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Description of spreading dynamics by microscopic network models and
macroscopic branching processes can differ due to coalescence
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Spreading processes are conventionally monitored on a macroscopic level by counting the number of
incidences over time. The spreading process can then be modeled either on the microscopic level, assuming an
underlying interaction network, or directly on the macroscopic level, assuming that microscopic contributions
are negligible. The macroscopic characteristics of both descriptions are commonly assumed to be identical. In
this work we show that these characteristics of microscopic and macroscopic descriptions can be different due
to coalescence, i.e., a node being activated at the same time by multiple sources. In particular, we consider
a (microscopic) branching network (probabilistic cellular automaton) with annealed connectivity disorder,
record the macroscopic activity, and then approximate this activity by a (macroscopic) branching process. In
this framework we analytically calculate the effect of coalescence on the collective dynamics. We show that
coalescence leads to a universal nonlinear scaling function for the conditional expectation value of successive
network activity. This allows us to quantify the difference between the microscopic model parameter and
established estimates of the macroscopic branching parameter. To overcome this difference, we propose a

nonlinear estimator that correctly infers the microscopic model parameter for all system sizes.
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I. INTRODUCTION

A multitude of spreading processes are influencing our
lives. Examples include the spread of news, opinions, or
rumors [1,2], the outbreak of diseases [3,4], the escalation of
economic crises [5], and the propagation of spiking activity in
neural systems [6,7]. Mathematically, the unifying feature of
these processes is that some signal (infection, information, or
spike) spreads through a system. Characterizing the collective
dynamics of these processes, e.g., in terms of the average
spreading rate (here described by the branching parameter 71),
is of general interest to many fields.

Spreading can be modeled on a microscopic node-to-node
level, which requires making assumptions about the interac-
tion graph and the rules about how a signal may propagate
from one node to the next. This typically involves stochastic
processes, such as (probabilistic) cellular automata [8—10],
contact processes [10,11], or interacting Hawkes processes
[12]. In particular, infectious diseases have been modeled
by so-called susceptible-infectious models or generalizations
thereof [13], whereas spike propagation in neural networks
has been modeled by so-called branching networks [14-22],
Hawkes processes [23-25], or probabilistic integrate-and-fire
networks [26,27]. The advantage of these microscopic models
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is that one can directly study the effect of network topology,
such as country maps [28-30], daily transportation patterns
[31], social links [32,33], or connectomes [34], and even time-
varying networks, such as diffusive motion of nodes [35].

Microscopic spreading models can be classified into
independent-spreading models and dependent-spreading
models. For independent-spreading models, each link
is associated with an independent spreading probability,
resulting in an overall multiplicative probability to activate
a node. The prime example for independent spreading is
a probabilistic cellular automaton [9,10]. For dependent-
spreading models, the activation of a node is determined
by a function of the states of all neighboring nodes, e.g.,
threshold models [36] or integrate-and-fire models [26]. In
this work we focus on the class of independent-spreading
models represented by the branching network, a probabilistic
cellular automaton [9,15] in the universality class of directed
bond percolation [10,37].

Alternatively, spreading can be modeled on a macroscopic
population level, assuming either that there is no explicit
network or that network heterogeneity is averaged out. Macro-
scopic models describe the development of population or net-
work activity without assuming a specific network topology,
e.g., modeling the total number of infected people at each
time step by simply assuming a general statistics of how
each infected person spreads the disease. Classical examples
include the branching process [6], Kesten process [38], and
other processes of the autoregressive AR(n) family. These
processes are frequently used to describe spreading dynamics
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in real-world systems, because parameter estimation for them
has been well established. For example, branching processes
have been used to explain data in neuroscience [21,39-42],
epidemics [21,43], and economics [44].

Microscopic and macroscopic spreading models can how-
ever be quite different: Spreading processes in microscopic
models (independent spreading) can interact with each other
(e.g., when a node has already been activated by another
node), while in macroscopic models this is typically not the
case (e.g., in the branching process each element generates
new descendants independently of the number of descendants
of the other elements). As one of the consequences, the
network activity of microscopic spreading models is upper
bounded by the network size, whereas the population activity
of macroscopic spreading models can in principle diverge. On
the other hand, one can find equivalent behavior in the limit
of low external and internal activation. As a result, macro-
scopic approximations have been used to describe typical
behavior of microscopic models [14,21,22,43], in part because
such approximations offer the advantage of simple analytical
tractability. However, if one wants to model a real system, one
has to carefully weight the assumptions one has to make in
either microscopic or macroscopic models.

In this work we address the following question: Given that
a real system (and its measured macroscopic data) can be
approximated by a microscopic or a macroscopic model, what
is the relation between the resulting macroscopic dynamics
of both models? To approach this question (Sec. II), we
simplify the problem by generating the data (network activity)
directly with the microscopic model (branching network),
thereby avoiding assumptions about the real system and how
to model this with a microscopic model (Fig. 1). We can
thus focus on the approximations in the macroscopic model
(branching process). We reveal analytically and numerically
that conventional estimators of the branching parameter can
be biased, i.e., estimates do not agree with the microscopic
model parameter (Secs. III A-III D). The reason for this bias
is coalescence (the simultaneous activation of one node by
multiple sources). We propose a nonlinear estimator that
correctly infers the microscopic model parameter from the
network activity (Sec. IITE). Finally, we discuss our results
with implications for general spreading processes (Sec. IV).

II. MODEL AND METHODS

We use branching networks as a microscopic model and
generate macroscopic observables (network activity). We then
approximate these observables by a branching process as
a macroscopic model and compare the spreading rates be-
tween the microscopic model and macroscopic approxima-
tion (Fig. 1). In this framework, the spreading rate is called
branching parameter m. To distinguish parameters on the
microscopic and macroscopic levels, we denote macroscopic
parameters by a circumflex, e.g., 7.

A. Branching network

Consider a network with N nodes. Time progresses in
discrete time steps At (here Ar = 1). Each node i can be
either silent (sf = 0) or active (si = 1); thus the (macroscopic)
network activity is given by A, = Zflzl st. Activation of a

" Real System
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/Microscopic Model ‘? fMacroscopic Model
e.g., Branching Network . e.g., Branching-Process
(m,h, N) > (i, H)
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FIG. 1. Illustration of the question we address and how we
approach it. The question is, given that a real system, for which
we measure data (e.g., the number of incidences per time step), can
be approximated by a microscopic model (assuming an underlying
interaction network with update rules that produce incidences) or a
macroscopic model (on the level of the number of incidences), what
is the relation between the resulting macroscopic dynamics of both
models? The approach is as follows. We use a branching network
with annealed connectivity disorder to generate population activity.
Then we approximate this activity by a branching process, creating a
macroscopic description. Thereby, we avoid systematic errors from
(1) an unknown real system and (ii) required approximations for the
network model. We can thus focus on different branching-process
approximations (/igq, M r, and g ; see Sec. I1 C) and can compare
the resulting macroscopic dynamics of both models.

node can be induced in two ways. First, internally, a node
i can be activated with probability w”/ (connection weight)
by another node j that was active in the previous time step.
The connection weight determines the microscopic dynamics.
Second, a node can be activated by an external Poisson input
if one or more inputs arrive within A¢. For a Poisson process
of rate h, the probability that no input arrives is exp(—hAt)
such that the activation probability through external input is
A(h) = 1 — exp(—hAt). The networkwide external input rate
is then H = hN. An activated node transitions back from
s; =1tos] +1 = 0in the next time step unless activated again,
which corresponds to a refractory period smaller than At in
the modeling of neuronal activity.

The microscopic dynamics is controlled by the branching
parameter m, which quantifies that a single activation of any
node causes on average m active nodes in the next time step.
The simplest way to achieve this is to set connection weights
w'/ = £ if i is one of the K/ outgoing connections from
node j and w’/ = 0 otherwise. We consider here the mean-
field scenario of annealed connectivity disorder: Connections
between nodes are redrawn in each step with probability K/N
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and nodes are activated internally with probability w = m/K.
For K sufficiently large, this is mathematically equivalent to
an all-to-all connected network with w” = w = %, including
potential self-coupling. This mean-field connectivity ignores
spatial heterogeneity [45], but our results can be adapted to
mean-field approximations for quenched disorder over static
random (Erd&s-Rényi-type) networks [15].

A naive implementation of our model dynamics on an all-
to-all connected network is computationally very expensive.
This is because for each active node we would have to draw N
random numbers to check for internal activation. To reduce
numerical complexity, we note that in the mean-field case
the number of nodes k activated by a single active node is
distributed binomially P(k) = (IZ) wk(1 — w)¥*, Instead of
going over all N connected nodes, we can thus first draw
a number k from the binomial distribution and then draw
k random nodes without repetitions to be activated. This
procedure is significantly more efficient, especially for large
system sizes. For our finite-size scaling analysis we simulated
networks up to size N = 2?° &~ 10° for 107 times steps.

B. Branching process

The branching process [6] is a discrete-time stochastic
Markov process: If at time ¢ there are A, elements, then at
time ¢t + 1 each of these elements generates a random integer
number of descendants x!. If this internal generation of de-
scendants is complemented by random external input y,, one
speaks about a branching process with immigration [46,47], or
a driven branching process. The number of elements at time
t 4 1 can be written as

A
A=Y x+y. 1)
i=1

Many results about branching processes only depend on the
average number of internally generated elements 7 = (x/),
called the branching parameter, and on the average number
of externally generated elements y per time step. In order to
compare with the branching network, we identify $ = H At,
where H is the total rate of the Poisson-distributed external
input. Recall that we use /i to distinguish parameters on the
macroscopic level from those at a microscopic level. Using
the Markovian nature of branching processes, we describe the
time evolution of population activity A; by the conditional
expectation value

(Ary11As) = mA; + HAt. )

The branching process thus belongs to the class of processes
with an autoregressive representation.

The population activity A of a driven branching process
can be calculated in a mean-field approximation. Assum-
ing a stationary population activity (7z < 1), we can neglect
fluctuations and only consider the expectation value over
Eq. (2). The law of total expectation then implies that A =
(Ais11A;) = MmA + H At, where the expectation value of the
population activity is the population rate A = (A;). Solving for
the population rate leads to

A

HAt

A= —,
1—m

3)

which is only well defined for /1 < 1 and diverges for iz — 1.

C. Branching-process approximation

The framework of a branching process can be used to
infer the branching parameter as a proxy for the spreading
dynamics from a time series of network activity {A,}. This
is clearly an approximation, because (i) the network sets an
upper bound on A; and (ii) nodes interact with each other.
Within this approximation there are yet different possible
approaches. We present three in the following.

The first and easiest approach we consider is to estimate
the branching parameter via Eq. (3). Assuming that the net-
workwide external input rate is known from the microscopic
dynamics (1-7 = hN), one can estimate the branching param-
eter from the expectation value of the network rate (A) (ER
denotes the expected rate) as

m 1 A 4
ER @)
This clearly neglects fluctuations and will therefore be biased
for m &~ 1 where fluctuations are large. In addition, it is
obviously upper bounded, igg < 1.

The second approach we consider is more elaborate; it
is based on the relationship for the conditional expectation
value (2). Assuming a separation of timescales (STS), i.e.,
that no external activation is delivered while the network is
active, one can neglect A and define the expectation value of
the quotient of subsequent network activity (EQ denotes the
expected quotient)

At
NEQ = . 5
"EQ < Al >A,>O ( )

This estimator has been widely applied to neural data
[14,20,48]. However, as we will show in more detail later, it is
strongly biased for networks subject to a non-negligible input
rate (H > 0), as noted before [20].

The third approach we consider is again based on the
conditional expectation value (2), but explicitly considers the
presence of an external input rate. In fact, it is well known
that the first moments of a driven branching process can be
estimated with a linear regression [6,21,49] (LR denotes linear
regression) as
g = Cov[A;11, Ar]

Var[A;]

N 1
Hig = E((Al-‘rl) — MLR(A;)). @)

, (6)

Besides the additional benefit of simultaneously estimating
the input rate, this estimator can be extended to be invariant
to subsampling, i.e., when activity is recorded from only
(small) parts of the network [21]. For stationary activity
(Ar) = (Arr1) = A, Eq. (6) simplifies to

o AA) — A

MR = WA (&)

We define here the estimators in terms of expectation

values (O,), formally defined for infinitely long time series
of some observable ;. For a finite time series the expectation
values themselves have to be estimated by the time average

T

- 1

O = ;Z}a — (0. ©
t=
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FIG. 2. Tllustration of activity propagation (black circles) and coalescence in branching networks. Different activity propagation pathways
converge onto each other, with the consequence that a node is activated by two or more sources. We distinguish internal coalescence (red
squares), where two or more sources from within the network activate the same target, and external coalescence (blue diamond), where
external input (denoted by black lightning bolts) contributes. The y axis denotes different nodes and the x axis time in discrete steps. Time

steps without any activity are white; the others are gray.

III. RESULTS

A. Analytic results on effects of coalescence in
driven branching networks

During spreading dynamics on a finite network, the activ-
ities of different nodes may interfere with each other. With
increasing network activity, the probability increases that a
node receives activation from two or more nodes in the same
time step. One can call such multiple activations of a node
coalescence [37] because different branches of the spreading
process coalesce (Fig. 2). We further distinguish between
internal coalescence, where a node gets activated by two or
more nodes from within the network, and external coales-
cence, where a node gets additionally activated by external
input.

As a consequence of coalescence, the effective number of
internally activated nodes, or in other words the (microscopic)
effective branching parameter meg(A;), will be diminished.
One may expect that in the limit N — oo the effective branch-
ing parameter approaches the model branching parameter, but
we will show that this is not always the case. For driven
branching networks, one can imagine that the external input
initiates independent spreading processes. The initiation can
cause external coalescence with the present processes. In ad-
dition, the individual spreading processes interact in the sense
of a neutral theory [50], which leads to internal coalescence.

In order to derive the effective branching parameter, we
first derive the probability that a given node i is activated. Due
to potential coalescence this is not straightforward, but we can
compute the probability pi™ that node i is not activated by
node j. For generality, we consider the annealed disorder with
connection selection probability K/N and activation probabil-
ity m/K. Then p = (1 — K/N) + (K/N)(1 —m/K) =1 —
m/N, which is independent of K. Also, node i is not activated
by the external input with probability pSX' =1 — A(h). Con-
sidering that there are A, active nodes from which node i can
be activated, the probability of activating node i is

P[si=1|A,N,m,h] =1— (p?at)f\,mt

| — (1 — %)A‘[l — ()] (10)

Since this holds for any node in the network, we can gen-
eralize P[s; = 1|A,, N, m, h] = p(A,;). Then the probability

for network activity A,.;, given network activity A; in
the previous time step, is expressed by the binomial
distribution

N
PlAi1|A, N, m, h] = A

)P(A, Y1 — p(A)IN A,
t+1

(1)

with the expectation value
m\A
(Ar114) = Npa) =N =N(1=5) [l =2m). (12)

We introduce the effective branching parameter m.g(A;) to
satisfy Eq. (2), i.e.,

(Ar+1lAs) = mer (Ar)A; + A(R)N, (13)
such that
N A
Mot (A, N, m, h) = (E) [1 —_ (1 - 1"—\:) ][1 —a(h)].
(14)

We can further compute the network activation rate A =
(A;). For this we recall (A;,1]A;) = Np(A,) and assume sta-
tionary activity, where the law of total expectation yields A =
(A;) = (Ar+1]As)). Combined with the approximation ((1 —
m/NY4) ~ (1 —m/N)4), Eq. (12) results in the mean-field
approximation

m A
A:N—N(l - ﬁ) [1—A(h)]. (15)
To solve Eq. (15) for the network rate A, we first rewrite it as

(N—A)In (1 — %)e(NfA)ln(pm/N)

=In (1 — %)N(l - %)Nn — ()] (16)

and make use of the Lambert W function, defined by
W(z)e"® = 7[51,52], to obtain

_ W(In (1= F)N(1 - N1 — A(h)])
In(1-5%)
(17)

In the limit N — oo, we can replace In(1 — %)N — —m and
(1— %)N — e~ to obtain, for the activation rate per node

A(N,m,h) =N
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FIG. 3. (a) Analytic solution for the activation rate per node a as a function of the branching parameter m in a mean-field branching network
(N — oo) for different external input rates 4 (encoded by color). For & — 0, the branching network undergoes a critical nonequilibrium phase
transition from an absorbing phase (a = 0) to an active phase (@ > 0). The inset shows a as a function of network size N at the critical point
(m = 1), comparing the analytic solution (17) (dashed lines) and asymptotic limit (18) (solid lines) with simulation results (data points) for
exemplary external input rates (color as in the main plot). (b) Analytic solution for the population rate in a branching process (3). The activity

diverges form — 1.

a=A/N,

a(m, h) > 1+ WEme ™1 )L(h)]).

oo m

(18)

This asymptotic solution characterizes the phase diagram
of the mean-field branching network [Fig. 3(a)]: For & — 0
a critical point (m = 1) separates an absorbing phase (m <
1 and a;, = 0) from an active phase (m > 1 and a, # 0).
This transition belongs to the universality class of directed
percolation. Formally, for # # O there is no critical absorbing
phase transition [37], but quasicritical dynamics has been
observed for specific connectivities [53]. Moreover, a recent
study derived a critical line in the m-h plane that shows critical
exponents from both directed and undirected percolation [54].
Still, we will here refer to m = 1 as critical-like dynamics,
because for small /# the dynamics on finite networks is very
similar to true critical dynamics.

Our numerical results verify that in the limit N — oo the
rate per node converges to the analytic solution [Fig. 3(a), in-
set]. The difference for small system sizes can be explained by
the presence of a temporally absorbing state (A, = 0), where
the system stays silent until reactivated by external input.
This state is not captured by the mean-field approximation
(assuming stationary activity) such that Eq. (15) overestimates
a for small N.

The phase diagram of the mean-field branching network
is qualitatively different from that of a branching process
(Fig. 3). For the branching process, the critical point (1 = 1)
separates a subcritical phase (/7 < 1) from a supercritical
phase (7iz > 1). For a driven branching process this means
that stationary activity is only possible in the subcritical phase
[Eq. (3) and Fig. 3(b)], while activity always diverges in the
supercritical phase. This hints at a potential bias when approx-
imating network activity in a branching network by a branch-
ing process. In order to compare with the branching-process
approximation, we nonetheless use the notion of subcritical-
like (m < 1), critical-like (m = 1), and supercritical-like (m >
1) spreading dynamics for the branching network.

B. Analytic derivations for the result of branching-process
approximations in driven branching networks

In the following we consider the three branching-process
approximations introduced in Sec. IIC and derive their sys-
tematic deviations from the model parameter (their bias) due
to coalescence. We assume that the external input 4 is a
system-size-independent constant.

The simplest case is the branching-process approximation
through the expected network rate riigg. Here we can simply
insert the mean-field solution of the network rate (18) to
obtain

mhAt
Cm A+ W(—me[1 — A(h)])’

mer(m, h) =1 (19)
If the external input rate A is known, which is usually not
the case, this estimator is not as biased as one would naively
expect (Fig. 4, gray dashed line). For m < 1, the estimator
mpr works well. However, it starts to get biased around m = 1

approximation m

e
ot
I

macroscopic branching-process

0 T 1
0 1 2

microscopic branching parameter m

FIG. 4. Asymptotic (N — 00) macroscopic branching parameter
estimates / as a function of the microscopic (model) branching
parameter m of a driven branching network. The drive is chosen to be
relatively large (h = 1073) to make the effects around m = 1 visible.
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and for m > 1 saturates to its upper bound migg — 1. This
bias is due to the fact that in the branching process stationary
activity can only be realized for subcritical dynamics (m < 1),
while in the branching network stationary activity occurs also
in the active phase (m > 1).

Next we calculate the asymptotic result of the branching-
process approximation through the expected quotient of sub-
sequent network activity migq. This estimator has been fre-
quently applied to process neural data. For our derivation,
we assume a driven network with N& > 1, so the network
activity is practically always nonzero, i.e., A; > 0. This is
similar to the case of increasing bin size when processing
neural data [20]. Assuming an effective branching process
with A, > 0 for all ¢, we can approximate Eq. (5) as riigq ~
1+ Nh(<Al,> - (Al_,)) (see the Appendix). By Jensen’s inequal-

ity for the convex function 1/x we find ( Aﬂ,> > <£]_,> such that
Mg should approach its limit from above. One can expect that
fluctuations around A, vanish in the limit of large system sizes,
unless exactly at the critical point, such that (%) ~ and
Meg ~ 1. Assuming a continuous behavior of the estimator,

we expect the same result at the critical point such that

lim rigq(m, h) =1Vm, h> 0. (20)
N—oo

Therefore, in the limit N — oo (fixed & > 0) any stationary
activity in the driven regime is interpreted as a persistent
internal spread, i.e., mgg always infers m =1 (Fig. 4, blue
solid line). This is because the definition of 7igq implicitly as-
sumes STS, or equivalently 7 — 0, and under this assumption
only m = 1 would produce stationary activity on expectation.
Hence it is a correct estimator, as long as there is only internal
activation, but fails as soon as a novel input 4 is applied while
the network is still active (A, > 0). The estimator thus does
what it is supposed to do, but does not help us quantify the
amount of internal activation in any driven regime like the
living brain.

The third estimator 7 g is based on a branching-process
approximation through linear regression. It does not rely on
knowledge of h and does not require any STS or specific
regime for A,. This estimator returns reliable results in the
subcritical regime. In the vicinity of m = 1, we show that
its asymptotic result can be fully attributed to nonvanishing
coalescence effects. In detail, the asymptotic estimate can be
calculated from the conditional expectation value (A;|A;).
Normalizing Eq. (12), we find a system-size-independent
scaling function F (A, /N) for the activity per node a, = A, /N:

m\A
AN = 1= (1= 5) 1= 20)

—1- (1 - %)NA’/NU — ()]

~1—e™IN[ = Ah)]
=1 — ¢~ hAHFmA/N) — F (A, /N). 1)

Indeed, numerical results of the normalized conditional ex-
pectation value covering system sizes from 23 up to 220 all
collapse onto this universal scaling function (Fig. 5, m =1
and h = 10~%). With increasing system size, the variance
of the average activity decreases and the numerical results

m=1 e
h=10"3% .-~

0.5

0.4

25 ——
010, 4
915

220, o
F(A(/N) ——
no coalescence ------
T T T T T 1

0 61 02 03 04 05 06
AL/N

0.2

(A41]Ae) /N
[en)
w

0.1

FIG. 5. Universal scaling function describes effective spreading
of network activity for sufficiently large system sizes (here N > 23,
m =1, and h = 1073). Rescaling the conditional expectation value
as (A,+1]A;)/N (data points) leads to a data collapse onto the uni-
versal scaling function F (A, /N) (solid line) defined in Eq. (21). Due
to the nonlinear character of F'(A,/N), a linear-regression estimate
results in a slope that is slightly different from the case without
coalescence (dashed line).

localize along the scaling function, justifying the mean-field
assumptions above.

From the curvature of the scaling function we can de-
rive the asymptotic result of the linear-regression estimator
mr. The linear regression assumes a linear shape of the
conditional expectation value (independence of A,;; from
A;). As a consequence, /i r locally fits a straight line to the
scaling function with diminished slope (Fig. 5). The slope
of this line depends on the rate per node. For a nonzero
rate, it will deviate from the ideal case without coalescence
(Fig. 5, dashed line) and thereby the estimate will differ from
the model parameter. Because the variance of the rate per
node decreases with increasing system size, we can calculate
the asymptotic estimate as the derivative of Eq. (21) at the
average rate (18), i.e.,

rg(m, h) = F(Ai/N)

dA, /N A(m,h)/N

_ me,ma(m,h)[l — A(h)]

— mefmthte*W(fme"""‘A’). (22)
To illustrate the bias, we can expand 7z g for small a = 0, i.e.,
in the vicinity of the critical point, to obtain

iR (m, h) = [m — m*a(m, h)][1 — A(h)]. (23)

The asymptotic estimate 7 g is thus biased (7 g < m), which
is most prominent in the vicinity of the critical point and
the active phase (Fig. 4, solid green line, and Fig. 7, dashed
lines). Importantly, the asymptotic bias vanishes for 47 — 0
only within the absorbing phase (m < 1) where a = 0.

To summarize, in a driven regime all estimators of the
microscopic dynamics are biased close to critical-like settings.
Some are biased for the whole parameter range and reflect
only the presence of drive (such as riigg). Others are deviating
slightly from the true values for m < 1, but are strongly biased
for m Z 1 (Fig. 4). The reason for the asymptotic bias is
the coalescence in branching networks (Sec. II[ A). In the
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following sections, we will numerically verify our analytical
predictions on the estimation bias with finite-size scaling
analyses of branching networks, for both the STS (Sec. III C)
and the driven (Sec. III D) regime.

C. Finite-size scaling analysis in the STS regime reveals no
asymptotic bias in the branching-process approximation

In the STS regime, activity (also called an avalanche) is
initiated at a random node and evolves without any external
input until the end. Formally, this corresponds to the limit of
vanishing external input rate # — 0. In numerical implemen-
tations one can skip periods of zero activity: Directly after
activity has ceased, a new random node is initiated at # + 1.
In this regime the internal network dynamics depends only on
the model parameter m. The finite-size scaling limit is well
defined for N — oo by keeping m fixed.

We focus on the two estimators g and sy r. The third
one /iR requires stationary activity that is not present in the
STS regime. In principle, both estimators are suitable for the
formal STS regime, but the numerical implementation (skip-
ping periods of zero activity) requires a little attention. The
expected-quotient estimator rigq is not affected by skipping
periods with zero activity, because it only considers time steps
with A; > 0. The linear-regression estimate i g is however
strongly affected by the choice of skipping periods of zero
activity, because periods of zero activity contribute to the
estimated external input rate relevant for the linear regression.
We thus need to modify the linear-regression estimator (8) for
the STS regime by imposing a zero expectation of network
activity (A;) = 0. This enters both the covariance and variance
and we obtain

. (Ar1Ar)
sSTs — V1B 24

LR ( Atz) ( )
Keep in mind that this is only required because of the artificial
implementation of the STS regime (2 — 0) as nonstationary
activity. In addition, the implicit assumption of vanishing
network rate (A;) = 0 confines our discussion to the absorbing
phase m < 1.
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In the STS regime, one may expect that the branching-
process approximation from network activity is not biased
in the limit N — oo. This is because small avalanches and
equivalently small A, occur statistically more often than large
avalanches, even for critical spreading dynamics. More pre-
cisely, the same small-avalanche regime of the characteristic
avalanche-size distribution remains dominant with increasing
system size. At the same time, for annealed disorder the
number of potential connections increases with system size,
such that instances of internal coalescence become less prob-
able. Together, we expect that in the STS regime macroscopic
estimates reflect microscopic dynamics in the limit N — oo.

Indeed, the bias in the estimates of 7iigq and 701> decreases
rapidly with increasing system size N (Fig. 6). In the absorb-
ing phase (m = 0.9), the bias diminishes rapidly and is below
0.001% for N > 10*. For critical dynamics (m = 1), the bias
decreases as a power law 1 — 7, o« N*x. Least-squares fits
yield agg = 0.558(7), for N > 32 with x2~14,and oy g =
0.490(2), for N > 512 with x2 ~ 0.3. Upon changing the
fit range, however, estimates vary outside of their statistical
errori, compatible with an overall scaling of the form 1 — 72
N~2,

D. Finite-size scaling analysis in the (Poisson) driven regime
reveals asymptotic bias in branching-process approximations

We now consider the driven regime of a network subject to
homogeneous Poisson input. Considering additional stochas-
tic external input, we need to specify how the infinite-size
limit (N — o0) is approached: Here we choose to fix the mi-
croscopic model parameter m as well as the average external
input rate per node /. This assumes that the external input rate
scales with system size. We focus on the two estimators 7iigq
and i g, because they do not rely on knowledge of 4.

We first show that in the driven regime the commonly em-
ployed expected-quotient estimator /g will always indicate
critical-like dynamics (m = 1) for large system sizes as pre-
dicted by Eq. (20) [Fig. 7(a)]. If the dynamics is indeed critical
like, Migq first underestimates the microscopic dynamics for
small N (iigq < 1), overestimates the dynamics for intermedi-
ate N (figq > 1), and finally converges to the true microscopic

(b) 10° -
107"
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m — ’ﬁLLR

1073

104 |
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10 10' 102 10%® 10* 10° 105 107
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FIG. 6. Finite-size scaling in the separation-of-timescales regime for two standard estimators of the macroscopic branching parameter:
(a) the expected-quotient estimator 7iigq and (b) the linear-regression estimator /7y g. Both estimators converge to the microscopic branching
parameter for m < 1. In the absorbing phase (m = 0.9), the macroscopic estimate quickly converges towards the microscopic model parameter.
For critical dynamics (m = 1) the macroscopic estimates converge towards the microscopic parameter as a power law 1 — i, ~ N~ (see the

text for details).
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FIG. 7. Finite-size scaling in the driven regime. The two estimators of the macroscopic branching parameter, (a) the expected-quotient
estimator 7itgq and (b) the linear-regression estimator 7y g, both fail to measure the microscopic branching parameter due to coalescence effects
(solid lines are a guide to the eye). Dashed lines are the calculated infinite-size limits of the respective estimates: (a) Eq. (20) and (b) Eq. (22).

dynamics for N — oo. The regime of overestimation shifts to
larger systems sizes and decreases its amplitude as the input
rate decreases. While this would seem reasonable for m = 1,
the estimator g fully fails for subcritical-like (m = 0.9) and
supercritical-like (m = 1.1) dynamics. Independently of the
true m, whether it is smaller than, larger than, or equal to
unity, the estimator returns g < 1 for small N and a local
maximum with 7igg > 1 for intermediate N and eventually
converges towards 7iigg — 1 in the limit N — oo. This is
clearly not the microscopic dynamics. Strikingly, /iigq would
thereby predict critical-like dynamics for sufficiently large
networks N > 10° even though the microscopic dynamics is
clearly not critical-like.

The system-size dependence of riigq, showing a maximum
(Meq > 1) and converging towards riigg — 1 in the limit
N — o0, is similar to results obtained when changing the
bin size for neural spike recordings [20]. The initial increase
and maximum can therefore be explained as extended periods
of activity separated by a decreasing number of time steps
with zero activity. The eventual convergence towards unity
can then be explained by the resulting stationary activity and
the absence of zero activity due to the increasing amount of
network input AN (Sec. III B).

Next we show that in the driven regime the linear-
regression estimator 7y g underestimates microscopic dynam-
ics (Fig. 7(b)). While this estimator is specifically constructed
to infer m from driven systems, it does not consider coales-
cence. Coalescence leads to a bias even in the infinite-size
limit as predicted by Eq. (22) and verified by our numerical
results [Fig. 7(b)]. The system size above which 7y g saturates
corresponds to the system size above which also the rate per
node saturates (Fig. 3, inset).

We want to point out two observations. First, the asymp-
totic bias of i g depends on h, demonstrated here only
for critical-like dynamics (m = 1), where the effect of &
is strongest. Second, in the limit 4~ — O the asymptotic
bias of rii g only vanishes for m < 1. This means that for
supercritical-like dynamics (m > 1) the asymptotic estimator
myr remains biased even for 2 — 0 and indicates subcritical-
ity myr < 1 (Fig. 4). This is due to the stationary nonzero
activity per node in the active phase (m > 1) of the branching
network [cf. Fig. 3(a)].

E. Coalescence can be captured by a nonlinear estimator

We can use our analytic results to obtain the model param-
eter m without bias from the macroscopic network activity by
directly fitting the nonlinear function (21) to the data. This
defines our nonlinear regression estimator /i g as a fit to the
nonlinear scaling function

(A1 Ar) /N = 1 — g~ AN, (25)
We implemented this as a PYTHON curve fit. For our numerical
data this nonlinear approach correctly infers the microscopic
model parameter from the macroscopic network activity for
almost all system sizes (Fig. 8). Of course, this relies on a uni-
versal scaling function for the conditional expectation value
(Ar41lA;) = NF (A, /N), here derived for an annealed disorder
average. A similar scaling function has been derived within
a mean-field approximation for a quenched disorder average
over Erd6s-Rényi networks with average degree K [15],

t
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K
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FIG. 8. The novel linear estimator 7y g correctly infers the
microscopic model parameter m from the macroscopic dynamics in
all-to-all connected branching networks for supercritical-like (m =
1.1), critical-like (m = 1), and subcritical-like (m = 0.9) dynamics.
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where we neglected the refractory period to compare with
our results. The expansion of Eq. (26) agrees to leading order
with the expansion of Eq. (21).

IV. DISCUSSION

To summarize, we have shown that due to coalescence
(the simultaneous activation of the same node from multiple
sources) in a branching network, the approximation of net-
work activity by a branching process can be biased. As the
branching-process approximation of network activity is the
basis for several linear estimators of spreading dynamics on
networks, these estimators can be consequently biased as well.
We verified this bias for an estimator based on the expected
quotient of subsequent activities (/1gq) and an estimator based
on linear regression (i r). In the separation-of-timescale
(STS) regime, which we argued is only well-defined in the
absorbing phase (m < 1), the bias vanishes for N — oo. In
the driven regime of nonvanishing input rate, there always
remains an asymptotic bias for N — oco. We showed how to
analytically compute the asymptotically remaining bias in the
driven regime and verified it by a finite-size scaling analysis
of simulation results.

If interested in an unbiased estimator of the microscopic
branching parameter from the network activity, we provide
a nonlinear estimator that explicitly takes coalescence into
account and is thereby not biased. The nonlinear estimator is
derived from the analytic solution of the conditional expec-
tation value of subsequent network activities (A;+|A;). This
conditional expectation value has a universal scaling function
for annealed disorder (derived here) and quenched disorder
over random Erd&s-Rényi networks (derived in Ref. [15]). If
the scaling function is not known analytically, we propose that
it can be obtained by inducing a data collapse (systematically
rescaling the x and y axes) for the conditional expectation
value measured in small system sizes with high numerical
precision (cf. Fig. 5). While this approach is directly appli-
cable to models (where it benefits from the large variance in
average activity a for small system sizes), it cannot be applied
trivially to experimental data. For one, the scaling function
would need to be deduced from a representative model. In
addition, our current results require fully sampled network
activity. However, advances in recording techniques, e.g.,
optogenetic imaging of neural activity [55-57] or high report
rates for measles in Germany [21], may enable to construct
nonlinear estimators applicable to experimental data even in
large systems.

When it comes to approximating real data with a macro-
scopic branching process, the potential bias (assuming that
there is a static interaction network) can be evaluated on
a case-to-case basis. For example, cortical neural network
dynamics have been estimated (using a subsampling-invariant
version of 7iyrr [21]) to be slightly subcritical, 7 =~ 0.98
[21,58], assuming spike propagation with Az = O(1 ms). A
branching parameter m = 0.98 means that in a stationary
activity regime 98% of the firing rate is generated inter-
nally, while 2% is generated externally [see Eq. (7)]. For
a firing rate per neuron of O(10~3 ms™!), the 2% external
generation corresponds to an external input rate per neu-
ron 7 = O(10™> ms~!). These estimates are consistent with

numerical predictions for cortical network dynamics suggest-
ing hAt = 0(10™*) or lower [22]. In this case, our results
for the linear-regression estimator would predict a bias m —
g = O(1073). This bias is an order of magnitude smaller
than the typical observed values for cortical brain networks
in vivo (m ~ 0.98) [21]. The largest observed values though
reach m ~ 0.994 [58], suggesting that certain neural networks
approach the critical point almost as close as possible, given
potential coalescence.

It is a priori unclear whether the microscopic model pa-
rameter m or the macroscopic parameter 71 is the correct
description of the dynamics. We expect that the most reliable
estimator of macroscopic dynamics is the linear-regression
estimator 7y g, because it explicitly considers the external
input rate present in many practical situations [21,49,59].
Whether inferring the microscopic or macroscopic branching
parameter is “correct,” however, depends on what is sought.
On the one hand, if we want to infer the microscopic dynamics
to understand microscopic processes, we seek m, for example,
to characterize the impact of a single spike on the amount
of subsequent spike initiations [60] or to predict probable
routes of disease spreading in complex networks [29]. On the
other hand, if we want to describe the time evolution of the
collective network activity, we are interested in the macro-
scopic 1, for example, to characterize intrinsic timescales of
cortical areas [61] or to estimate whether or not a disease has
epidemic character [21,62]. The interpretation of the correct
branching parameter thus depends on whether we want to
know the microscopic or the macroscopic dynamics of a
particular system.

The difference between microscopic and macroscopic dy-
namics of a system may be exploited by networks in reality.
For example, a network might need to regulate directly the
microscopic dynamics (for which it could adjust its local
weights) or it might need to regulate the macroscopic dy-
namics. One option to achieve the latter is by implementing
coalescence-compensating mechanisms [63,64], e.g., adaptive
synaptic weights or a probabilistic (linear) integrate-and-fire
mechanism. Using coalescence-compensating dynamics, the
macroscopic dynamics is directly related to the local weights.
It is conceivable that reality interpolates between both ex-
tremes. This is a regime where dependent-spreading models
become relevant, which have not been covered in the present
work.

Due to coalescence, the nonequilibrium phase transition in
branching networks differs from that in branching processes.
On the one hand, for branching networks without external in-
put, the critical point separates an absorbing (A = 0) from an
active (A > 0) phase, a critical phase transition in the univer-
sality class of directed percolation [10,37]. In fact, the branch-
ing network defined in this work is equivalent to mean-field
directed bond percolation. Here the order parameter is the
network activity. On the other hand, for branching processes
the critical point separates a subcritical (zero probability for
infinite avalanche or activity) from a supercritical (nonzero
probability for infinite avalanche) phase [6]. Here the order
parameter is the probability for infinite avalanches. However,
the expected population activity for a subcritical branching
process is indeed zero. Hence, the branching network and
branching process share universal features in the absorbing
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or subcritical phase, while their activities vary substantially in
their active or supercritical phase.

We considered in our study homogeneous external input
rates per node. This is clearly a leading-order approximation.
In the context of neural networks, a homogeneous input rate
per node can be motivated by networkwide input that cortical
areas receive. In the context of infectious diseases, a homoge-
neous external input rate corresponds to a homogeneous exter-
nal infection rate throughout the environment. It is natural to
expect that input rates are in fact more heterogeneous. In the
context of neural networks, the functional wiring of cortical
layers induces heterogeneity (see, e.g., Refs. [65,66]). In the
context of infectious diseases, it seems natural that external
infection rates depend on local environmental variables (see,
e.g., Ref. [67]). We expect that heterogeneous input rates may
contribute additional sources of bias in the branching-process
approximation of spreading dynamics. However, heteroge-
neous external input can also mean local input that does not
scale proportionally to the system size, e.g., local stimulation
of a neural culture or the initial onset of a disease outbreak.
In this limit, our results are not directly applicable, e.g., we
would expect that 7iigq is no longer strongly biased.

We focused in our study on the case of annealed disorder,
mathematically equivalent to an all-to-all connected network.
This mean-field assumption turns out to be a good leading-
order approximation for many complex networks [68]. Our
annealed disorder also covers memoryless temporal networks
[69]. However, we have also shown that several of our an-
alytical results agree to leading order with those obtained
for quenched disorder of random networks [15]. Indeed, in
Ref. [63] we show that our analytic solution (18) describes
to leading order the average rate a in a random Erd&s-Rényi
graph of size N = 10* with average degree K = 10. We
thus expect that the majority of our conclusions are valid
to leading order for general random networks, but at the
same time we expect that details depend on the considered
network topology. For example, the vanishing bias in the STS
regime requires a large number of connections per node in
the limit N — oo. This would be guaranteed if the average
degree K would be coupled to the system size, i.e., K/N
constant. However, reality may be quite different. In the scope
of neuroscience, one expects sparsely connected networks
with K/N — 0 [70]. Also in the scope of infectious diseases
in human contact networks, one expects a finite number of
interaction links [71]. Moreover, there is an increasing number
of studies that identify aspects of heterogeneous network
topology that affect collective network dynamics in general
[72-74], or specifically collective dynamics in neural net-
works [34,75-79] and for infectious diseases [80-82]. We
expect that the branching-process bias remains a general
leading-order effect in heterogeneous network topologies. For
the large degree networks similar results were obtained in a re-
cent study on the breakdown of treelike approximations [83].
A systematic future investigation of a branching-process bias
in heterogeneous topologies could include the study of small-
world networks [72] or spatially structured networks [75].

The simple branching networks we considered in this
work have to be understood as a minimal example to study
the effect of coalescence. Of course, models of real-world

processes typically need refinement. For example, while many
characteristic statistics for neuronal avalanches are captured
by branching networks, the temporal correlations between
avalanches and interavalanche intervals [84] cannot be cap-
tured in such a simple model. To account for such long-term
dynamics a slow adaptation, e.g., a homeostatic regulation
[22], is required. These refined models, however, are still
subject to coalescence.

Our results are only applicable to fully sampled systems.
However, typically, experimental measurements have access
to only a small fraction of the system, resulting in subsampled
data. Subsampling is a common problem in neuroscience
[21,58,85-87], epidemiology [88-92], and networks in gen-
eral [93]. In the case of subsampled network activity, there is
an unbiased way to estimate the effective branching parameter
mege by extending the linear-regression estimator to multiple
regressions [21]. We leave it for future work to expand our
results on coalescence effects to the subsampled regime.
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APPENDIX: EVALUATION OF THE
BRANCHING-PROCESS APPROXIMATION THROUGH
THE EXPECTED QUOTIENT f#igq IN
THE DRIVEN SYSTEM

In the driven regime, we assume that all A, > 0 for
Nh > 0. We can then evaluate Eq. (5), using Bayes’ rule
P[Ai+11A:] = P[Ai41, A/ PlA],

<Az+1> ZZP[At’AtJrl At+1

A Ar+l
PlA;, Aryi]
_Z_PA]Z PIA,] A A
= Z —P A D PlA1 1A A
A1+1
Ary1]A

- Z—< 2 pra (A1)

A !

Assuming an effective branching process, we insert

(Ar111A;) = mA, + hN withm = 1 — hN/{A,) and obtain

A[+1 ~ Z ﬁ’lA[ + hNP
A, y A,

1
Al =~ m+ hN{—
[A/] ~ m+ <At>

(A2)
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