (b) a weighted
projection of the hypergraph H2 shown in Fig. 9. In the latter case,
the edge (a, b) has weight 2 because it belongs to two different
hyperedges in H2.

{1, 2} and E2 = {1, 3} is simple because either E1 �⊂ E2 or
E2 �⊂ E1. On the other hand, the hypergraph H2 with nodes
W = {a, b, c} and hyperedges E3 = {a, b, c} and E4 = {a, b}
is not simple because E4 ⊂ E3.

Once we build the projected network π (H2), starting from
the latter hypergraph we get a complete 3-clique, thus losing
information on the existence of hyperedge E4 [see Fig. 10(a)].
Hence, we cannot get back to H2 by inverting the construction
π−1π (H2) �= H2. A possible way to overcome this difficulty is
to consider a weighted projection [see Fig. 10(b)] where edges
inherit a weight counting the number of different hyperedges
they belong to. Observe, however, that for large hyperedge
sizes the inversion can be computationally costly because of
the combinatorial structure of the problem.

APPENDIX B: TRANSITION PROBABILITY

The aim of this Appendix is to provide some details
about the calculation of the generalized transition probabili-
ties which take into account the high-order structure of the
hyperedges. To compute the transition probability to jump
from i to j, we first count the number of nodes, excluding
node i itself, belonging to the same hyperedge of i and j:

kH
i j =

∑
α

(Cαα − 1)eiαe jα, i �= j, kH
ii = 0 ∀ i; (B1)

namely, for each hyperedge Eα we consider the number of its
nodes minus one, i.e., Cαα − 1. Then this quantity is added to
kH

i j if and only if eiα = e jα = 1, that is, if and only if both i
and j belong to Eα .

Next we normalize this quantity by considering a uniform
choice among the connected hyperedges. Hence, we obtain an
initial formula for the transition probability Ti j to jump from
node i to node j,

Ti j = kH
i j∑

� �=i kH
i�

=
∑

α (Cαα − 1)eiαe jα∑
� �=i

∑
α (Cαα − 1)eiαe�α

, (B2)

so that
∑

j Ti j = 1 ∀ i.
Equation (B2) can be rewritten in an equivalent form,

which allows one to draw a comparison with the transition
probability for unbiased random walks on networks. Indeed,
by recalling the definition of Cαβ = (eT e)αβ = ∑

� eT
α�e�β =∑

� e�αe�β , we get Cαα = ∑
� e�αe�α and then∑

α

Cααeiαe jα =
∑

α

eiαCααeT
α j = (eĈeT )i j, (B3)

where Ĉ is a diagonal matrix: The diagonal of Ĉ coincides
with that of C and its off-diagonal is identically equal to zero.
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This allows us to rewrite Eq. (B1) in a more compact way
[Eq. (2)]

kH
i j =

∑
α

(Cαα − 1)eiαe jα = (eĈeT )i j − (eeT )i j

= (eĈeT )i j − Ai j ∀ i �= j,

where in the last step we used the definition of the adjacency
matrix of the hypergraph. We thus eventually get Eq. (3).

We observe that this equation remains valid even for non-
simple hypergraphs. For instance, using again the hypergraph
H2 shown in Fig. 9, where the hyperedge E4 is properly
included into E3, we get

kab = (E3 − 1) + (E4 − 1) = 2 + 1, kac = E3 − 1 = 2

and thus the transition probabilities

Tab = 3
5 , Tac = 2

5 ,

so the transition from a to b is 1.5 times more probable than
to c because a and b share two hyperedges. Among nonsimple
hypergraphs, one has to account for the fact that hyperedges
are repeated several times. The theory proposed here holds
true also for weighted hyperedges.

Nonlinear transition rates

In deriving the transition rates (3), we assumed that the size
of the hyperedge linearly correlates with the probability for
the walker to perform a jump; one can of course relax this
assumption and introduce nonlinear transition rates. In other
words, one can add a bias in (B1) in the selection rule for a
target node j, as operated by a walker sitting on node i. For
example, one can posit

k(H,γ )
i j =

∑
α

(Cαα − 1)γ eiαe jα, i �= j, k(H,γ )
ii = 0 ∀ i.

(B4)

In this way, large hyperedges are even more favored if γ > 0,
while the opposite happens if γ < 0, and we eventually get
for the transition probabilities

T (γ )
i j = k(H,γ )

i j∑
� �=i k(H,γ )

i�

.

APPENDIX C: STATIONARY SOLUTION

Given the transition probability stored in the matrix T,
we can obtain the analytical solution for the stationary state
p(∞) defined by p(∞) = p(∞)T. By recalling Eq. (9), we can
straightforwardly verify that it solves the fixed point equation
for the governing dynamics. To this end one needs to plug
Eq. (9) into Eq. (8) and recall the definition (3) for Tji =
kH

ji /dH
j ,

∑
j

(
dH

j∑
m dH

m

)(
kH

ji

dH
j

− δ ji

)
=

∑
j

kH
ji∑

m dH
m

− dH
i∑

m dH
m

= 0,

(C1)

where the last step has been obtained by recalling that kH
j j = 0

and thus
∑

j kH
ji = dH

i .

FIG. 11. Star-clique model: ratio between the Gini coefficient of
the stationary state on the hypergraph and the projected network,
varying the size of the clique k and of the star m.

The analytical formula for the stationary distribution al-
lows us to better understand the ranking emerging from the
random walk on the hypergraph and in particular the inversion
phenomenon as discussed in the main text (a top-ranked node
for the high-order structure loses its leading position when
studied in the projected network, or vice versa).

APPENDIX D: HETEROGENEITY OF THE
STATIONARY SOLUTION

The stationary solution that we obtain from a random walk
on a hypergraph is very different from the one we can get from
the corresponding projected network, the former being more
sensitive to the organization in groups. The heterogeneity of
the state, i.e., the difference among the occupation probabili-
ties of the different nodes at equilibrium, can be quantified by
making use of the Gini coefficient.

Figure 11 reports on the ratio between the coefficient G
computed for the hypergraph and for the projected network
of Fig. 2, at varying m, the size of the star, and k, the size
of the clique. In contrast, Fig. 12 shows the heterogeneity for
the model which goes from a 1D lattice to a fully connected
network, by subsequently adding the links (see Fig. 5). The
red points show the Gini coefficient for the hypergraph, while
the green ones are plotted for the projected network, at varying
�, the number of links in the graph.

FIG. 12. Lattice to fully connected model: Gini coefficient for
the stationary state of the random walk on the hypergraph (red) and
on the corresponding projected network (green).
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From the results presented in these figures one can appreci-
ate that the Gini coefficient associated with the stationary so-
lution for the random walk on the hypergraph is always larger
than the same quantity computed for the random walk on the
projected network. This implies thus that the distribution of
walkers on the hypergraph is more heterogeneous than for the
projected network.

APPENDIX E: COAUTHORSHIP NETWORKS FROM arXiv

The collaboration network is one of the most representative
examples of hypergraph; nodes are authors and hyperedges
are groups of authors that collaborated to accomplish a task,
e.g., write a scientific paper. For this reason we decided
to apply the method that we developed to the coauthorship
networks extracted from the online preprints platform arXiv
and hence analyze the nodes ranking obtained using the two
processes.

In this Appendix we report some results for the coau-
thorship hypergraph for the subdomains of arXiv since their
existence up to 2018 included (second column Table I). In
each subdomain, we gathered all the papers and then extracted
the authors names, so creating a hyperedge whose nodes are
the authors. We thus obtain a set of nodes V (1) and hyperedges
E (1) and also the edges of the associated projected network
E (1)

q . Such quantities are reported in parentheses in the third,
fourth, and fifth columns of the Table I. Once the hypergraph
has been built, we identify the largest connected component
that will contain the nodes V (cc); then we identify all the
maximal hyperedges, i.e., not properly contained in any other
larger hyperedge, and unique hyperedges E (cc) and the edges
of the associated projected network E (cc)

q . Columns 3–5 of the
table show such values. Finally, we compute the largest hyper-
edge and the largest node degree in the maximal connected
component (columns 6 and 7). For instance, in the arXiv-cs
there is a node that belongs to a hyperedge of size 65 and that
is linked to 406 other nodes; this means that this researcher has
signed a paper with 64 other researchers and in total had 406
different collaborators with whom the researcher has written
a paper. Let us also observe that because of the maximality
and uniqueness assumptions, we do not know if the researcher
has coauthored other papers with a subset of the 64 scholars.
Moreover, because we used unweighted networks, we also
cannot estimate how many papers the researcher wrote with
the 406 collaborators. Let us recall that the need for the
maximality and uniqueness is only to compare the results with
the projected network, while our method works also without
these assumptions.

Authors and articles in each subdomain follow differ-
ent “rules” and “habits” of publication and writing papers.
However, the distributions of node degrees, i.e., number of
different collaborators per author, and of hyperedges size, i.e.,
number of coauthors in papers, exhibit quite similar shapes
across the domains, e.g., broad tails (see Fig. 13 for the degree
distribution and Fig. 14 for the hyperedges size distribution).

As already stated, the random walk on the hypergraph
gives more relevance to the size of the hyperedge, i.e., the
number of coauthors, while the same process on a network
emphasizes the number of different collaborators. Let us
recall that here we considered unweighted hypergraphs and

networks. We can thus use these approaches to distinguish the
different publication habits in the considered subdomains. To
this aim we first normalize the stationary probabilities p(∞)

i

for the hypergraph and q(∞)
i for the projected network, with

respect to their maximum value, to be able to compare sets
containing different amounts of data, and then we report in
the plane with coordinates (q(∞)

i /max j q(∞)
j , p(∞)

i /max j p(∞)
j )

the scatter plot of the data (each point is an author in the
maximal connected component of the hypergraph), separated
into different subdomains (see Fig. 15).

If the computed rankings were (almost) the same, the
data would (almost) lie on the main diagonal; deviation from
this results in novel information conveyed by the random
walk on the hypergraph. Besides the region delimited by
q(∞)

i /max j q(∞)
j � 1/2 and p(∞)

i / max j p(∞)
j � 1/2, associ-

ated with authors having written a few articles (low degree)
and in small groups, we identify three interesting zones
associated (roughly speaking) with the squares: [1/2, 1] ×
[0, 1/2] (bottom right), [0, 1/2] × [1/2, 1] (top left), and
[1/2, 1] × [1/2, 1] (top right). Authors in the top right square
are top ranked in both processes; they have hence written
a large number of papers with different collaborators, i.e.,
large degree, but also they have participated in a relevant
number of papers with many coauthors, i.e., large hyperedge
size. Scholars in the bottom right square are better ranked by
the random walk on the network. This means that they have
written several papers but with a small number of coauthors
(see, e.g., the panel “physics” in Fig. 15). Finally, scholars
in the top left square behave in the opposite way: They have
participated in a small number of papers but written by many
authors (see, e.g., panels gr-qc, q-bio, and stat in Fig. 15).

APPENDIX F: THE UCI DATABASES

We gathered several databases from the UCI Machine
Learning Depository [58] involving multivariate, categorical,
and numerical variables. From each database we build a
hypergraph where nodes are the items and the hyperedges
represent their features. The data sets are manually annotated
and so the ground truth is available; they have been created
to provide a benchmark for machine learning tools, to test
their capacity to correctly assign each item to the right class
based on the associated features. To proceed in the analysis
and make the database uniform, we transform the categorical
variables into Boolean ones, for instance, in the case of
animals the hair feature becomes a 0-1 variable. Moreover,
to have hyperedges containing only 1’s and 0’s, we process
some of the available input; for instance, again in the case of
animals, the feature associated with the number of legs, i.e.,
0, 2, 4, 6, and 8, gives rise to five new Boolean features, i.e.,
has 0 legs, has 2 legs, has 4 legs, has 6 legs, and has 8 legs.

Items are the nodes of the hypergraph and the features
are the hyperedges; hence all items sharing the same feature
belong to the same hyperedge. The projected network is
obtained by making a complete clique from each hyperedge;
that is to create a link between all the nodes sharing the same
property. We observe that this can also be seen as the pro-
jection of the bipartite network where there are two kinds of
nodes, items and features, each one linked only to nodes of the
other kind. We thus compute the spectrum of the hypergraph
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FIG. 13. Degree distribution. We report for the arXiv subdomains the probability distribution of node degrees p(ki ) associated with the
maximal connected component. In all cases, we observe a broad distribution: Notice that the arXiv-econ has a relatively small number of
papers and authors because of its young age (2017–2018) and thus also that the maximal degree, i.e., number of papers written by an author,
is quite small.

Laplacian, the one proposed by Zhou et al. [46] with unitary
weights, the Bolla Laplacian [62], the Rodríguez Laplacian
[63], and the one for the projected network. In each case, we
rank eigenvalues in ascending order, 0 being the smallest one.
We then accordingly rename the associated left eigenvector
and use the first few to embed the data set in low-dimensional

Euclidean space. The results (see Table II) are presented using
quantitative ARI scores comparing the classification resulting
from k = 2 and k = 3 embedding with the ground truth; we
can observe that the classification based on our Laplacian
performs very well, exhibiting the largest ARI in all cases but
one (the zoo data set using a 3D embedding where the method

022308-14



RANDOM WALKS ON HYPERGRAPHS PHYSICAL REVIEW E 101, 022308 (2020)

100 10110-6

10-4

10-2

100

100 101 10210-4

10-3

10-2

10-1

100

100 10110-5

100

100 101 102
10-6

10-4

10-2

100

2 3 4 5
0

0.1

0.2

0.3

0.4

100 101 10210-5

100

astro-ph

econ

cond-mat

gr-qc

cs

100 101
10-6

10-4

10-2

100

math

100 101 10210-6

10-4

10-2

100

100 10110-4

10-3

10-2

10-1

100

stat

100 101 10210-4

10-3

10-2

10-1

100

nlin physics

100 10110-4

10-3

10-2

10-1

100

q-bio

100 101 10210-5

100
ex
lat
ph
th

hep

FIG. 14. Hyperedges size distribution. We report for the arXiv subdomains the probability distribution of hyperedges size p(|Eα|)
associated with the maximal connected component. In all the cases we observe a broad distribution, except for the arXiv-econ, for which
the number of papers and authors is relatively small because of its young age (2017–2018) and thus also the maximal hyperedge size, i.e.,
number of coauthors of a paper, is quite small. For this reason we report data in the form of a histogram.

by Zhou et al. works better) and in particular with large
data sets. We do not report the ARI values for the projected
networks because they are very low. Indeed, classification
performances based on the projected unweighted network are
significantly worse as those obtained when preserving the
high-order information.

1. Lenses database

The database contains several features of patients with
poor eyesight and aims to associating each one with the
appropriately chosen contact lens: hard contact lenses, soft
contact lenses, or should not be fitted with contact lenses.
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FIG. 15. Comparison of the rankings in the arXiv community. We report the scatter plot of the normalized rankings obtained with the
random walk on network q(∞)

i and the one computed using the random walk on hypergraphs p(∞)
i .

There are thus three classes. The following are the patients’
features.

(i) Age of the patient: (1) young, (2) prepresbyopic, or (3)
presbyopic.

(ii) Spectacle prescription: (1) myope or (2) hypermetrope.

(iii) Astigmatic: (1) no or (2) yes.
(iv) Tear production rate: (1) reduced or (2) normal.

All the features but the first one are already in a Boolean
format. We thus introduced three additional features.

(v) Is the patient young?: (1) yes or (2) no.
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TABLE II. The ARI coefficients. We report the ARI coefficients for k = 2 and k = 3 embedding, computed for several databases (first
column) using different models, our version of the random-walk Laplacian on hypergraph (fourth and fifth columns), the Zhou et al. Laplacian
[46] with unitary weights (sixth and seventh columns), the Bolla Laplacian [62] (eighth and ninth columns), and the Rodríguez Laplacian [63]
(tenth and eleventh columns). The second and third columns show some figures of the databases. The figures emphasized in boldface denote
the largest values of the ARI index for the different databases.

ARI L ARI Lz ARI Lb ARI Lr

Database Number of items Number of features k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

lenses 24 9 0.1427 0.1285 0.0323 −0.0357 −0.0221 0.0749 0.0370 0.1190
zoo 101 20 0.4350 0.5216 0.5074 0.5668 0.4647 0.5332 0.2650 0.5495
car evaluation 1728 6 0.0525 0.0552 0.0163 0.0075 0.0001 0.0108 0.0082 0.0143
mushroom 8124 105 0.6032 0.2852 0.1587 0.1314 0.1508 0.1406 0.1836 × 10−4 0.1836 × 10−4

(vi) Is the patient prepresbyopic?: (1) yes or (2) no.
(vii) Is the patient presbyopic?: (1) yes or (2) no.

In this way the total number of features is 9 and the number
of items is 24.

2. Zoo database

The zoo data set contains 101 animals, each one endowed
with 15 Boolean features, whose value is thus yes or not, e.g.,
hair, feathers, eggs, milk, airborne, aquatic, predator, toothed,
backbone, breathes, venomous, fins, tail, domestic, and cat
size. There is also a further class that reports on the number
of legs, i.e., 0, 2, 4, 6, and 8. To homogenize the data set we
decided to introduce five new Boolean features to replace the
last one, the new ones being has 0 legs, has 2 legs, has 4 legs,
has 6 legs, and has 8 legs. The data set is manually annotated;
hence for each animal we have the right class it belongs to, e.g.
mammal, bird, reptile, fish, amphibian, bug, and invertebrate.
In conclusion, we have 20 features and 7 classes.

3. Car evaluation database

The database contains 1728 cars, each one characterized
by 6 attributes.

(i) Buying price: very high, high, medium, or low.
(ii) Maintenance price: very high, high, medium, or low.
(iii) Number of doors: 2, 3, 4, 5, or more.
(iv) Persons to carry: 2, 4, or more.
(v) Size of luggage boot: small, medium, or big.
(vi) Estimated safety of the car: low, medium, or high.

The goal is to decide if a car is unacceptable, acceptable, good,
or very good. There are thus 4 classes and 21 features, once
we transform the previous 6 into Boolean ones.

4. Mushroom database

The data set contains 8124 gilled mushrooms in the Agar-
icus and Lepiota genera and each specimen is identified as
definitely edible, definitely poisonous, or of unknown edibility

and not recommended. This latter class was combined with

the poisonous one. There are thus 2 classes. Each mushroom
has the following 21 attributes.

(i) Cap shape: bell, conical, convex, flat, knobbed, or
sunken.

(ii) Cap surface: fibrous, grooves, scaly, or smooth.
(iii) Cap color: brown, buff, cinnamon, gray, green, pink,

purple, red, white, or yellow.
(iv) Bruises: bruises or no bruises.
(v) Odor: almond, anise, creosote, fishy, foul, musty, none,

pungent, or spicy.
(vi) Gill attachment: attached, descending, free, or notched.
(vii) Gill spacing: close, crowded, or distant.
(viii) Gill size: broad or narrow.
(ix) Gill color: black, brown, buff, chocolate, gray, green,

orange, pink, purple, red, white, or yellow.
(x) Stalk shape: enlarging or tapering.
(xi) Stalk surface above the ring: fibrous, scaly, silky, or

smooth.
(xii) Stalk surface below the ring: fibrous, scaly, silky, or

smooth.
(xiii) Stalk color above the ring: brown, buff, cinnamon,

gray, orange, pink, red, white, or yellow.
(xiv) Stalk color below the ring: brown, buff, cinnamon,

gray, orange, pink, red, white, or yellow.
(xv) Veil type: partial or universal.
(xvi) Veil color: brown, orange, white, or yellow.
(xvii) Ring number: none, one, or two.
(xviii) Ring type: cobwebby, evanescent, flaring, large,

none, pendant, sheathing, or zone.
(ixx) Spore print color: black, brown, buff, chocolate,

green, orange, purple, white, or yellow.
(xx) Population: abundant, clustered, numerous, scattered,

several, or solitary.
(xxi) Habitat: grasses, leaves, meadows, paths, urban,

waste, or woods.
Eventually, we end up with 105 features once they all are
transformed into Boolean ones.
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