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Uncertainty quantification of sensitivities of time-average quantities in chaotic systems
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We consider time-average quantities of chaotic systems and their sensitivity to system parameters. When the
parameters are random variables with a prescribed probability density function, the sensitivities are also random.
The central aim of the paper is to study and quantify the uncertainty of the sensitivities; this is useful to know
in robust design applications. To this end, we couple the nonintrusive polynomial chaos expansion (PCE) with
the multiple shooting shadowing (MSS) method, and apply the coupled method to two standard chaotic systems,
the Lorenz system and the Kuramoto-Sivashinsky equation. The method leads to accurate results that match well
with Monte Carlo simulations (even for low chaos orders, at least for the two systems examined), but it is costly.
However, if we apply the concept of shadowing to the system trajectories evaluated at the quadrature integration
points of PCE, then the resulting regularization can lead to significant computational savings. We call the new
method shadowed PCE (sPCE).
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I. INTRODUCTION

All practical systems exhibit a degree of uncertainty in
the values of the system parameters. For example, the an-
gle of attack or the geometric shape of an airfoil exhibit
a degree of randomness (due to free-stream turbulence or
surface roughness, respectively). Uncertainty quantification
(UQ) methods aim at modeling the effect of uncertainties in
a computationally efficient manner. They define a quantity of
interest (QoI), for example, lift or drag of an airfoil, and a
set of uncertain parameters (such as angle of attack, airfoil
shape, etc.) that affect the QoI. The objective of UQ methods
is to evaluate the statistical behavior of the QoI using the
available probabilistic information of the uncertain parameters
and the input-output relation of the system. In this paper,
we consider systems in which the input-output relation is
governed by a set of nonlinear partial differential equations
(PDEs). For a review of the available UQ methods with a
particular focus on Computational fluid dynamics applications
(where the governing PDEs are the Navier-Stokes equations),
the reader is referred to Refs. [1,2].

The most commonly used UQ method is the polynomial
chaos expansion (PCE), due to its computational efficiency
for a small number of uncertain parameters. The mathematical
framework was developed by Wiener [3] for Hermitte polyno-
mials and was later generalized in Ref. [4] for every polyno-
mial in the Wiener-Askey scheme. The method uses a spectral
representation of the uncertain quantities in an orthonormal
stochastic space and computes the spectral coefficients with
Galerkin projection.

There are two approaches for applying PCE to dynamical
systems, the intrusive and nonintrusive; below they will are
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denoted as iPC and niPC, respectively. In niPC, the QoI is
written in spectral form and the unknown expansion coef-
ficients are computed by evaluating the Galerkin integral at
specific integration points (or nodes). Each evaluation requires
the integration of the PDE system for a particular set of values
of the input random variables. In that sense, niPC is a black-
box approach, i.e., all that is required is a code that provides
the solution of the PDE system, which is called repeatedly
for a set of specific inputs determined by the PCE algorithm.
However, in the iPC [5], the system degrees of freedom are
written in spectral form and a new set of equations, the iPC
equations, that describe the evolution of the expansion coef-
ficients, are extracted using Galerkin projection. This results
in a coupled system of equations that must be integrated,
usually with methods similar to the ones used for the original
dynamical system.

In steady systems, i.e., ones that do not exhibit time-
dependent behavior, iPC is a well-established method with
numerous applications in compressible and incompressible
flows, reacting flows, flows in media, etc. (refer to Refs. [6–8]
for a small sample of applications).

Application of UQ to unsteady systems is much more in-
volved. First, the iPC method was found to exhibit significant
limitations. More specifically, as the unsteady system evolves
from an initial state, the number of expansion polynomials
must increase to maintain the accuracy of the expansion
[9–14]. The systems do not necessarily have to exhibit chaotic
behavior for this problem to appear; the root of the problem
lies on the nonlinear interactions that are present in either
chaotic or nonchaotic systems. This is aptly demonstrated
in Ref. [9] using a linear decay equation with a uniformly
distributed random decay coefficient (the limits of the distri-
bution are such that the latter always remain positive). Since
both the coefficient and the solution are random, a quadratic
nonlinearity appears, even though the deterministic equation
is linear. As the system evolves, the solution starts to develop
its own random characteristics, that deviate from those close
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to the initial state. In other words, the probability density
function (PDF) of the solution evolves in time and orthogonal
polynomials that were initially optimal, are loosing their opti-
mality at later time instants. As a result, more and more terms
are required in the expansion, but this only postpones the
problem to a later time instant. For a given number of terms,
the error will become unacceptable after some time. A second
issue for unsteady problems, related to the importance of rare
events, was highlighted by Branicki and Majda [10] using the
same decay equation. If the decay coefficient assumes Gaus-
sian distribution instead of uniform, then negative values are
always possible. However, the presence of even a single event
with negative decay coefficient (no matter how rare) will, after
some time, dominate the statistics of the solution, leading
eventually to unbounded results. This example demonstrates
that very rare events can dominate the mean and standard
deviation of the QoI; UQ of time dependent systems requires
extreme caution.

The previous investigations have focused on quantifying
the statistical behavior of the solution at specific points
in time. Very few studies have investigated the uncertainty
of time-averaged QoI’s. Meldi et al. [15] applied niPC to
quantify the error in LES of a spatially evolving mixing
layer and its sensitivity to three simulation parameters (grid
stretching in the streamwise and lateral directions and the
Smagorinsky model constant). The QoI’s were the mean
streamwise velocity, the momentum thickness, and the shear
stress. Note that although the QoIs were mean values (i.e.,
independent of time), they were obtained from time-averaging
of the solution of an unsteady model, and therefore the
problems with iPC mentioned in the previous paragraph were
bound to occur; for this reason the niPC was applied. Lucor
et al. [16] also applied niPC to study the sensitivity of Large
Eddy Simulations to parametric uncertainty of the subgrid
scale model in homogeneous isotropic turbulence.

In this paper, we are also concerned with the application
of PCE to time-average quantities, obtained from long time
integration of unsteady models. In particular, we are interested
in the UQ of the sensitivities of these quantities with respect to
the random system parameters (randomness affects not only
the time-averages, but also their sensitivities). The latter are
useful to know when performing for example gradient-based
optimization under uncertainty [17–21].

At this point, the chaotic or nonchaotic behavior of the
unsteady system plays the most crucial role. In systems that
do not display chaotic behavior, there are well-established
methods that can compute the sensitivity of a QoI with respect
to system parameters, such as the adjoint method (refer to the
review paper in Ref. [22]). Performing UQ to the sensitivities
obtained with the adjoint technique is feasible with the niPC,
in exactly the same way as for the time-average quantities
discussed above.

However, the conventional adjoint approach fails when the
system under investigation exhibits chaotic behavior, with
one or more positive Lyapunov exponents [23]. Indeed, for
such systems, the values of the adjoint variables grow ex-
ponentially in time and the computed sensitivities become
meaningless. This is an important restriction because, in the
area of fluid mechanics for example, most engineering flows
become chaotic beyond a certain Reynolds number. In a series

of papers, Wang and co-workers have introduced the idea
of least-squares shadowing (LSS) to address this problem
[24–28]. Other approaches have also been proposed [29,30].
The LSS method is based on the shadowing lemma which
is applicable for ergodic and uniformly hyperbolic systems
[31–33]. The method locates a trajectory that shadows the
reference one (i.e., remains always close to it), thereby regu-
larizing the problem (for details refer to the above references).
Recently, a pre-conditioner has been developed for a variant
of LSS, called multiple shooting shadowing (MSS), that im-
proves the condition number of the resulting linear system by
orders of magnitude and makes the convergence rate almost
independent from the number of degrees of freedom and the
length of the trajectory in phase space [34]. The method relies
on matrix-vector products only and is applicable to very large
systems.

In this work, we couple the preconditioned MSS algo-
rithm with niPC to compute the statistical behavior of the
sensitivities of time-average quantities in chaotic systems.
We reduce the computational cost of the coupled method
by taking advantage of the shadowing lemma and reusing
the preconditioner. We call the new method shadowed PCE
(sPCE).

The paper is organized as follows: in Sec. II, we dis-
cuss the basic concepts of PCE and then present the MSS
method. In Sec. III, we couple the two methods to create
the new algorithm, which is applied to two standard chaotic
systems, the Lorenz and the Kuramoto–Sivashinsky equation
in Sec. IV. In Sec. V, we present sPCE, an approximate
method with reduced computational cost, and we assess its
accuracy. Finally, we conclude in Sec. VI.

II. BRIEF DESCRIPTION OF THE TWO CONSTITUENT
METHODS: PCE AND MSS

A. The PCE method

We present below the basic concepts of PCE; for a more
detailed exposition refer to Ref. [2]. We consider a general
dynamical system governed by the evolution equation

du
dt

= f (u, s), (1)

where the vector u represents the state variables of the system
and s is a set of design variables specifying the dynamics
of Eq. (1). Uncertainty is introduced to variables s and it
is modelled through a random vector ξ = (ξ1, . . . , ξm) of
m independent stochastic variables defined on an abstract
probability space P = (�,�, dP), where � is the set of
random events, � is the σ -algebra of the events and P is the
probability measure. We define a quantity of interest (QoI),
J = J (ξ), and the objective is to estimate the effect of the
random variables s on the statistical moments of J .

Each component ξi is assumed to follow a known proba-
bility density function (PDF), wi(ξi ), which is defined in the
domain Ei. Since the variables are independent, the vector ξ

follows the PDF W = ∏m
i=1 wi(ξi ), defined in the domain E =∏m

i=1 Ei. The stochastic components ξi define a polynomial
basis ψ (i) ={ψ (i)

0 , ψ
(i)
1 , . . . } with a well-defined tensor prod-

uct, � := ⊗m
i=1ψ

(i) = {�0, �1, . . . } that is orthogonal with
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respect to the PDF W , i.e.,

〈� j, �k〉 =
∫
E
� j�kW dξ = δ jk〈� j, � j〉, (2)

where δ jk is Kronecker’s symbol (repeated superscripts do not
imply summation).

In niPC, the QoI J (ξ) is written in terms of the basis
polynomials �i, i.e., in spectral form as

J (ξ) =
∞∑

i=0

Ji�i(ξ). (3)

In practice, the PCE expansion Eq. (3) is truncated after
q + 1 terms, and only polynomials up to degree C are kept
(C is known as the chaos order). The number of independent
variables, m, and the order of chaos, C, determine the number
of terms q + 1 = (m+C)!

m!C! . Using the orthogonality condition
Eq. (2), the spectral coefficients Ji can be computed by
Galerkin projection as

Ji =
∫
E
J�iW dξ ≈

α∑
j=1

ω jJ (ξ j )�i(ξ j ). (4)

The integral over the space E is approximated numerically
using Gauss Quadrature. In Eq. (4), α is the number of terms,
while the weights ω j and the quadrature points ξ j at which
J (ξ j ) must be evaluated, depend on the PDFs of the random
variables; their values for several standard PDFs can be found
in Ref. [2]. Once the spectral coefficients Ji are known, the
mean value and standard deviation of J (ξ) can be computed
from

μJ = J0 , σJ =
√√√√ q∑

i=1

(Ji )2. (5)

In this paper, we consider long time-averaged quantities
defined as

G∞(s) = lim
T →∞

1

T

∫ T

0
G(u, s)dt, (6)

and our QoI are the sensitivities J = dG∞(s)
ds , which is a vector

with the same dimension as s. To compute the mean and
standard deviation, the sensitivities must be evaluated at the
quadrature points ξ j ; see Eq. (4). We compute these using the
multiple shooting shadowing method (MSS) as explained in
the next subsection.

Before we proceed, however, we need to recall a funda-
mental relation between the PDFs of input and output. If the
mapping of the input s to the QoI J = g(s) is one-to-one and
has an inverse, then the PDF of J , fJ (J ), is related to the PDF
of s, fs(s), by the formula

fJ (J ) = fs(g
−1(J ))

∣∣∣∣ d

dJ
g−1(J )

∣∣∣∣, (7)

where s = g−1(J ) is the inverse mapping. If g(s) is a continu-
ous and monotonic increasing or decreasing function, then the
mapping is one-to-one. If the function g(s) is not monotonic,
then the contributions of all roots of the equation J = g(s) for
a given value of J must be included and the above formula be-
comes slightly more complicated. Equation (7) can be easily

derived using the principle of probability conservation (refer
to Refs. [2,35]). In the particular case of a linear mapping
between input and output, for example, J = α1s + α0, the
above formula simplifies to

fJ (J ) = fs

(
J − a0

a1

)∣∣∣∣ 1

a1

∣∣∣∣, (8)

which indicates that the shape of two PDFs are the same, and
the output PDF is obtained from the input PDF by scaling
and a linear variable transformation. In this case, the mean
and standard deviation of the QoI can be easily obtained
analytically from the corresponding values of fs(s). PCE
expansions with order C = 1 do not alter the shape of the input
PDF; i.e., they are exact for this case. Relation Eq. (7) can be
extended to include more than one random inputs and outputs,
in which case the inverse of the Jacobian of the transformation
appears on the right-hand side.

There is one more observation that we need to make that
will prove useful later. In this paper we quantify the uncer-
tainties of sensitivities, J = dG∞(s)

ds . If the function J = g(s) is
a polynomial, then its order will be smaller (by one) compared
to the order of G∞(s). If, for example, G∞(s) is second
order, then the PDF fG∞ (G∞) will be distorted compared to

fs(s) [according to Eq. (7)], but the PDF of J = dG∞(s)
ds will

remain intact [according to Eq. (8)]. This indicates that it is
easier (i.e., requires smaller chaos orders C) to quantify the
uncertainty of dG∞(s)

ds compared to that of G∞(s).

B. Computation of sensitivities using MSS

Conventional methods for the computation of sensitivity,
J = dG∞(s)

ds , include the linearization of Eq. (1) around the
trajectory in phase space evaluated at s. If the underlying sys-
tem has one or more positive Lyapunov exponents, however,
then standard methods fail because the trajectories evaluated
at s and s + ds diverge exponentially [23]. Wang et al. [25]
introduced the least-squares shadowing (LSS) algorithm to
regularize the problem. The idea is to find a trajectory at
s + ds that stays in close proximity (i.e., shadows) the refer-
ence trajectory at s. The two trajectories have different initial
conditions, but for ergodic systems this does not affect the
time-average (or its sensitivity). The shadowing trajectory is
guaranteed to exist for uniformly hyperbolic systems [32].
Blonigan and Wang [28] introduced the MSS algorithm,
which is a variant of LSS. For the two trajectories to remain
close to each other, the reference trajectory is split into K
segments and the following minimization problem is solved:

min
v(t+

i )

K∑
i=0

‖v(t+
i )‖2

2, (9a)

subject to v(t+
i ) = v(t−

i ) (i = 1, ..., K − 1), (9b)

dv
dt

− ∂f
∂u

v−∂f
∂s

− ηf = 0 ti < t < ti+1 (i = 0, ..., K − 1),

(9c)

〈f (u(t ), s), v(t )〉= 0 ti < t < ti+1 (i = 0, ..., K − 1), (9d)
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where

v(t ) = lim
δs→0

u(τ (t ); s + ds) − u(t ; s)

δs

and η(t ) = d

ds

(
dτ (t )

dt
− 1

)
. (10)

Equation (9a) defines the norm to be minimized; it is the
sum of the distances (squared) between the two trajectories
in phase plane evaluated at the K + 1 points, t0, ..., tK , that
define the K segments. The superscripts − and +, for example,
in t−

i and t+
i , denote time instants immediately before and

after ti, respectively. Equation (9b) imposes the continuity
of v(t ) between two consecutive segments, and Eq. (9c) is
the evolution equation for v(t ) at each segment. The latter
is derived by linearizing Eq. (1) around u(t ; s) and using
definitions Eq. (10). Finally, Eq. (9d) imposes orthogonality
between trajectories v(t ) and f (u(t ), s).

This is a standard minimization problem that results in the
solution of a linear system of equations,

Sw = b, (11)

where S is a block symmetric, positive definite matrix, and
w = [w(t1) w(t2) . . . w(tK )]T are the discrete adjoint
variables related to the minimization problem Eq. (9). All
the steps for the derivation of Eq. (11) from Eq. (9) can be
found in Ref. [28]. To reduce the condition number of system
Eq. (11), a block-diagonal preconditioner, MBD, was proposed
in Ref. [34] that annihilates the growth of the faster modes of
S. Together with a regularization parameter γ that deals with
the very small eigenvalues of S, the above system is written as

(γ I + MBDS)w = MBDb. (12)

The introduction of γ and MBD result in several orders of mag-
nitude reduction in the condition number of S, and makes the
convergence of standard algorithms, like Conjugate Gradient,
almost independent of the number of degrees of freedom of
the system as well the number of segments K . After solving
Eq. (12) for w, the QoI J = dG∞(s)

ds can be easily computed
(refer to Refs. [28,34]). We are now ready to couple the two
algorithms to predict the statistical behavior of J . This is the
subject of the next section.

III. COUPLING OF MSS AND PCE

The sensitivities are treated as any other QoI and are
written in terms of the truncated polynomial basis �i [refer
to Eq. (3)] as

J = dG∞
ds

≈
q∑

i=0

dG∞
ds

i

�i(ξ), (13)

and the spectral coefficients are computed from

Ji = dG∞
ds

i

=
∫
E

dG∞
ds

�iW dξ ≈
α∑

j=1

ω j
dG∞

ds
(ξ j )�i(ξ j ).

(14)
In the equation above, only the sensitivities dG∞

ds (ξ j ) eval-
uated at the quadrature points ξ j are unknown, and can be
computed using the MSS algorithm described in the previous

TABLE I. Mean (μJ ) and standard deviation (σJ ) of sensitivity
J = dz

dβ
for the Lorenz system for ξ ∼ N (0, 1). Comparison between

niPC and Monte Carlo (5000 samples and random initial conditions).
The Error(%) column refers to the discrepancy between niPC with
C = 2 and Monte Carlo.

Uncertain input C = 1 C = 2 Monte Carlo Error (%)

β = 2.5 + 0.1ξ μJ −1.5834 −1.5793 −1.5801 0.14
σJ 0.0579 0.0573 0.0601 4.66

β = 2.5 + 0.05ξ μJ −1.5889 −1.5799 −1.5804 0.10
σJ 0.0318 0.0321 0.0324 1.01

section. Each quadrature point is treated separately and the
computations can be fully parallelized.

This implementation is accurate but computationally ex-
pensive. Each nonintrusive evaluation requires the integration
of Eq. (1) at the quadrature point ξ j , the construction of the jth
preconditioner MBD j , and the solution of the system Eq. (12).
Since the system is chaotic, the integration of Eq. (1) at the
different points ξ j results in entirely different trajectories and
each matrix MBD j must be constructed afresh. In the following
section, we apply this method to two standard chaotic systems,
and in Sec. V, we propose an approximate method to partially
mitigate the computational cost.

IV. APPLICATION TO CHAOTIC SYSTEMS

Two common systems with (one or more) positive Lya-
punov exponents are the Lorenz attractor and the Kuramoto-
Sivashinsky equation. Both systems display chaotic behavior
and are excellent test cases to apply the PCE/MSS coupling.

A. Application to the Lorenz system

The Lorenz system is

dx

dt
= σ (y − x),

dy

dt
= x(ρ − z) − y,

dz

dt
= xy − βz. (15)

We define the time-average quantity

G∞ = z = lim
T →∞

1

T

∫ T

0
z dt, (16)

and the QoI is its sensitivity J = dG∞
dβ

with respect to the
random variable β = β0 + β1ξ , with ξ following standard
normal distribution, i.e., ξ ∼ N (0, 1). The Lorenz system was
integrated in the domain t ∈ [−1000, 200] and the first 1000
time units were discarded. The statistical moments of J for
two values of β1 obtained with niPC (with C = 1, C = 2)
and Monte Carlo (MC) with N = 5000 samples are compared
in Table I. Note that the sample size required by the Monte
Carlo for well-converged statistics was found to be about
half (N ≈ 2250). To compute each Monte Carlo sample, we
applied the MSS method for a random value of ξ that follows
the aforementioned distribution and random initial conditions.
As can be seen, there is very good agreement niPC and Monte
Carlo simulations.

We repeated the simulations for three different probability
density functions for ξ , Gaussian, uniform, and exponential.
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TABLE II. Mean and standard deviation of sensitivity J =
dz
dβ

for β = 2.5 + 0.1ξ , with ξ ∼ N (0, 1) (Gaussian distribution),
ξ ∼ U (0, 1) (uniform distribution) and ξ ∼ E (0, 1) (exponential
distribution), for T = 200 and C = 1. Results are compared with
Monte Carlo (N = 5000 samples and random initial conditions).

Gaussian Uniform Exponential

niPC (C = 1) μJ −1.5834 −1.5667 −1.7259
σJ 0.0579 0.0623 0.0083

Monte Carlo μJ −1.5801 −1.5696 −1.7386
σJ 0.0601 0.0641 0.0081

Error (%) μJ 0.57 0.51 1.72
σJ 3.67 2.80 2.47

The results are shown in Table II, again demonstrating good
agreement.

To explain the good matching between niPC for small
chaos orders C and Monte Carlo, in Fig. 1 we plot the variation
of the deterministic value of the QoI with β in the region 2–3
(the results were obtained using integration time T = 500).
The variation has finite but small curvature and is close to
linear; therefore, good results are expected with small values
of C. Note the better matching between niPC and MC for
β1 = 0.05 in Table I (the difference is around 1%). This is
because for smaller β1, β falls within a region of the plot
where the sensitivity variation is very close to linear. This is
exactly the case we referred to at the end of Sec. II A, where
the sensitivity varies linearly with the random variable, thus
making the UQ easier.

B. Application to the Kuramoto-Sivashinsky equation

The extended Kuramoto-Sivashinsky (KS) system [24] can
be expressed in mathematical form as

ut = −[(u + c)ux + uxx + uxxxx] with x ∈ [0, L],

u(0, t ) = u(L, t ) = 0,

ux(0, t ) = ux(L, t ) = 0.

(17)

Partial differentiation is denoted by a subscript (t or x) and the
number of subscripts is equal to the derivative order. The uxx

term destabilizes the system playing the role of energy source,
while uxxxx provides the necessary dissipation. The existence

2 2.5 3
-2

-1.8

-1.6

-1.4

-1.2

-1

FIG. 1. Variation of the deterministic value of QoI J = dz
dβ

with
β for the Lorenz system.

TABLE III. Mean and standard deviation of J = d〈ū〉
dc for c =

0.5 + 0.1ξ , with ξ ∼ N (0, 1). Comparison between niPC for C = 1,
C = 2 and Monte Carlo with N = 5000 samples and random initial
conditions (Tikhonov regularization parameter γ = 0.1, number of
time segments K = 10, T = 100). The error is between niPC (with
C = 2) and the MC (the latter is considered as reference).

C = 1 C = 2 MC MSS Error (%)

μJ −0.9031 −0.9068 −0.9095 0.30
σJ 0.0080 0.0085 0.0090 5.56

of chaotic solutions is guaranteed by setting L to a large
value, in the present case L = 128 [36], while the Dirichlet
and Neumann boundary conditions guarantee ergodicity of the
solutions [24]. The spatial derivatives are discretized with a
second order finite difference scheme. A variable step fourth-
order Runge-Kutta is used for time integration of the discrete
equations.

Two time-averaged quantities are considered,

〈ū〉 = lim
T →∞

1

T L

∫ T

0

∫ L

0
u dx dt and

〈u2〉 = lim
T →∞

1

T L

∫ T

0

∫ L

0
u2 dx dt, (18)

and their sensitivities with respect to the parameter c, J =
d〈ū〉
dc and J = d〈u2〉

dc , are the QoI’s. Uncertainty is introduced
through c = c0 + c1ξ , where ξ is a random variable. For the
deterministic system, the effect of the fixed value of c on the
above sensitivities was studied in Ref. [24].

1. Quantity of interest J = d〈u〉
dc

We consider the case c = 0.5 + 0.1ξ , with ξ following
standard normal distribution, i.e., ξ ∼ N (0, 1). Comparison
of the mean and standard deviation obtained with niPC using
2 chaos orders (C = 1 and 2) and the Monte Carlo method
(MC) with N = 5000 samples is shown in Table III (note that
we use capital C for the chaos order and lower case c for the
system parameter). It can be seen that the niPC and MC results
match very closely. Very small values of standard deviation
are obtained (two orders of magnitude smaller than the mean),
because as demonstrated in Ref. [24], the value of J = d〈u〉

dc
is constant in the range of c from 0 to approximately 1.2.
The parameters c0 = 0.5 and c1 = 0.1 are such that all Monte
Carlo samples are in this region. The standard deviation takes
a nonzero value because of the finite averaging time (here
T = 100). We have performed additional simulations with
T = 200 and 1000 and confirmed that the standard deviation
tends to 0, as expected.

2. Quantity of interest J = d〈u2〉
dc

Results for the mean value and the standard deviation
for c0 = 0.5 and for two values of c1 = 0.1 and 0.05 are
summarized in Table IV. Comparisons with MC demonstrate
very good agreement.

We also performed simulations with chaos order C = 3.
In Fig. 2, we plot the four spectral coefficients Ji [refer
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TABLE IV. Mean and standard deviation of J = d〈u2〉
dc for

ξ ∼ N (0, 1). Comparison between niPC with Monte Carlo with N =
5000 samples (Tikhonov regularization parameter γ = 0.1, number
of time segments K = 20, T = 200). The error is between niPC (with
C = 2) and the MC (the latter is considered as reference).

Uncertain input C = 1 C = 2 MC MSS Error (%)

μJ 0.7667 0.7654 0.7642 0.16
c = 0.5 + 0.1ξ

σJ 0.1431 0.1479 0.1459 1.30

μJ 0.7617 0.7601 0.7609 0.11
c = 0.5 + 0.05ξ

σJ 0.0741 0.0779 0.0759 2.75

to Eq. (14)] and we compare with the results of MC. The
coefficients were computed as functions of time by applying
the niPC to the QoI at each time step. The results from
the Monte Carlo simulation were computed at the last time
instant, T = 200. It is clear that the results from the niPC
converge to those from the MC for time larger than about 20,
which corresponds to about 2 Lyapunov timescales (see Fig. 9
in Ref. [24]). Note also that the magnitude of the coefficients
decreases rapidly (the fourth coefficient, J3, is two orders of
magnitude smaller than the first, J0) indicating that the series

expansion Eq. (13) converges very fast. This explains why in
Table IV good results are also obtained with the smaller chaos
order, C = 2.

In the two chaotic systems examined, good results for mean
and standard deviation of sensitivities were obtained with
relatively small chaos orders. This result is of course case
dependent, but a plausible explanation is the reduced order of
the underlying polynomial mapping the random input variable
to the sensitivity, as explained above, at the end of Sec. II A.
In the literature, there are very few applications of niPC to
time-averaged quantities of chaotic systems (and to the best
of our knowledge none refers to sensitivities). There is some
evidence that good results can be obtained with small values
of C. For LES of a spatially evolving mixing layer, values of
C up to 3 were used [15]. In Fig. 19 of Ref. [15], the authors
show the effect of C and comment that 40–70% of the total
variance of momentum thickness at one particular location is
due to polynomials of order C = 1, 2 while third-order poly-
nomials affect the solution by 1–5%. In Ref. [16] the error for
the mean value of kinetic energy in a decaying homogenous
isotropic turbulence predicted using niPC with C = 2 is less
than 10% (for the large interval of the Smagorinsky constant
examined) and drops to 1% for the small interval (refer to
Fig. 3(b) in Ref. [16]). Even for enstrophy, which depends on
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FIG. 2. Convergence of the first four spectral coefficients of J = d〈u2〉
dc with time and comparison with MC (dashed line). Initial conditions

are random.
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FIG. 3. Comparison of statistical moments of J = dz
dβ

obtained from using niPC (blue) and sPCE (red) for different values of mean β0. (a)
mean value; (b) standard deviation.

the very small scales of motion, the error is of the order of 3%
for C = 2 and the small Smagorinsky interval.

It is clear that the accuracy of low chaos orders depends
on the QoI, the PDF and the standard deviation of the input
variables and of course the dynamical system itself that maps
input to the output. If, however, the input variables have
small standard deviation (as in the case of small Smagorinsky
interval above) and we are concerned with the statistical
moments of sensitivities, then a good first approximation may
be obtained even for C = 1. This observation provides the
motivation for the development of a more efficient, but ap-
proximate, method which is detailed in the following section.

V. SHADOWING PCE (SPCE)

The approach presented in the previous section is very
costly, as it requires one MSS solution for each integration
point. To mitigate the computational cost, we propose here
an approximate method. The idea is to find trajectories for
the different parameters ξ j that shadow each other. We then
reuse the preconditioner MBD and alleviate the corresponding
cost (which can be considerable if the number of positive

Lyapunov exponents is large). We call the new approach
shadowing PCE (sPCE).

More specifically, we consider the trajectory at one integra-
tion node, say ξ1, as reference and we compute the trajectories
at the other nodes so that they shadow the reference one.
We store variables u(t ; ξ1) and v(t ; ξ1) and compute the
trajectories at the integration nodes from [refer to Eq. (10)]

u(τ (t ); ξ j ) ≈ u(t ; ξ1) + v0(t ; ξ1)ds j, (19)

where ds j = ξ j − ξ1 is the distance between integration nodes
ξ j and ξ1, which depends on the standard deviation of the
input variables. Equation (19) is an approximation that is
accurate for small standard deviations.

The computation of the exact trajectory that shadows a
reference one is a nonlinear problem (the iterative solution
algorithm can be found in Ref. [26]). In the present paper, we
do not iterate (that would have increased the computational
cost further) but apply instead the approximation Eq. (19).
Computational savings arise from two reasons: first, we
integrate the dynamical system only at the node ξ1, and
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FIG. 4. Comparison of trajectories (projected in the x-z plane) at the two integration nodes ξ1,2 = β0 ± β1 computed by niPC (a) and sPCE
(b) for m = 1 uncertain variable and C = 1.
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FIG. 5. Convergence rate of the KS (a) and the Lorenz (b) systems (for c = 0.5 + 0.1ξ and β = 2.5 + 0.1ξ, respectively). Comparison of
three techniques for system solution: computation of the preconditioner at each integration node separately, usage of the same preconditioner
and solution without any preconditioner at all.

second, we can reuse the preconditioner MBD computed at ξ1
to solve the MSS system Eq. (12) for the rest of the ξ j .

A few comments are warranted here on the nature of
the exact PCE and the approximate one just presented. The
exact PCE approach is global in nature, that is the dynam-
ical system is integrated at the quadrature points ξ j , ex-
act information is collected at these points, and the spec-
tral coefficients are evaluated from Eq. (14). The approxi-
mate approach is local, that is the behavior of the system
at the far points ξ j ( j �= 1) is obtained from the infor-
mation available at ξ1 only. This approximation becomes
globally accurate only if the underlying function has linear
behavior.

We proceed to compare the results obtained using the
accurate implementation described in Sec. III and the approx-
imate sPCE in terms of accuracy and cost for the Lorenz
system with QoI J = dG∞

dβ
, where G∞ is given in Eq. (16).

In Fig. 3 we compare the mean and standard deviation of
the QoI produced by the two methods for random β =
β0 + β1ξ , ξ ∼ N (0, 1) with different mean values β0 = 2–3
and constant β1 = 0.1. The difference between the two ap-
proaches is very small, of the order of 2–3%. This is due
to the (almost) linear underlying function variation shown
in Fig. 1.

In Fig. 4, we plot the trajectories evaluated at the two
integration nodes ξ1,2 = β0 ± β1 (projected in the x/z plane of
the phase space). The two trajectories deviate from each other
for the niPC method (left panel), but remain close together for
the sPCE (right panel), as expected.

We applied the same idea to the KS system for J = d〈u〉
dc and

we examined the effect of reusing the preconditioner on the
number of iterations. Figure 5 shows the convergence rate for
the two systems. In both cases, calculating MBD afresh at each
integration point (for niPC) or computing only at one point
and reusing at the second (for sPCE) resulted in approximately
the same convergence rate. For sPCE, the same matrix MBD

works well for both points because the corresponding trajecto-
ries shadow each other. Without a preconditioner, convergence
deteriorates as expected.

In Table V we compare the computing time required by
the two approaches for the Lorenz system (results are aver-
aged over 200 random initial conditions). The run times are
normalized by the total cost of node ξ1 [which comprises the
integration of the dynamical system Eq. (15), the construction
of the preconditioner, and the solution of the linear system
Eq. (12)]. As can be seen, the total cost is reduced by 27% for
node ξ2 in relation to node ξ1. This is due to the elimination
of the cost of the construction of MBD (which accounts for
21% of the total time, as shown in the 3rd column) and the
reduced time for the computation of the shadowing trajectory
[which is obtained directly from Eq. (19)]. If more uncertain
variables are present, which necessitate the computation at
other integration nodes, then we expect that this saving will
be carried over to all the other nodes, ξ j ( j �= 1), as well. In
the last column we present the average error in the standard
deviation of the sensitivity J = dz

dβ
as computed by the two

approaches in the range β0 ∈ [2, 3]; the error is quite small,
less than 3%.

TABLE V. Comparison of computational time required for niPC and sPCE for the Lorenz system. The average error between the
approaches is also given in the last column. One preconditioned MSS evaluation required on average 22 s of CPU time for T = 50 and
dt = 0.001.

Total cost per integration node Cost of preconditioner Average
(node ξ1 + node ξ2) (node ξ1 + node ξ2) Error

niPC 1.00 + 1.00 0.21 + 0.21 2.86%
sPCE 1.00 + 0.73 0.21 + 0.00
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TABLE VI. Comparison of computational time required for niPC and sPCE for the KS system. The average error between the approaches
is also given in the last column. One preconditioned MSS evaluation required on average 31 s of CPU time for T = 50 and dt = 0.1.

Total Cost per integration node Cost of preconditioner Average
(ξ1 + ξ2) ( ξ1 + ξ2) error

niPC 1.00 + 1.00 0.41 + 0.41 2.50%
sPCE 1.00 + 0.54 0.41 + 0.00

The same results for the KS system are presented in
Table VI, where the cost of computing the preconditioner
on each integration node amounts to approximately 41% of
the total runtime. The KS results are also averaged over
200 initial conditions and c ∈ [0, 1]. The preconditioner is
only evaluated once, resulting at computational savings of
approximately 46% per node and an average error of 2.5%
in the value of the computed sensitivity. All the computations
were conducted in parallel in the six cores of an Intel Core i7
8700 CPU.

VI. CONCLUSIONS

Nonintrusive polynomial chaos, niPC, can be used for
UQ of time-averaged QoIs and its accuracy doesn’t dete-
riorate as the time frame of the simulation grows. In this
paper the QoIs considered are the sensitivities of time-
averages to design parameters. Knowledge of the standard
deviation of the sensitivities is useful for design-optimization
under uncertainty. We couple a recently proposed algorithm
that evaluates these sensitivities (known as multiple shoot-

ing shadowing) with niPC, and we applied it successfully
to two systems, the Lorenz and the Kuramoto-Sivashinsky
equation.

The cost of the coupled PCE-MSS approach is dominated
by the computation of the sensitivities at the Galerkin inte-
gration points. This cost can be mitigated with the use of the
approximate sPCE method that we introduce in this paper.
The idea is to compute approximate shadowing trajectories
at the integration points and then reuse the resulting precondi-
tioner. We showed that for the parameters used in the present
investigation, reusing the preconditioner does not affect the
convergence rate and results in significant savings (of the
order of 27% per evaluation). The accuracy is also good, with
errors less than 3%.
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