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Collective decision making processes lie at the heart of many social, political, and economic challenges. The
classical voter model is a well-established conceptual model to study such processes. In this work, we define
a form of adaptive (or coevolutionary) voter model posed on a simplicial complex, i.e., on a certain class of
hypernetworks or hypergraphs. We use the persuasion rule along edges of the classical voter model and the
recently studied rewiring rule of edges towards like-minded nodes, and introduce a peer-pressure rule applied to
three nodes connected via a 2-simplex. This simplicial adaptive voter model is studied via numerical simulation.
We show that adding the effect of peer pressure to an adaptive voter model leaves its fragmentation transition, i.e.,
the transition upon varying the rewiring rate from a single majority state into a fragmented state of two different
opinion subgraphs, intact. Yet, above and below the fragmentation transition, we observe that the peer pressure
has substantial quantitative effects. It accelerates the transition to a single-opinion state below the transition and
also speeds up the system dynamics towards fragmentation above the transition. Furthermore, we quantify that
there is a multiscale hierarchy in the model leading to the depletion of 2-simplices, before the depletion of active
edges. This leads to the conjecture that many other dynamic network models on simplicial complexes may show
a similar behavior with respect to the sequential evolution of simplices of different dimensions.
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I. INTRODUCTION

Contact and voter processes are a key theme of many
disciplines including economics, epidemiology, mathematics,
physics, and social science [1]. One natural setting for these
processes is an underlying (complex) network, or graph, on
which a population of individuals interacts [2]. For example,
in the context of opinion formation, which we focus upon
here, two individuals, nodes, or vertices may hold different
opinions. For simplicity, let us assume that there are only two
opinions possible; e.g., we can only vote for two possible par-
ties. The classical voter model [3–5] describes the evolution
of opinion dynamics on a fixed network by a Markov chain,
either in discrete or continuous time; here we use the discrete-
time variant. At each time step, an edge is selected at random.
If both vertices hold the same opinion, nothing happens. If
they hold opposite opinions, then one adapts the opinion of the
other with equal probability. Studying the long-time behavior
of such a dynamical system is already highly nontrivial as
it does depend crucially on the network structure (see, e.g.,
[5–11]).

However, an important element of realism is missing in the
classical voter model. Social interactions in large populations
almost never take place on a fixed network. In fact, with
whom we are in contact may also depend upon the difference
or similarity of opinions [12]. This viewpoint has led to the
development of adaptive, or coevolutionary, network models,
in which there is interacting dynamics on and off the net-
work (see, e.g., [13–19]). More precisely, the most common
version of the adaptive voter model allows in addition to

persuasion events also for rewiring events, where edges be-
tween opposite-minded vertices are rewired to edges between
like-minded vertices. This makes the process much more
realistic as it allows one to study via a relatively simple model
complex self-adapting network structures. There is already a
substantial literature on adaptive voter models [20–27].

Yet, changes in communication and social network for-
mation are clear indications that not only binary interactions
matter in opinion formation [28,29]. These higher-order in-
teractions have recently started to appear as a new focus in
the analysis of complex network data sets [30]. Yet, there are
currently no available standard adaptive or coevolutionary dy-
namics models taking into account higher-order interactions,
i.e., allowing for full adaptivity of higher-order structures
(but see [31] for an adaptive swarm dynamics model with
fixed quadratic interactions on graphs, see [32,33] for work
on the majority voter model on fixed graphs, and see [34]
for a network generation model creating triangles via triadic
closure).

In this work, we propose and study a minimalistic ex-
tension of the adaptive voter model to include higher-order
interaction between individuals. This model takes into account
the well-known effect of peer pressure, which has been stud-
ied widely in many scientific fields [35–37]. For example, if
three individuals are connected in a friendship, and there is
a disagreement in opinions, it is very likely that the majority
opinion within the group of three prevails; i.e., a peer-pressure
effect has occurred. To model whether a fully connected sub-
graph of three vertices is in a close enough friendship or not,
we need an additional structure beyond vertices and edges.

2470-0045/2020/101(2)/022305(10) 022305-1 ©2020 American Physical Society

https://orcid.org/0000-0003-2948-1410
https://orcid.org/0000-0002-7063-6173
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.022305&domain=pdf&date_stamp=2020-02-12
https://doi.org/10.1103/PhysRevE.101.022305


LEONHARD HORSTMEYER AND CHRISTIAN KUEHN PHYSICAL REVIEW E 101, 022305 (2020)

A very general underlying structure would be to consider a
hypergraph [38] instead of a usual graph or network. Although
this is possible, we are looking to develop a minimal and
mathematically elegant formulation to capture the essential
effects of peer-pressure opinion dynamics. One natural choice
in this context is to restrict ourselves to simplicial complexes
[39], where a triangle of connected nodes is in close friendship
interaction if there is a 2-simplex between them in addition to
the 1-simplices (the edges) connecting them. Of course, the
model we develop here could be generalized very naturally
beyond 2-simplices but we postpone this more involved gen-
eralization to future work.

In this work, we define the simplicial adaptive voter model
and study its dynamics numerically by direct simulation.
On the one hand, our model turns out to preserve some
key features of the standard adaptive voter model regarding
metastability and diffusive absorption [40] into a single opin-
ion for low rewiring as well as a fragmentation transition for
high rewiring. The quantitative structure of these transitions
turns out to be significantly affected by peer pressure. In
particular, absorption occurs faster, and the fragmentation
transition occurs earlier with respect to the rewiring fre-
quency. From the viewpoint of opinion dynamics, this can
be interpreted in the sense that societies are driven faster
into mono-opinion or polarized or fragmented opinion states
if peer-pressure effects occur. These effects could evidently
be induced from social network interactions; i.e., there is a
potential danger that we are going to observe fragmented
or polarized societies much earlier and faster than classical
models would anticipate. Furthermore, we also find a highly
interesting mathematical effect in the simplicial adaptive voter
model. It does happen frequently that due to rewiring of edges,
even with replacement of lost simplices, there are eventually
no active simplices with different opinions left. This effect
tends to occur before the final asymptotic dynamics of the
voter process has been reached, i.e., when there are no active
edges left with different opinions. This leads to the conjecture
that dynamical models on simplicial complexes can display
a multiscale [41] hierarchy, where higher-order simplices
equilibrate before lower-order simplices do [40,42].

II. THE ADAPTIVE SIMPLEX VOTER MODEL

In this section, we introduce the variants of the voter
models in more detail. We are going to provide some basic
background and references and then define the simplicial
adaptive voter model.

Consider a simplicial 2-complex S , which consists of zero-
dimensional 0-simplices (or vertices) V , one-dimensional 1-
simplices (or edges) E , and two-dimensional 2-simplices T .
Recall that for a simplicial complex one requires that each
face of a simplex is again in the simplicial complex, and
that the nonempty intersection of two simplices is a face for
each of the two simplices. In our modeling context this makes
particular sense since a triadic friendship does generally also
contain friendships between the respective three individuals.
These friendships are represented by the faces of the 2-
simplex, which are the edges. We want to define a minimal
adaptive voter model on the space of simplicial complexes
with vertices labeled by two possible opinions. For notational

simplicity and convenience we allow for two states −1 and 1
and use the labels

◦ = vertex of state −1, and • = vertex of state 1.

The possible edges

are either state homogeneous (inactive) or state inhomoge-
neous (active). The 2-simplices can occur in any of the
following four configurations:

where the first and the last one are state and edge homoge-
neous, while the second and third are state and edge heteroge-
neous. Note that we use double edges to indicate a 2-simplex
in comparison to a triangle, i.e., a full subgraph on three
nodes, which is not part of a 2-simplex. The interior of a
2-simplex is color coded with current majority opinion within
the triangle.

Let us recall the classical adaptive voter model on a graph
(V, E ). At each time step an edge e ∈ E is chosen at random
and one of the following possibilities can then occur:

(C1a) Social avoidance: If e is active, then with proba-
bility p ∈ [0, 1] one of the vertices (chosen with equal prob-
ability) rewires the edge to a vertex with its own opinion,
which is chosen at random from the remaining vertices. We
can represent this rule graphically by

Note that the probability p is a very crucial parameter in the
adaptive voter model.

(C1b) Personal discussion: If e is active, then with proba-
bility 1 − p one of the two vertices of the edge e is chosen at
random with probability 1/2 and it adapts the opinion of the
other vertex:

(C2) Inert situation: If e is inactive, then nothing happens.
Of course, the rules imply a conservation law of the number

of edges as well as the number of vertices, which tends to be
helpful to reduce dimensionality, to simplify the mathemat-
ical analysis, and to benchmark computations by checking
whether the conservation laws hold. Next, we describe a
minimal model extension to include the role of 2-simplices,
which is also meaningful for applications. Consider the sim-
plicial complex (V, E, T ) and another probability q ∈ [0, 1],
that encodes the peer pressure. Again we select an edge e at
random at each event time step. Then we use the following
rules:

(R0) If e is not part of a 2-simplex, then the classical rules
apply.

(R1a) If e is part of at least one 2-simplex and of type

, then with probability p one of its vertices (chosen with
equal probability) rewires. This is like the classical rule (C1a),
except that all simplices attached to that edge break up, e.g.,
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and triangles are chosen randomly for conversion into their
respective 2-simplices,

to preserve the total number of simplices.
(R1b) If e is part of at least one 2-simplex and of type

, then with probability 1 − p persuasion is chosen. With
probability q a majority rule is implemented and with prob-
ability 1 − q the classical rule (C1b) is implemented. When
the majority rule applies, one of the simplices attached to e is
chosen and the majority persuades the minority with certainty

When the classical rule is chosen one of the two vertices of
e is chosen with equal probability to persuade the respective
other.

(R2) If e is part of at least one 2-simplex and not of type
it stays inert.

Rules (R0)–(R2) are a very natural extension of the clas-
sical adaptive voter model rules (C1) and (C2). Again, con-
servation of vertices and edges is guaranteed. The new rule
(R1) tries to conserve simplices as long as possible. However,
due to rewiring, one may eventually not have any triangles left
that can be converted into 2-simplices. A subsequent rewiring
event within a 2-simplex would therefore reduce the overall
content of 2-simplices and thus violate the conservation of
simplices. This leaves two natural options:

(1) We stop the simulation precisely at the first time when
the triangles have been depleted.

(2) We continue with the simulation despite the violation
of the simplex conservation until an absorbing state of the
Markov chain is reached.

We always indicate in our simulations which option we
have chosen. Our main new results are just focusing on using
the first option as it provides us with the regime where the
simplex density s is fixed and thus acts as a parameter of the
model.

III. RESULTS

Before describing our simulation results for (R0)–(R2), we
briefly recall the well-known results for the classical adaptive
voter model (C1)–(C2) on a graph.

A. The classical coevolving voter model

The classical coevolving voter model [27,40] corresponds
to q = 0. There one observes two different phases—the active
and the frozen phase—along the parameter p, separated by a
fragmentation transition at pc. In the active phase (p < pc) the
dynamics evolves towards a slow manifold of strictly positive
active edge densities and then follows a random walk along
this manifold towards a state with a giant component, all of
whose members are of the same state and all of whose active
edges have consequently vanished (cf. Fig. 1). In the frozen
phase (p > pc) the dynamics evolves towards a fragmented
state in which two disconnected and internally state-uniform
components exist. These two phases still exist in the simplicial
coevolving voter model. This shows that our model is really a
minimal extension as several main effects are preserved. We

FIG. 1. We show two sample paths of the dynamics in the (m, ρ )
space at a rewiring probability of p = 0.55: The black path shows
the scenario where peer pressure is absent, i.e., q = 0. The green
and cyan paths show the scenario where the peer pressure is at
q = 3/4, respectively before the depletion of triangles at time τ

and thereafter. The dotted grey lines are best fits of the paths to
the parametrized parabola ρ = ξp(1 − m2), respectively for q = 0
and q = 0.75 before the depletion of triangles. The horizontal lines
indicate the respective values of their apexes ξp. The size of the
network is N = 500, its mean degree is μ = 8, and the simplex-per-
edge degree is s = 0.2. There is an initial population of triangles,
such that the triangles-per-edge degree is t = 0.8.

are interested in the behavior of the transient and limiting
behavior as q is deformed away from zero. When q > 0 the
simplices start to have an effect, because the majority rule
inside a simplex is governed to some extent (i.e., via q > 0)
by the peer pressure.

It was observed in the classical case that it is helpful to
view the dynamics within a compact region under a suitable
projection [27]. To this end let σ+ and σ− denote the relative
densities of the two opinions ±1 across all nodes. Note that
0 � σ± � 1 and σ+ + σ− = 1. Then we denote the difference
in opinion, i.e., the majority disparity, by m = σ+ − σ−. In
a statistical physics context we can also draw the analogy
of m to the magnetization, e.g., when thinking of the clas-
sical Ising model. Furthermore, we denote the active link
density by ρ. It is very helpful to use the coarse-grained
(m, ρ) coordinates to understand the dynamics. The network
initially loses active links. Either all active links are depleted
directly without any of the opinions becoming dominant in
the process or the active links reach a quasistationary density
at a positive value. There it enters into a random walk on a
neighborhood of a parabolic-shaped region defined via the
relation ρ = ξp(1 − m2), for some constant ξp indexed by p.
In that case one opinion may gain the majority, as m deviates
from zero along that region. Which of these two scenarios
happens depends on whether p < pc or p > pc (see Fig. 1).
On the parabola the active edge density evolves much slower
than initially, which is why one may refer to this region as
the slow or inertial manifold. Eventually the random walk
hits either of the end points (m, ρ) = (±1, 0), corresponding
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to a giant component of a single opinion. The value ξp is
a characteristic p-dependent value of the slow manifold and
corresponds to the quasistationary density of active links at
vanishing majority disparity. In [27] they consider the time
average of all the quasistationary densities of surviving runs
ρsurv, which is then taken as the order parameter of the model;
however, ξp is another legitimate choice.

In this work, we perform a numerical study of the q-
deformed simplicial coevolving voter model. In the following
we describe the implementation and the results.

B. Initialization

First we initialize a random simplicial complex (V, E,S )
and assign an equal amount of +1 and −1 states to the vertices
at random. We want to construct this complex from the data
consisting of the number of vertices N , of edges E , and of
2-simplices S, or alternatively the mean degree μ = 2E/N
and the 2-simplices-per-edge degree s = 3S/E . An important
aspect of the dynamics of (R0)–(R2) is the simplex-preserving
transformation of a triangle into a 2-simplex whenever a 2-
simplex is destroyed by a rewiring action. Due to these trans-
formations one also requires an initial population of triangles
in the network, an amount T with triangles-per-edge degree
t = 3T/E , so that a significant fraction of edges should be part
of triangles. There are at least two ways to create a random
simplicial complex from the data (N, E , S, T ). One option is
to pick E edges uniformly at random from the list of (N

2 ) pos-
sible vertex pairs. However, there is a chance that not enough
triangles are created to declare S of them as 2-simplices and T
as triangles. Another method is to pick S + T triangles from
the (N

3 ) combinations of unordered nonrepeating three-tuples.
An amount S are declared 2-simplices and the rest, i.e., T ,
remain triangles. All edges that were thus created and are part
of triangles or 2-simplices become part of the edge set E . If
there are not yet E edges, ones picks uniformly at random the
remaining edges from vertex pairs that are not yet part of the
edge set and that will not produce further triangles. If more
than E edges were introduced already by forming triangles
and simplices, the method has failed. The first method tries
to reduce degree correlations and works well for large μ and
very low s. The second method aims to reduce correlations
between the number of simplices per edge at the cost of degree
correlations and is guaranteed to work when 3(S + T ) � E .
We choose the second method to allow for larger values of s.
In Appendix A we show the details of this method.

C. Fragmentation transition

For q > 0 the network dynamics also falls onto a parabola-
shaped region in (m, ρ) space, on which the active edges
evolve much slower. This is exemplified in Fig. 1, where we
compare two sample paths with peer pressures q = 0 and
q = 0.75 at a rewiring rate p = 0.55. However, the presence
of the peer pressure lowers the quasistationary densities. This
effect can be explained by the enhanced force to eradicate
active edges: Consider a heterogeneous 2-simplex in which
one node is of opinion +1 and two are of opinion −1. It
has two active edges and we suppose one is chosen for an
update. If the node with the minority opinion convinces the

FIG. 2. We compare the curves of the order parameter for various
peer pressures. The estimates of the order parameters ξp, i.e., the
apexes of the parabolic regions (cf. Fig. 1), are plotted for a range
of rewiring probabilities between zero and 1 and peer pressures q ∈
{0, 0.25, 0.5, 0.75}, which are respectively color coded with black,
red, blue, and green. Each data point is generated from 200 runs and
shows the mean and the standard deviations of the fitted values for ξp.
Here, the size of the network is N = 500, its mean degree is μ = 8,
and the simplices-per-edge degree is s = 0.2. We also have an initial
population of triangles such that the triangles-per-edge degree is
t = 0.8. However, the parameter t does not directly affect the curves
for ξp, but only the triangle depletion time.

neighbor with the majority opinion, then there are still two
active edges in the simplex. If, on the other hand, the majority
convinces the minority node, there are none. Thus, the higher
the probability of a majority rule, the higher the tendency to
reduce active edges. The same argument holds of course for
a 2-simplex with the opposite majority. This effect happens
irrespective of system size, edge, or 2-simplex densities, as
long as they are positive.

In Fig. 2 we show the order parameter curves for various
values of q with N = 500 at an edge-per-vertex degree μ = 8
and a simplices-per-edge degree s = 0.2. We observe that the
peer pressure shifts the critical threshold to lower rewiring
probabilities. This also follows from the previous observation.
If the active edge densities are reduced by the majority rule,
then the active edges will vanish at lower rewiring proba-
bilities. This means that the slow manifold is never reached
and consequently a fragmentation takes place rather than a
random walk towards any of the single-opinioned final states.
The variance of the order parameter increases towards the
fragmentation threshold, as is expected. We also note that a
higher initial simplices-per-edge degree s makes the effect
more pronounced.

Once the quasistationary states are reached, they can be
sampled and the quasistationary density ξp can be inferred.
This quantity does not depend on the initial triangles-per-
edge degree t directly. It may, however, happen that the
quasistationary parabola is not reached before all triangles are
depleted (in Fig. 1 it depletes after reaching the parabola).
In that case simplices also deplete and the simplex density
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FIG. 3. We show the average inverse depletion time of triangles
for rewiring probabilities in the entire range between zero and 1 and
for peer pressures q ∈ {0, 0.25, 0.5, 0.75}. The initial triangles-per-
edge degree t is 0.8 and all other parameters N , μ, and s are as above.

s cannot act as a constant of the motion. The depletion of
triangles prior to reaching the parabola happens when there
are not enough triangles initially, i.e., t is very low, or when
the system becomes very large. The latter reason is due
to a classical result about Erdős-Rényi graphs [43] with a
given mean degree μ, namely, that the number of triangles is
independent of the size N . Thus the triangles per edge decay as
N−1, rewirings will not create new triangles, and they deplete
potentially before reaching the parabola. In the next section
we therefore cover the triangle depletion in more detail.

D. Depletion of triangles

In the classical coevolving voter model there is a depletion
of active edges. One crucial feature of the coevolving voter
model on a simplicial complex is the depletion of the higher-
order structures, which in our case are the 2-simplices and the
triangles. Heterogeneous simplices are either homogenized
by the peer pressure or destroyed via rewiring. As simplices
are destroyed new ones are created by converting a randomly
chosen triangle into a 2-simplex. In some parameter regimes
this process depletes triangles at a higher rate than their
production via rewiring. Thus, in these regimes there is a finite
first triangle-depletion time τ , at which no triangles are left for
conversion into 2-simplices.

In Fig. 3 we show the average inverse triangle-depletion
time 〈τ−1〉 for a range of rewiring probabilities and peer
pressures at an initial triangles-per-edge degree of t = 0.8. A
value of zero implies an infinite depletion time, or one that is
as long as the duration of a simulation. Of course for p = 0, in
the absence of rewiring events, the depletion time is infinite.
As the rewiring probability is increased, we observe a rise of
〈τ−1〉 up to a point where a maximum is reached, succeeded
by a drop back to zero around the fragmentation threshold.
This qualitative behavior can be observed for all values of q,
with the additional effect that 〈τ−1〉 is lowered as q becomes
larger. As the initial triangles-per-edge degree t is increased,

the depletion times naturally become longer. In the following
we explain the behavior of the 〈τ−1〉 curves.

Our argument is based on the net decay of triangles, i.e.,
the expected difference between their production and their
destruction. The only way that a destruction or production
of triangles can occur is by way of rewiring events. We also
remark that the chance for a rewiring to turn a triplet of
vertices with two edges into a triangle with three edges rises as
the mean degree of the network increases. If at the same time
the rewiring link, prior to its rewiring, has a lower probability
of being part of a triangle, then there is a net production of
triangles.

With this in mind we can explain both the rise and the fall
of the curves as p is increased. First the decline: When p is
getting close to the fragmentation transition, the density of
active edges ρ decreases. Consequently, the density of ++
links (−− links), say, ρ+ (ρ−), is higher than in uncorrelated
networks and so is the mean degree μ± = 2ρ±E/N± of the
subgraphs with +1 states (−1 states), where N± are their
respective sizes. An approximation of the respective mean
degrees μ± via the simplifying assumption ρ+/ρ− ≈ N2

+/N2
−,

corresponding to an uncorrelated scattering of edges on the
two components, and the identity Nm = N+ − N− yields
μ± ≈ μ(1 − ρ)(1 ∓ m) to first order in m. See Appendix B
for a derivation. This relation supports the intuition that the
minority component is becoming more densely connected as
active edges are depleting and |m| is increasing. Therefore,
as the active link density decreases, a rewiring event has an
increasing probability to produce a triangle rather than to
destroy one, given the sparseness of active edges. This effect
is enhanced as p is approaching the fragmentation transition
with low quasistationary values of ρ. There, the production
may compete with the loss leading to a positive stationary
abundance of triangles and a diverging triangle depletion time
τ . This effect is of course more pronounced for higher peer
pressures as they tend to reduce ρ even further.

We now argue for the initial rise of 〈τ−1〉. As long as
triangles are not produced to a level that compensates their
loss, as it happens close to the transition, there is an expo-
nential depletion of them after a finite time. The rate of this
depletion depends on the rewiring probability. The higher
p, the faster they deplete. This effect is opposing the one
mentioned before. One may think of it as follows: The values
of ρ and m determine how many triangles plus simplex-
declared triangles, i.e., T + S, the network can maintain on
average. The arrival at that quasistationary state happens at
an exponential rate that is of course proportional to p. If,
however, that state can only support less than an amount S
of triangles and 2-simplices, then the triangles will die very
likely and will do so much quicker when p is higher. The
effect of peer pressure is that ρ is decreased and the majority
disparity in the network is enhanced. Both of these imply an
increased production of triangles and thus a longer triangle
depletion time.

Finally we also note that beyond the fragmentation thresh-
old the dynamics hits the absorbing fragmented ρ = 0 state
directly without entering the parabolic quasistationary re-
gion. Therefore, it hits an absorbing state ever quicker as
the rewiring probability p takes ever larger values. In that
regime one cannot make very meaningful statements about the
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triangle depletion time τ , since it is bounded by the extinction
time of the active edges.

We now discuss some direct consequences of the triangle
depletion. The conservation of simplices is lost once there
are no convertible triangles left. This implies also that the
simplices-per-edge degree s decreases and in turn results in a
weakening net effect of the peer pressure up to a point, where
possibly all 2-simplices are gone. Thus, s ceases to be a fixed
parameter of the model. In order to examine the pure effect
of the peer pressure q at a given parameter set (N, μ, s) we
therefore measure quantities only as long as the number of
simplices is conserved, i.e., until the triangle depletion time τ .

Consider a rewiring rate below the fragmentation transi-
tion, i.e., p < pc. If τ is less than the time at which the
slow manifold is reached, then one cannot take unbiased
data from the slow manifold, as 2-simplices have already
diminished. When triangles are depleted after reaching the
slow manifold, but before reaching an absorbing state, then
one may take unbiased data from the slow manifold for times
less than τ . These data are suitable for computing the apex ξp

of the parabola that is fitted through the sample path in the
(m, ρ) plane (cf. Fig. 1). It is not suitable for extracting the
average quasistationary active link density of surviving runs,
ρsurv, because systematic biases towards higher values would
be introduced when data are only taken until some time τ .
Consequently we plot ξp rather than ρsurv.

E. Depletion of active edges

There is a fast evolution before the dynamics reaches either
the slow parabolic manifold or a fragmented state. During this
fast evolution active edges are converted into inactive edges
by persuasion until the quasistationary density is reached. It is
therefore expected that a higher peer pressure leads to a faster
initial depletion of active edges. The expected initial depletion
rate of active edges is given by〈

d

dt

∣∣∣∣
0

ρt

〉
.

In our simulations we estimate the derivative dρ/dt |0 dis-
cretely via (ρs − ρ0)/s for low s. For a given initialization
of the simplicial complex we perform 250 runs and compute
the average slope at zero for that run. This is repeated for
various initializations with the same parameter settings and
then averaged to estimate the expected value.

In Fig. 4 we plot the average initial depletion rate of active
edges for various values of p and q. Higher peer pressures
enhance the depletion rate, as expected. This effect is dimin-
ished for higher rewiring rates up to the point p = 1 where
persuasion does not exist anymore and the peer pressure has
no effect.

F. Diffusion and drift velocity

We have seen that the peer pressure enhances the depletion
rate of active edges during the fast dynamics either towards
fragmentation, in the regime p > pc, or before reaching the
slow manifold, for p < pc. Here, we study the transient be-
havior towards the absorbing states. As can be seen in Fig. 1
the parabolic region is not as well explored for q = 0.75 as

FIG. 4. We show the average initial depletion rate of active edges
for rewiring probabilities in the entire range between zero and 1 and
for peer pressures q ∈ {0, 0.25, 0.5, 0.75}. All other parameters, i.e.,
N , μ, and s, are as above.

it is for q = 0. For q = 0.75 it can be seen often, as in the
figure, that only one side of the parabola is visited, indicating
that a majority grows once a bias towards one opinion exists.
We investigate this behavior by looking at the average rate
of change of the majority disparity and its squared value,
which are proxies for drift and diffusion respectively. A pure
Brownian motion has a vanishing drift. Therefore, we are
interested in the extent to which the process is not like a
pure Brownian motion. A process with a higher radial drift
is expected to hit the absorbing states at m = ±1 earlier. We
do not measure the hitting times directly, however, because
they may be larger than τ cf. Sec. III D).

Consider a sample path (mt , ρt ) [44]. The mean rate of
change of the squared distance from m = 0 at time s is
given by 〈

d

dt

∣∣∣∣
s

m2
t

〉
. (1)

We are interested in this quantity not at any arbitrary point,
but precisely as the dynamics is on the slow manifold and
has vanishing m. Hence, we consider this average, conditional
on the event that ms = 0 for some time s at which the slow
manifold has been reached. For a one-dimensional Brownian
motion along the m direction this quantity would be twice
the diffusion constant D. In our simulations we measure it as
follows. First we evolve the dynamics until the quasistationary
parabolic region is reached. After that, whenever the dynamics
passes through the m = 0 line we approximate the average
rate of change (1) via finite differences at that time instance.
This is then repeated for many runs and initializations, keep-
ing the parameters fixed.

In Fig. 5 we show how the diffusion (1) changes as the
rewiring and peer pressure are varied. The first observation
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FIG. 5. This plot shows the diffusivity of the dynamics along
the direction of m at m = 0. It is measured in terms of the mean
rate of change of m2 for rewiring probabilities in the range between
zero and 1 and for peer pressures q ∈ {0, 0.25, 0.5, 0.75}. All other
parameters, i.e., N , μ, s, and t , are as above.

is that the peer pressure does not influence the diffusion
very much. There is even a slight tendency towards lower
diffusions for higher peer pressures. As the rewiring proba-
bility increases, the diffusion decreases linearly for all peer
pressures. There are two reasons that account for this effect,
both of which are based on the fact that only persuasion can
change m. First of all, given a certain amount of active edges
one expects fewer changes in m for lower persuasion prob-
abilities, i.e., higher rewiring probabilities. Second, higher
rewiring probabilities decrease the quasistationary level of
active edges, so that persuasions cannot yield as much change
in majority disparity.

We also look at the average drift velocity of the majority
disparity. Since the definition of the dynamics and hence its
probability laws are invariant with respect to the discrete sym-
metry of interchanging the opinions, we expect on average no
drift velocity at m = 0. Therefore, we study the average drift
velocity at some nonzero majority disparity m+ �= 0:〈

d

dt

∣∣∣∣
s

mt

〉
,

where s is such that ms = m+. We expect that the drift
velocities at −m+ should be minus the drift at m+, in the sense
of their probability laws. This is due to the discrete reflection
symmetry. Hence the quantity of interested is the radial drift
velocity, pointing away from the origin.

In Fig. 6 we plot the average radial drift velocity at m+ =
0.2. We find that there is no drift velocity at q = 0. The
majority disparity in the classical coevolving voter model is
therefore more like a pure diffusion process. When q > 0 we
do, however, observe a strong deviation. The higher the peer
pressure q the stronger is the average drift velocity towards
the extreme points m = ±1. This effect can be explained by
the ratio of heterogeneous 2-simplices. When mt = m+ there

are more -simplices than -simplices. Thus the majority rule

FIG. 6. We show the average radial drift velocity of m at m =
±0.2 for rewiring probabilities in the range between zero and 1 and
for peer pressures q ∈ {0, 0.25, 0.5, 0.75}. There are no data points
for rewiring rates above the fragmentation transition because the
dynamics does not enter the slow manifold on which it can explore
the regions of higher majority disparity m. All other parameters, i.e.,
N , μ, s, and t , are as above.

tends to further increase the amount of nodes. The argument
holds mutatis mutandis for mt = −m+. These drifts also
explain why it becomes more unlikely to change majorities
once there is a bias.

In summary, we also see in the slow regime on the
parabolic-shaped manifold a similar effect as in the fast
regime. The peer pressure enhances the drift towards a single
majority opinion; i.e., polarization is enhanced.

IV. CONCLUSIONS AND OUTLOOK

We have shown how to naturally (from the viewpoint of
applications) and minimally (from the mathematical perspec-
tive) extend the adaptive voter model to a model on simplicial
complexes. It seems now plausible as further steps to also ex-
tend other adaptive contact processes to simplicial complexes,
e.g., epidemic spreading models. Then we demonstrated that
the main structural features of the adaptive voter model remain
in the simplicial version, which still yields a fragmentation
transition upon varying the rewiring rate. Yet, the quantitative
properties are changed and we observe faster transitions to
a single-opinion absorbing state or towards a fragmented
two-opinion state. This is in line with heuristic arguments
that peer-pressure effects may lead to polarization; in fact,
our model seems to be one of the simplest mathematical
manifestations of this effect. We expect that similar effects do
occur in far more complicated models involving very large-
scale higher-order structures such as interactions on social
networks. Furthermore, we found that the simplicial adaptive
voter model often displays multiple time scales, where the
higher-order 2-simplices die out out before the active edges
decay to zero. This multiscale effect leads one to the con-
jecture that simplicial dynamics models could be analyzed
order-by-order with respect to the dimension of the simplices.
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APPENDIX A: ALGORITHM FOR THE INITIALIZATION
OF A RANDOM SIMPLICIAL COMPLEX

Let there be N vertices. We would like to draw uniformly
at random T distinct elements from the set of all unordered
K-tuples without repetition. For the purpose of this paper we
are randomly sampling triangles from the vertex list, so that
K = 3, but we expose the method more generally. This set has
cardinality (N

K ). Storing such a list is prohibitively large when
N is large and K larger than 2 and smaller than N − 1. Thus
it is advantageous to find an algorithm that needs less storage
complexity. The idea of the algorithm is to take a natural
number n and find the corresponding K-tuple in colex, which
is one of the two canonical orderings defined on unordered
tuples without repetitions. We recall that u = (u1, u2, . . . , uK )
is less than v = (v1, v2, . . . , vK ) in colex [45] if and only
if uk < vk for the last k where uk and vk are different. This
mapping from n 	→ (u1, u2, . . . , uK ) is done by iteratively
determining the entries, starting from the last one. Suppose
the (k + 1)th entry uk+1 was found to be i + 1, where
0 � i � (N − 1). Then we want to determine the kth entry.
To this end we define Fi,k as the number of tuples whose kth
entry, uk , equals i, with all entries above the kth kept fixed,
since they are already determined. It is given by Fi,k = ( i − 1

k − 1),
because we have to fill k − 1 slots from a set of j − 1
numbers. The total number of K-tuples whose (k + 1)th entry
is known to be uk+1 = i + 1 is denoted by Gi,k . It is simply
given by Gi,k = ∑i

�=k F�,k , which sums up all the tuples
whose kth entry is less than or equal to i, again keeping higher
entries fixed. In other words, Gi,k = Fk,k + Fk+1,k + · · · + Fi,k

and clearly there cannot be any summands where � < k in
colex. One may find F and G iteratively,

Fi+1,k = Fi,k
i

i − k + 1
,

Gi+1,k = Gi,k + Fi,k,

where we use the hockey-stick identity for binomial
coefficients.

The last entry, uK , is easy to determine as follows: We
note that the first GK,K tuples end with K . There is literally
only one, namely, (1, 2, 3, . . . , K ). The first GK+1,K tuples end
with K or K + 1 and there are 1 + K of them. The first Gj,K

tuples end with any number smaller than or equal to j. Thus
we find uK by searching for j such that Gj,K � n > Gj−1,K ,
or equivalently min{ j : Gj,K � n}. Now that we know uK ,
our problem reduces to finding the right K-tuple in the range
between GuK −1,K and GuK ,K . This is equivalent to finding the
(K − 1)-tuple at position n′ = n − GuK −1,K , with the slight
modification that these tuples must be taken from the smaller
set {1, . . . , uK − 1}. So now there are Gj,K−1 such tuples
whose (K − 1)th entry is j or less. We determine the (K −

1)th entry again by finding the minimal j such that Gj,K � n′.
We repeat this procedure until all entries have been deter-
mined. So in general we have the following iterative algorithm
that uses an auxiliary set of variables n = (n1, n2, . . . , nK ),
initialized as nK = n:

uk = min{ j : nk � Gj,k},
nk−1 = nk − Guk−1,k .

We also define Gk−1,k := 0 to resolve the problem that arises
when uk = k.

APPENDIX B: APPROXIMATION OF THE
SUBGRAPH-DEGREES μ± IN THE (m, ρ) SPACE

Let G be a graph with N vertices, E edges, and mean degree
μ = 2E/N . Its nodes are either in the +1 or −1 state. Let
G± ⊆ G be the subgraph consisting of all the nodes in the
±1 states and their links. We denote the mean degrees of G±
by μ±. We also define three types of links (++), (−−), and
(+−) and their respective densities ρ+, ρ−, and ρ as a fraction
of E . Thus we have

ρ+ + ρ− + ρ = 1. (B1)

The numbers of nodes in state +1 or −1 are N+ or N− and
their respective fractions of the entire set of vertices is denoted
by σ+ = N+/N or σ− = N−/N . Their difference is denoted by
m = σ+ − σ−. Therefore, N± = N

2 (1 ± m), which can be used
to obtain the following expression for the mean degree in the
subgraphs G± with E± = ρ±E edges:

μ± := 2ρ±E/N± = 4E

N (1 ± m)
ρ± = 2μ

1 ± m
ρ±. (B2)

So far no assumptions were made about the graph. We would
like to approximate the link densities in terms of the effective
coordinates m and ρ. When m = 0 a reasonable assumption is
ρ+ = ρ− due to symmetry, which implies by (B1) that ρ± =
1
2 (1 − ρ) and consequently that

μ±|m=0 = μ(1 − ρ) (B3)

at m = 0. One may obtain an approximation for the case when
m deviates slightly from zero by requiring that it satisfies (B3)
for m → 0. A first approximation is obtained by making a
decorrelation assumption. Suppose we throw L links onto the
vertex clouds of G±, whose total amount of vertex pairs are
P± = 1

2 N±(N± − 1), respectively. Thus, on average there will
be a total of Lρ± = L P±/(P− + P+) links in the respective
subgraphs and their expected ratio becomes

ρ+
ρ−

= N+(N+ − 1)

N−(N− − 1)
≈ N2

+
N2−

. (B4)

Consequently we can plug this approximation into (B1) and
then (B2) and expand the resulting expression to first order
in m,

μ± ≈ 2μ

1 ± m

1 − ρ

1 + (1∓m)2

(1±m)2

= μ(1 − ρ)(1 ∓ m) + O(m2),

which also satisfies limm→0 μ± = μ(1 − ρ) and resembles
(B3). Thus for small m  1 we can say that the minority
component is getting more densely connected, the higher m
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deviates from zero and the closer ρ gets to zero. When one of
the few active edges rewires in this regime, it will be rewired
to one of the two subgraphs G± whose higher link densities

enhance the chance for triangle production and reduce the
chance of triangle destruction due to the sparseness of active
links.
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K-tuple û = (u1, u2, . . . , uK ) where uk < u� if and only if k <

�. This is then a unique representation of the unordered tuple u
in the realm of ordered tuples, which is of course a much larger
space. In abuse of notation we denote the representation û of u
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022305-10

https://doi.org/10.1016/j.physd.2013.07.003
https://doi.org/10.1016/j.physd.2013.07.003
https://doi.org/10.1016/j.physd.2013.07.003
https://doi.org/10.1016/j.physd.2013.07.003
https://doi.org/10.1051/mmnp/2019015
https://doi.org/10.1051/mmnp/2019015
https://doi.org/10.1051/mmnp/2019015
https://doi.org/10.1051/mmnp/2019015

