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Entanglement in coupled kicked tops with chaotic dynamics
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The entanglement of eigenstates in two coupled, classically chaotic kicked tops is studied in dependence
of their interaction strength. The transition from the noninteracting and unentangled system toward full random
matrix behavior is governed by a universal scaling parameter. Using suitable random matrix transition ensembles
we express this transition parameter as a function of the subsystem sizes and the coupling strength for both
unitary and orthogonal symmetry classes. The universality is confirmed for the level spacing statistics of the
coupled kicked tops and a perturbative description is in good agreement with numerical results. The statistics
of Schmidt eigenvalues and entanglement entropies of eigenstates is found to follow a universal scaling as well.
Remarkably, this is not only the case for large subsystems of equal size but also if one of them is much smaller.
For the entanglement entropies a perturbative description is obtained, which can be extended to large couplings
and provides very good agreement with numerical results. Furthermore, the transition of the statistics of the
entanglement spectrum toward the random matrix limit is demonstrated for different ratios of the subsystem
sizes.
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I. INTRODUCTION

Entanglement is one of the key features of quantum theory
and, besides being of fundamental conceptual interest [1],
has nowadays many applications ranging from quantum com-
munication, quantum cryptography, to quantum computing
[2–4]. It also plays an important role in characterizing phases
of quantum many-body systems [5–11]. A fundamental con-
dition for entanglement is a system consisting of multiple
interacting subsystems. The simplest model to investigate
entanglement properties of such systems are bipartite systems,
which consist of two subsystems coupled by some interaction.
One of the central questions for such bipartite systems con-
cerns the possible amount of entanglement, quantified, e.g., by
the von Neumann entropy, Rényi entropies, Havrda-Charvát-
Tsallis (HCT) entropies, or the Schmidt eigenvalues [12–16].
This question concerns both the entanglement generated in the
time-evolution of initially un-entangled states and the entan-
glement of eigenstates of the full system. A common scenario
is that the subsystems are “quantum-chaotic” in the sense
that their spectral statistics and eigenstate statistics are well-
described by random matrix theory. Such systems could have
a classical limit with chaotic dynamics, while in the context
of many-body systems a classical limit not necessarily exists.

If the subsystems are strongly coupled, then their bipartite
entanglement can be obtained from a random matrix descrip-
tion. This implies that the statistics of Schmidt eigenvalues is
given by the Marčenko-Pastur distribution [17,18] and leads
to predictions for the average values of the purity (or linear
entropy) [19] and von Neumann entropy [20,21]. These re-
sults apply, for example, to quantum systems with classically
chaotic dynamics, as shown for coupled standard maps [22]
or coupled kicked tops [23–25], and to chaotic states in many-
body systems; see, e.g., Refs. [26–31].

If the subsystems are not strongly interacting, then the
amount of eigenstate entanglement is reduced. For bipartite
systems with broken time-reversal symmetry this has been
intensively studied in the past few years [32–34]: A universal
transition from unentangled to entangled states was found to
be determined by a single transition parameter depending only
on the system sizes and the interaction strength. Furthermore,
a random matrix transition ensemble was introduced which
allows to describe the universal features of entanglement
and spectral statistics. Moreover, a perturbation theoretical
description for spectral statistics (consecutive level spacing
distribution) and different measures of entanglement have
been developed. For the entanglement entropies a recursively
applied embedded perturbation theory describes the whole
transition toward maximal entanglement [33,34]. Recently, a
perturbative description of the time-dependence of entangle-
ment entropies for initial product eigenstates was obtained
which leads to a universal prediction after an appropriate
rescaling of time [35].

In this paper we study eigenstate entanglement in bipar-
tite systems with and without time reversal symmetry and
different types of couplings between the subsystems, based
on techniques developed in Refs. [32–34]. To illustrate the
analytical results we use a pair of coupled kicked tops as a sys-
tem with time reversal invariance for both equal and different
subsystem dimensions. The kicked top model was set up to
study the influence of classical regular and chaotic behavior
on quantum mechanical properties [36–38]. Coupled kicked
tops have been introduced to investigate the time evolution
of entanglement [39] and since then explored in much detail;
see, e.g., Refs. [23–25,39–49]. Kicked tops are of particular
interest, as they can also be accomplished experimentally
[50–54] and realizing coupled kicked tops might therefore be
feasible in the future. This would also provide a possibility
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to probe entanglement in a coupled many-body system as the
total spin of each subsystem can be considered as the sum
of spin-1/2 qubits [55–59]. We study the eigenstate entangle-
ment for coupled kicked tops when both show fully chaotic
behavior in the classical limit. For this we derive the transition
parameter � for the general case of systems with time reversal
invariance and specifically for the random matrix transition
ensemble with random diagonal coupling. To account for the
specific interaction of the coupled kicked tops it turns out to be
necessary to introduce a random matrix transition ensemble
with random product phases for the coupling. Furthermore,
we develop a perturbation theory of the level spacing statistics
for same subsystem dimensions and find a prediction for
the uncoupled situation for different subsystem dimensions.
To describe the entanglement of the coupled kicked tops in
dependence on the transition parameter, we use a perturbative
description for the first two Schmidt eigenvalues and for the
entanglement entropies. Applying the recursive embedding of
the regularized perturbation theory, following Ref. [34], leads
to a description of the complete transition. Good agreement
with numerical calculations for same as well as for different
subsystem dimension is found. In addition, we show that
the distribution of the Schmidt eigenvalues approaches the
Marčenko-Pastur distribution for large transition parameters,
even though quite slowly.

The paper is organized as follows: In Sec. II we introduce
bipartite systems and their time evolution operator and in
Sec. II A define the transition parameter for which a general
expression is obtained if the individual subsystems can be
described by random matrix theory. Section II B 2 discusses
different random matrix transition ensembles with their tran-
sition parameters and statistical properties. In Sec. II C we
introduce the coupled kicked tops and the transition parameter
for this system. In Sec. III A the level spacing statistics is
studied and a perturbative description is derived for the case
of equal subsystem dimension and also the case of different
subsystem dimensions is considered. Using the level spacing
distribution we demonstrate the universality of the transition
parameter. In Sec. IV we study the entanglement and its
perturbative description for coupled kicked tops. For this
we introduce in Sec. IV A the Schmidt eigenvalues and the
entanglement entropies as measures for the entanglement in
bipartite systems. In Sec. IV B we present perturbation theory
results for the first two Schmidt eigenvalues. This perturbation
theory is extended in Sec. IV C to the entanglement entropies
and the recursively embedded perturbation theory is employed
to describe the whole transition. In Sec. IV D we discuss the
applicability of this theory to the case of different subsystem
dimensions and in Sec. IV E the full statistics of the Schmidt
eigenvalues is considered. Finally, a summary and outlook is
given in Sec. V.

II. BIPARTITE SYSTEMS

We consider a class of interacting bipartite systems in
which the time evolution is given by a unitary Floquet op-
erator, i.e., the propagator over one period of the driving, as

U = U12(ε)(U1 ⊗ U2). (1)

Here U1 and U2 are unitary operators on Hilbert spaces of
dimension N1 and N2, respectively, and U12(ε) acts on the
tensor product space of dimension N1N2 and provides a cou-
pling between the two subsystems. The coupling is assumed
to fulfill U12(0) = Id, i.e., there is no interaction between
the subsystems for ε = 0. With increasing ε the interaction
increases and the operator U12(ε) is assumed to be entangling
[60,61]. Its eigenvalue problem is given by

U |ψn〉 = exp(iϕn)|ψn〉, (2)

with eigenstates |ψn〉 and corresponding eigenvalues exp(iϕn),
which lie on the unit circle due to the unitarity of U , so that the
eigenphases ϕn ∈ [0, 2π [. We aim to characterize the statistics
of eigenphases and eigenstates in dependence on the strength
ε of the coupling and the Hilbert space dimensions N1 and N2.

A. Universal transition parameter

In various cases the statistical properties of the bipartite
system (1) turn out to be governed by a single scaling param-
eter � [32–35,62,63]. This universal transition parameter is
given by

� = v2

D2
, (3)

where v2 is the mean-square off-diagonal matrix element of
U12(ε) in the basis in which U1 ⊗ U2 is diagonal and D = 2π

N1N2
is the mean level spacing of the full system.

For systems in which the noninteracting subsystems U1

and U2 can be modeled by random unitary matrices chosen
from an appropriate ensemble the transition parameter de-
pends on the coupling U12 only. Specifically, in the absence
of antiunitary symmetries U1 and U2 are chosen from the
circular unitary ensemble (CUE) while the circular orthogonal
ensemble (COE) applies in the presence of an antiunitary
symmetry (e.g., time-reversal) [64].

The ensemble average for the COE leads to

�COE = N1N2

4π2(N1N2 − 1)(N1 + 2)(N2 + 2)

× {
N1N2[N1N2 + 2(N1 + N2)]

− 2
∥∥U (1)

12

∥∥2 − 2
∥∥U (2)

12

∥∥2 − |tr(U12)|2}, (4)

which is derived in Appendix A 1. Here U (1)
12 and U (2)

12 are
diagonal matrices with entries (U (1)

12 ) j j = ∑
k (U12) jk, jk , and

(U (2)
12 )kk = ∑

j (U12) jk, jk as partially traced interaction opera-
tors, which are in general not unitary, and ‖X‖2 = Tr(XX †) is
the Hilbert-Schmidt norm [32,34].

If the subsystems have equal dimension, N = N1 = N2,
then Eq. (4) simplifies to

�COE = N4

4π2(N2 − 1)(N + 2)2

(
N2 + 4N − 2

∣∣∣∣∣∣∣∣U (1)
12

N

∣∣∣∣∣∣∣∣2

− 2

∣∣∣∣∣∣∣∣U (2)
12

N

∣∣∣∣∣∣∣∣2

−
∣∣∣∣ tr(U12)

N

∣∣∣∣2)
. (5)
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For the CUE one gets

�CUE = N1N2

4π2(N1N2 − 1)(N1 + 1)(N2 + 1)

× {
N1N2[N1N2 + (N1 + N2)]

− ∥∥U (1)
12

∣∣2 − ∥∥U (2)
12

∣∣2 − |tr(U12)|2}, (6)

which is derived in Appendix A 2. For N = N1 = N2 this
simplifies to

�CUE = N4

4π2(N2 − 1)(N + 1)2

(
N2 + 2N −

∣∣∣∣∣∣∣∣U (1)
12

N

∣∣∣∣∣∣∣∣2

−
∣∣∣∣∣∣∣∣U (2)

12

N

∣∣∣∣∣∣∣∣2

−
∣∣∣∣ tr(U12)

N

∣∣∣∣2)
. (7)

Note that Eq. (7) differs slightly from the result obtained in
Refs. [32,34], but agrees in leading order for example with the
results of the random matrix transition ensemble; see Eq. (13)
below.

The above expressions for the transition parameter show
that to obtain the same value of � for different Hilbert space
dimensions N1 and N2 the coupling strength ε has to be ad-
justed accordingly. The explicit dependence on ε is governed
by the specific form of the coupling.

B. Random matrix transition ensembles

1. General random matrix transition ensemble

To define explicit random matrix models to describe the
statistical properties of eigenvalues and eigenstates and the
transition parameter of bipartite systems of the form (1)
one has to prescribe the statistical properties of the cou-
pling. The general form of the random matrix transition
ensemble is

URMT(ε) = U12(ε)
(
U RMT

1 ⊗ U RMT
2

)
, (8)

where U RMT
1 and U RMT

2 are random matrices, e.g., from the
COE or the CUE. The coupling is written as

U12(ε) = exp(iεV12), (9)

and a rather general modeling is given by a diagonal matrix

(V12) jk, j′k′ = 2πξ ( j, k)δ j j′δkk′ , (10)

with j, j′ = 1, ..., N1 and k, k′ = 1, ..., N2. The phase ξ ( j, k)
is assumed to be random following some prescribed
distribution.

2. Random matrix transition ensemble

In Ref. [32] the random matrix transition ensemble was
introduced for which the coupling is given by

(V12) jk, j′k′ = 2πξ jkδ j j′δkk′ , (11)

where ξ jk are i.i.d. distributed uniformly on [−1/2, 1/2].
The limiting case of strong coupling has been studied in
Ref. [65], where the entangling power of UCUE(ε = 1) was
derived analytically.

Using the general result (4) for the COE case gives, see
Appendix A 3,

�COE = N2
1 N2

2

4π2(N1 + 2)(N2 + 2)

× (N1 + 2)(N2 + 2) − 9

N1N2 − 1

[
1 − sin2(πε)

π2ε2

]
, (12)

and for the CUE,

�CUE = N2
1 N2

2

4π2(N1 + 1)(N2 + 1)

× (N1 + 1)(N2 + 1) − 4

N1N2 − 1

[
1 − sin2(πε)

π2ε2

]
. (13)

In the definition of the transition parameter (3) the off-
diagonal elements of U12 appear in the numerator. Thus,
when applying the perturbation theory below to describe the
spectral statistics and the entanglement in dependence on �,
the distribution of the matrix elements

ω jk = 1

ṽ2
|〈 j′k′|V12| jk〉|2, (14)

in the eigenbasis | jk〉 of the uncoupled system plays an impor-
tant role. Here ṽ is the mean-square off-diagonal element of
V12 in this basis such that ω jk has unit mean. For small ε one
has U12(ε) = exp(iεV12) ≈ Id + iεV12 and thus v2 = ε2ṽ2. As
there are no correlations between the matrix elements, the
coupling (11) leads for the COE case to ω jk following the
Porter-Thomas distribution [66]

ρV12 (ω) = 1√
2πω

exp(−ω/2). (15)

For the CUE transition ensemble one gets the exponential
distribution

ρV12 (ω) = exp(−ω). (16)

3. Random matrix transition ensemble with product phases

The coupling (11) provides the simplest possible form
and leads to a good description of spectral statistics and
entanglement in a wide class of systems [32–35]. However,
one may have other types of interactions leading to different
expressions for the transition parameter and the statistical
properties. A physically relevant case occurs when the matrix
V12 is the tensor product of matrices acting on the individual
subsystems Hilbert spaces. In this case, the phases can be
described by a product of random individual phases,

(V12) jk, j′k′ = 2πξ j ξ̃kδ j j′δkk′ , (17)

where ξ j and ξ̃k are i.i.d. distributed uniformly on
[−1/2, 1/2]. Using the general result (4) for the COE case
gives for small ε, see Appendix A 4,

�COE 
 ε2

144

(N1N2)2((N1 + 1)(N2 + 1) − 9)

(N1N2 − 1)(N1 + 2)(N2 + 2)
, (18)

and for the CUE

�CUE 
 ε2

144

(N1N2)2((N1 + 1)(N2 + 1) − 4)

(N1N2 − 1)(N1 + 1)(N2 + 1)
. (19)

The full expressions, valid for larger ε as well, are also given
in Appendix A 4.
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Moreover, due to the product structure of the phases, the
distribution of the matrix elements ω jk is given by

ρV12 (ω) = 1

π
√

w
K0(

√
w), (20)

see Appendix C, where K0 is the modified Bessel function of
the second kind [67, Eq. (10.25.3)]. For the CUE case one gets

ρV12 (ω) = 2K0(2
√

ω) . (21)

C. Example: Coupled kicked tops

As specific example of an interacting bipartite system
we consider a pair of coupled time-periodically kicked tops,
which have been studied in much detail in particular with re-
spect to entanglement generation; see, e.g., Refs. [23–25,39–
48]. The dynamics is described by the Hamiltonian [24,39]

H (t ) = H1(t ) + H2(t ) + H12(t ), (22)

where

H�(t ) = π

2
Jy�

+ k�

2 j�
(Jz�

+ α�)2
∞∑

n=−∞
δ(t − n), (23)

H12 = ε
1√
j1 j2

Jz1 Jz2

∞∑
n=−∞

δ(t − n). (24)

Here j� is the total angular momentum of the �th spin (� =
1, 2), and Jy�

and Jz�
are the components of the angular

momentum operator. Although the following equally applies
to half integer spins we for simplicity restrict the discussion
to integer j�. The parameters k� are the individual kicking
strengths of the two tops and ε determines the coupling
strength between the two tops. For ε = 0 the two subsystems
are uncoupled. The Hilbert spaces of the uncoupled spins have
dimension N1 = 2 j1 + 1 and N2 = 2 j2 + 1, respectively. The
real parameters α� are additional phases which allow to break
the parity symmetry [24].

The Floquet operator for the coupled tops is given by [24]

U = U12(ε)(U1 ⊗ U2), (25)

where

U� = exp

(
− ik�

2 j�
(Jz�

+ α�)2

)
exp

(
− iπ

2
Jy�

)
, (26)

and the coupling reads

U12(ε) = exp(iεV12) with V12 = 1√
j1 j2

Jz1 Jz2 . (27)

The order of the operators is such that we consider the free
evolution first and then apply the kicks.

In the following we use k1 = 12.0 and k2 = 15.0 for which
the classical dynamics corresponding to each top in the uncou-
pled case (numerically) shows chaotic motion with no visible
regular structures. As phases we use α1 = 0.35 and α2 = 0.4
so that there is only time-reversal symmetry [24]. Therefore,
the Floquet operators U� for the individual spins and their
spectral statistics can be modeled by the COE.

To compute the transition parameter for the coupled kicked
tops we replace U� by independent COE matrices to use the
general COE result (4) and compute the specific expressions

for the coupling (27), see Eqs. (A22)–(A24), in Appendix A 5.
In the numerical computations these expressions are used to
determine � in dependence on ε and j�. For large N1, N2 and
small ε one gets

� ≈ 1

144π2
ε2N1N2[N1N2 + 2(N1 + N2)]. (28)

As discussed before in Sec. II A, this expression explicitly
shows that to get the same � for different j1 and j2 one has to
adapt the coupling accordingly.

III. LEVEL SPACING STATISTICS

A. Level spacing statistics for equal dimensions

To demonstrate that the transition parameter indeed leads
to a universal description for the coupled kicked tops, we
first consider the distribution of consecutive level spacings
for equal Hilbert space dimensions N = N1 = N2. The distri-
bution P(s) of the (rescaled) consecutive level spacings sn =
1
D (ϕn+1 − ϕn), where D is the mean level spacing, depends
on the strength of the coupling between the subsystems: For
strong coupling P(s) should follow the results of the COE [68]
which is well-described by the Wigner distribution

PCOE(s) ≈ π

2
s exp

(
−π

4
s2

)
. (29)

For the uncoupled case, even though the individual subsys-
tems show COE statistics, the resulting spacing distribution
of the full bipartite system for large N1 and N2 approaches the
exponential distribution

PPoisson(s) = exp(−s). (30)

The reason for this is that the eigenphases of the full system
(1) are an independent superposition ϕ jk = θ

(1)
j + θ

(2)
k mod 2π

of the phases θ
(1)
j and θ

(2)
k of the individual subsystems,

respectively, where j = 1, ..., N1 and k = 1, ..., N2. Note that
for tensor products of CUE matrices of equal dimension it has
been proven in Ref. [69] that the spectral statistics become
Poissonian.

Figure 1 shows the level spacing distribution P(s) for
different j1 = j2 = 30, 50, 70 in dependence on �. At � = 0
one obtains good agreement with the exponential distribution
(30). Once � > 0 there is an instantaneous change to
level-repulsion, i.e., P(0) = 0, as illustrated in Fig. 1(b) for
� = 0.1. Increasing � further one gets closer to the result for
the COE, Eq. (29). While the initial change of the distribution
is rather rapid in �, this slows down at around � = 1.0 and
the COE statistics is well fulfilled at � = 8.0; see Fig. 1(f).
Interestingly, this happens significantly later than in case of
the CUE transition ensemble and the coupled kicked rotors
on the torus where good agreement is found at � = 1.0 [32].
Numerical results for the transition ensemble (8) with COE
matrices and interaction (11) show the same slower approach
to the COE limit (29). Thus, this is an inherent feature of the
considered COE case and not specific to the coupling (27) of
the kicked tops.

The sequence of plots in Fig. 1 confirms that � provides
the universal scaling parameter: For the same �, but different
j1 = j2 and corresponding ε, determined implicitly using
Eq. (4) and Eqs. (A19)–(A21), the histograms nicely fall on
top of each other.

022221-4



ENTANGLEMENT IN COUPLED KICKED TOPS WITH … PHYSICAL REVIEW E 101, 022221 (2020)

0 1 2 3 4
0.00

0.25

0.50

0.75

1.00

Λ = 0.0 (a)

s

P (s)

0 1 2 3 4
0.00

0.25

0.50

0.75

1.00

Λ = 0.1 (b)

s

P (s)

0 1 2 3 4
0.00

0.25

0.50

0.75

1.00

Λ = 0.25 (c)

s

P (s)

0 1 2 3 4
0.00

0.25

0.50

0.75

1.00

Λ = 0.5 (d)

s

P (s)

0 1 2 3 4
0.00

0.25

0.50

0.75

1.00

Λ = 1.0 (e)

s

P (s)

0 1 2 3 4
0.00

0.25

0.50

0.75

1.00

Λ = 8.0 (f)

s

P (s)

FIG. 1. Transition of the level spacing distribution for the coupled kicked tops for (a) � = 0.0, (b) � = 0.1, (c) � = 0.25, (d) � = 0.5, (e)
� = 1.0, and (f) � = 8.0. The exponential distribution (30), is shown as red dashed curve and the COE result (29), as blue solid curve. In each
case the histograms for j1 = j2 = 30 (very light red), j1 = j2 = 50 (light green), and j1 = j2 = 70 (black) are shown. The other parameters
are k1 = 12.0, k2 = 15.0, α1 = 0.35, and α2 = 0.4.

To derive a perturbative expression for P(s) we closely
follow the derivation in the CUE case given in Ref. [34]
and adapt this to the COE transition ensemble. We choose
the specific interaction for the coupled kicked tops given by
Eq. (27) for which V12 is a tensor product of spin operators
acting on the individual subsystems. Thus, we model its
statistics by a random interaction of product form defined in
Eq. (17). The starting point is the perturbative expansion of
the eigenphases ϕ jk of U according to [34]

ϕ jk = θ jk + ε〈 jk|V12| jk〉 + ε2
∑

j′k′ �= jk

|〈 j′k′|V12| jk〉|2
θ jk − θ j′k′

. (31)

Here θ jk are the eigenphases of the unperturbed system, i.e.,
for ε = 0, corresponding to the eigenstates | jk〉, with j =
1, ..., N1 and k = 1, ...., N2, which form a basis of the full
Hilbert space. To compute the distribution of the normalized
consecutive level spacings

s jk = ϕ jk − ϕ j1k1

D
, (32)

we take the average over the random matrix transition en-
semble with product phases; see Sec. II B 3. Here | j1k1〉 is
the eigenstate for which θ j1k1 is the consecutive eigenphase
of θ jk in the unperturbed system. Doing so not all terms in
the perturbative expression contribute to the consecutive level
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spacing. In particular, the first order correction merely shifts
the whole spectrum leaving all level spacings unchanged.
Moreover, as the eigenphases θ jk are uniformly distributed
in [0, 2π [ only two second order terms ∼ε2 contribute to
the difference ϕ jk − ϕ j1k1 upon averaging. For simplicity we
only keep these nonvanishing terms which leads to the level
spacing [32]

s jk = θ jk − θ j1k1

D
+ 2

ε2

D

|〈 jk|V12| j1k1〉|2
θ jk − θ j1k1

. (33)

The averaging procedure is then performed by replacing
|〈 jk|V12| j1k1〉|2 by ṽ2ω jk . Further (θ jk − θ j1k1 )/D is substi-
tuted by the spacing s(0)

jk in the unperturbed system. Noting
that v2 = ε2ṽ2 is the mean-squared off-diagonal element of
the full perturbation εV12 gives in lowest order of ε,

s jk = s(0)
jk + 2�

ω jk

s(0)
jk

, (34)

with � as defined in Eq. (3).
To compute the statistics of the level spacings s we average

over both random variables s(0)
jk and ω jk . The distributions

P0(s0) of s(0)
jk is the Poisson distribution (30) and the dis-

tribution ρV12 (ω) of ω jk is given by Eq. (20). The singular
behavior of Eq. (34) at s(0)

jk → 0 is dealt with by regularization
[32,63,70], i.e., the replacement

s0 + 2�
ω

s0
→

√
s2

0 + 4�ω. (35)

This follows from degenerate perturbation theory and cor-
rectly captures the repulsion of nearly degenerate levels.
Since this also provides the correct asymptotic behavior, this
replacement can be done in the entire range of integration. The
distribution of level spacing results in

P̃(s) =
∫ ∞

0
ds0

∫ ∞

0
dω ρV12 (ω)P0(s0)

× δ(s −
√

s0
2 + 4�ω). (36)

Note, that due the regularization procedure P̃(s) does not have
the required unit mean. This condition can be restored using a
rescaling of s by

s =
∫ ∞

0
ds s P̃(s), (37)

such that the final result for the level spacing distribution reads

P(s) = s P̃(ss). (38)

The resulting prediction as well as the level spacing
distribution for the coupled kicked tops is shown in Fig. 2
for � = 0.02. Here, we evaluate the integrals in Eq. (36)
numerically. This figure demonstrates that there is a good
agreement between the perturbation theory result and the data
for the coupled kicked tops. Extending the prediction beyond
the perturbative regime is an interesting open problem. Note
that for obtaining the perturbative result (38) the specific form
of the coupling (27) has been used. In contrast, using the
coupling (11), does not provide an accurate description; in
particular it predicts the maximum at too large spacings.

0 1 2 3 4
0.00

0.25

0.50

0.75

1.00

P (s)

FIG. 2. Perturbative prediction of the level spacing distribution
for the coupled kicked tops at small � = 0.02. Shown is the his-
togram for j1 = j2 = 70, k1 = 12.0, k2 = 15.0, α1 = 0.35, and α2 =
0.4. The thick green curve shows the result of the perturbation theory
(38). For comparison the result (29) for the COE (solid blue curve),
and the exponential distribution (30) (red dashed curve) are shown.

B. Level spacing statistics for different dimensions

The results shown in Figs. 1 and 2 confirm that the tran-
sition parameter provides a universal scaling in the case of
equal Hilbert space dimensions N1 = N2. Moreover, the above
derivation allows to treat different dimensional subsystems,
i.e., N1 �= N2, as well. In particular the case of N1 � N2 is
of relevance as it corresponds to one system with a small
Hilbert space coupled to a system with chaotic dynamics and
a much larger Hilbert space which could be considered as
representing a heat-bath.

However, already for the uncoupled case, � = 0, the level
spacing statistics P(s) shows clear deviations from the expo-
nential behavior (30); see Fig. 3(a). This can be explained
by the form ϕ jk = θ

(1)
j + θ

(2)
k mod 2π of the eigenphases of

the uncoupled system. If N1 � N2, then the statistics of the
second subsystem is well described by the COE, so that
the full spectrum can be considered as a superposition of
N1 independent COE ensembles of size N2. In this case the
consecutive level spacing distribution is given by the N1COE
statistics [71],

PN1COE(s) = tN1−2
1 t2

[(
1 − 1

N1

)
t2 + πs

2N2
1

t1

]
, (39)

where

t1 = erfc

(√
πs

2N1

)
and t2 = exp

(
− πs2

4N2
1

)
, (40)

using the complementary error function. In Fig. 3(a) we
observe very good agreement of Eq. (39) with the numerical
result for the small dimension N1 = 3, corresponding to j1 =
1. Furthermore, we emphasise that Eq. (39) converges for
N1 → ∞ to the Poisson distribution (30). This is already
rather well achieved for N1 = 11, corresponding to j1 = 5,
which is also shown in Fig. 3(a).

Thus, the transition of the consecutive level spacing dis-
tribution cannot be universal if one subsystem dimension is
small. There are significant differences for different j1 which
are also present when the coupling is increased. For strong
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FIG. 3. Level spacing statistics for different dimensions of the
two coupled kicked tops for (a) � = 0.0, (b) � = 0.1, and (c) � =
0.5. The histograms are for ( j1, j2) = (1, 3000), very light red,
( j1, j2) = (5, 1000), light green, and ( j1, j2) = (10, 500), black.
The gray dashed curve in (a) shows the N1COE statistics (39) for
N1 = 3. For comparison the result (29) for the COE (solid blue
curve), and the exponential (30) (red dashed curve) are shown.
The other parameters are k1 = 12.0, k2 = 15.0, α1 = 0.35, and
α2 = 0.4.

coupling these differences disappear as the two subsystem
merge into one large system, whose statistics becomes in-
dependent of the ratio of the subsystems sizes, and is given
by that of the COE. We remark that the perturbation theory
requires that both subsystem dimensions are large. Here we
considered the extreme case that one dimension is small and
thus it comes as no surprise that universality may fail.

IV. ENTANGLEMENT

A. Schmidt eigenvalues and entanglement entropies

For the bipartite system (1) with tunable interaction the
eigenstates of U (0), i.e., the uncoupled case, are simply
product states of the individual subsystems and therefore not
entangled. However with increasing interaction ε they can no
longer be written as product states, i.e., they become entan-
gled. To characterize the amount of entanglement between the
two subsystems, there exist different quantitative measures,
like the von Neumann entropy, Rényi entropies or the Havrda-
Charvát-Tsallis entropies [14–16]. These measures are all
based on the eigenvalues of the reduced density matrices for a
given pure state |�〉 of the full system,

ρ1 = tr2(|�〉〈�|), ρ2 = tr1(|�〉〈�|), (41)

which are defined as the partial trace over the other subsystem.
For N1 � N2 the reduced density matrices ρ1 and ρ2 have N1

common eigenvalues λ j , which are called Schmidt eigenval-
ues and obey the normalization condition

N1∑
j=1

λ j = 1. (42)

The remaining N2 − N1 eigenvalues of ρ2 are zero. In the
following we assume the Schmidt eigenvalues to be ordered
by decreasing value, i.e., λ1 � · · · � λN1 . A state is unentan-
gled if and only if λ1 = 1 and all other Schmidt eigenvalues
vanish. If λ1 < 1, then the state is entangled, as it is no
longer represented as a product state. Maximal entanglement
is obtained when λ j = 1/N1 for all j = 1, ..., N1.

Based on the Schmidt eigenvalues one can define the
moments

μα =
N1∑
j=1

λα
j , α > 0, (43)

and the Havrda-Charvát-Tsallis (HCT) entropies [14–16] by

Sα = 1 − μα

α − 1
. (44)

In the limit of α → 1 the von Neumann entropy S1 is obtained,

S1 = −tr(ρ1 ln ρ1) = −tr(ρ2 ln ρ2)

= −
N1∑
j=1

λ j ln λ j . (45)

States which are unentangled lead to Sα = 0 while a maxi-
mally entangled state for example leads to S1 = ln N1.

For states chosen at random uniformly with respect to the
Haar measure from the full Hilbert space, the average von
Neumann entropy can be computed exactly [20,21,72,73] and
has the large N1 asymptotics

S1 = ln N1 − 1

2N2/N1
. (46)

For the linear entropy S2 the exact finite–N1 result is [19]

S2 = 1 − N1 + N2

1 + N1N2
. (47)
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B. Perturbative behavior of Schmidt eigenvalues

As for the uncoupled bipartite system, Eq. (1) for ε = 0,
the states are not entangled, we have λ1 = 1 and λ j = 0 for
j > 1. For nonvanishing coupling, the states become entan-
gled such that λ1 < 1 and on average in a chaotic system the
second largest Schmidt eigenvalue λ2 gives the most relevant
contribution. To arrive at a general expression for the first two
averaged Schmidt eigenvalues we now follow Refs. [33,34].
Based on Rayleigh-Schrödinger perturbation theory it has
been shown that the first two Schmidt eigenvalues can be
approximated as

λ
jk
1 = 1 − ε2

∑
j′k′ �= jk

|〈 jk|V12| j′k′〉|2
(θ jk − θ j′k′ )2

, (48)

λ
jk
2 = ε2 |〈 jk|V12| j2k2〉|2

(θ jk − θ j2k2 )2
. (49)

The notation is the same as introduced in Sec. III A. Fur-
thermore, | j2k2〉 is the state for which θ j2k2 is closest to
θ jk . Again, |〈 jk|V12| j′k′〉|2 is replaced by ṽ2ω j′k′ . In addition,
(θ jk − θ j′k′ )/D is substituted by sR2

j′k′ and (θ jk − θ j2k2 )/D by

the closer neighbor spacing sCN
j2k2 . Using v2 = ε2ṽ2 leads to

λ
jk
1 ≈ 1 − �

∑
j′k′ �= jk

ω j′k′(
sR2

j′k′
)2 , (50)

λ
jk
2 ≈ �

ω j2k2(
sCN

j2k2

)2 . (51)

To find the perturbative behavior of the first two Schmidt
eigenvalues, one averages over the random variables ω j′k′

and sR2
j′k′ , respectively, sCN

j2k2 . The distribution of ω j′k′ is given
by Eq. (20). To perform the averaging for the first Schmidt
eigenvalue define

Rjk (s, ω) =
∑

j′k′ �= jk

δ(ω − ω j′k′ )δ
(
s − sR2

j′k′
)

(52)

as probability density to find a level with distance sR2
j′k′ to

θ jk and a corresponding matrix element ω with the value
ω jk . Following the reasoning of Ref. [34] we assume that the
matrix elements and the spacings are uncorrelated. Thus, the
ensemble average gives

R(s, ω) = ρV12 (ω)R2(s) = ρV12 (ω). (53)

In the last equality the result

R2(s) =
∑

j′k′ �= jk

δ
(
s − sR2

j′k′
) = 1

for a Poisson distributed random variable with −∞ � s � ∞
is used. The distribution of the closer neighbor level spacings
sCN

j2k2 is given by [74]

ρCN(s) = 2exp(−2s). (54)

Thus, the result for the averaged Schmidt eigenvalues is

λ1 = 1 − �

∫ ∞

−∞
ds

∫ ∞

0
dω

ω

s2
ρV12 (ω), (55)

λ2 = �

∫ ∞

0
ds

∫ ∞

0
dω

ω

s2
ρV12 (ω)ρCN(s). (56)

By modeling small spacings with an effective two-level sys-
tem one finds the regularization [34]

�ω

s2
→ 1

2

(
1 − |s|√

s2 + 4�ω

)
. (57)

As this replacement has the same asymptotics as �ω/s2 for
large s, it can be used in the entire domain of integration.

For the coupling (27) for the coupled kicked tops the
distribution ρV12 (ω) is that of the random matrix transition
ensemble with product phases defined in Sec. II B 3 and
therefore given by Eq. (20). Using this in Eqs. (55) and (56),
together with Eq. (54), we obtain

λ1 = 1 −
∫ ∞

0
ds

∫ ∞

0
dω

(
1 − s√

s2 + 4�ω

)
K0(

√
ω)

π
√

ω

= 1 − 4

π

√
�, (58)

and

λ2 =
∫ ∞

0
ds

∫ ∞

0
dω

(
1 − s√

s2 + 4�ω

)
e−2s K0(

√
ω)

π
√

ω
. (59)

A comparison of these predictions with the average Schmidt
eigenvalues λi, where the average is done over all eigenstates,
of the coupled kicked tops is shown in Fig. 4(a). Here, we
evaluate the integral in (59) numerically. Good agreement for
small values of

√
� is found.

Note that the predictions (58) and (59) are based on the spe-
cific coupling (17). If one uses the coupling (11) introduced
for the random matrix transition ensemble in Ref. [32], see
Sec. II B 2, then one obtains for the COE case the results given
in Appendix B, while the results for the CUE were obtained
in Refs. [32,34].

The above derivation equally applies to the case of different
dimensionalities. Thus, in Eqs. (58) and (59) only the correct
transition parameter �, computed via Eq. (4) and Eqs. (A22)–
(A24), has to be used. Already starting from j1 = 3 and
large j2 good agreement is found, see Fig. 4(b), though in
comparison with Fig. 4(a) the regime of agreement for λ1 is
smaller.

C. Entanglement entropies

First we consider the perturbative description of the en-
tanglement entropies Sα for small

√
�. To use Eq. (44) an

expression for the moments μα is required. For this we split
the sum in the definition of μα in (43) into two parts and
consider λα

1 and
∑

j>1 λα
j separately. For λα

1 it is shown
in Ref. [34] that the leading order result can be written
as

λα
1 = 1 + 2

∫ ∞

0
ds

∫ ∞

0
dω ρV12 (ω)

×
{[

1 − 1

2

(
1 − s√

s2 + 4�ω

)]α

− 1

}
+ O(�),

(60)
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FIG. 4. Average Schmidt eigenvalues λi in dependence on
√

�

for i = 1, 2, ..., 6 (top to bottom with different symbols) for the
coupled kicked tops for (a) equal dimensions j1 = j2 = 50 and
(b) different dimensions ( j1, j2) = (3, 700). The solid gray line
shows the prediction (58) for λ1, the dashed gray line shows the
prediction (59). Parameters are k1 = 12.0, k2 = 15.0, α1 = 0.35, and
α2 = 0.4.

and the corrections of order O(�) are given as

2
∫ ∞

0
ds1

∫ ∞

0
dω1

∫ ∞

0
ds2

∫ ∞

0
dω2ρV12 (ω1)ρV12 (ω2)

×
{

1 +
[

1 − f (s1, ω1)

2
− f (s2, ω2)

2

]α

−
[

1 − f (s1, ω1)

2

]α

−
[

1 − f (s2, ω2)

2

]α}
. (61)

Here the abbreviation f (s, ω) = 1 − s/(
√

s2 + 4�ω) is used.
Using the density ρV12 (ω) from Eq. (20) for the coupled kicked
tops this leads to

λα
1 = 1 − C1(α)

√
� + C3(α)�, (62)

with

C1(α) = 2

π

∫ 1
2

0
dt

1 − (1 − t )α

t3/2(1 − t )3/2

= 4
√

2

π
2F1

(
−1

2
,

3

2
− α;

1

2
;

1

2

)
, (63)

C3(α) = 2

π2

∫ 1
2

0
dt1

∫ 1
2

0
dt2

× 1 + (1 − t1 − t2)α − (1 − t1)α − (1 − t2)α

t3/2
1 (1 − t1)3/2t3/2

2 (1 − t2)3/2
.

(64)

Here 2F1 is Gauss’ hypergeometric function [67, Eq. (15.2.1)].
For α = 1 Eq. (62) reproduces the prediction (58) for λ1. To
calculate

∑
j>1 λα

j we use [34]∑
j>1

λα
j =

∫ ∞

−∞
ds

∫ ∞

0
dω

ρV12 (ω)

2α

(
1 − |s|√

s2 + 4�ω

)α

. (65)

Inserting Eq. (20) for ρV12 (ω) leads to∑
j>1

λα
j = C2(α)

√
�, (66)

with

C2(α) = 2

π

∫ 1
2

0

tα

t3/2(1 − t )3/2

= 2

π
B1/2

(
α − 1

2
,−1

2

)
. (67)

Here Bz(a, b) is the incomplete β function [67, Eq. (8.17.1)].
With this it is now possible to write the average moments
μα as

μα = 1 − C(α)
√

� + C3(α)�, (68)

where

C(α) = C1(α) − C2(α) = 4√
π

�
(
α − 1

2

)
�(α − 1)

. (69)

This results in

Sα = 4√
π

�
(
α − 1

2

)
�(α)

√
� − C3(α)

α − 1
� (70)

as an approximation of the entropies for small �. An impor-
tant special case is the von Neumann entropy obtained in the
limit α → 1, which gives

S1 = 4
√

� −
(

4

π
− 1

)
�. (71)

In addition to this perturbative description of Sα , valid
for small

√
�, the recursively embedded perturbation theory

can be applied following Ref. [34] to obtain a complete
description of the entropies as a function of �. The underlying
idea is that with increasing � successively more and more
Schmidt eigenvalues become relevant. This can be accounted
for by a recursive description which can be approximated by
a differential equation. Furthermore, the maximal values of
the entropies for the fully entangled situation are used, which
follow from the moments of the Marčenko-Pastur distribution
of the Schmidt eigenvalues [18]. Restricting to N = N1 = N2

one has

S∞
1 = ln N − 1

2
, (72)

S∞
α = 1 − CαN1−α

α − 1
, for α > 1, (73)
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FIG. 5. Average entanglement entropies Sα , rescaled by S∞
α , in

dependence on
√

� for α = 1, 2, 3, 4 (bottom to top) for the coupled
kicked tops with coupling (27). The solid curves show the prediction
as given by Eqs. (74) and (75). Parameters are j1 = j2 = 50, k1 =
12.0, k2 = 15.0, α1 = 0.35, and α2 = 0.4.

where Cα = 1
α+1 (2α

α ) are Catalan numbers [67, § 26.5.]. This
leads to

Sα (�) ≈
[

1 − exp

(
− C(α)

(α − 1)S∞
α

√
�

)]
S∞

α (74)

as prediction for the entropies. In particular, using
limα→1

C(α)
α−1 = 4 gives for the von Neumann entropy,

S1(�) ≈
[

1 − exp

(
− 4

S∞
1

√
�

)]
S∞

1 . (75)

Figure 5 shows a comparison of the recursively embedded
perturbation theory predictions with the results for the coupled
kicked tops. The agreement between the curves is overall very
good.

D. Entanglement entropies for different dimensions

To describe the entanglement entropies for different sub-
system dimensions the recursively embedded perturbation
theory can be applied as well. We restrict to the case of the
linear entropy obtained for α = 2. For this the maximum of
the entropy S∞

2 is exactly given by Lubkin’s result (47) [19].
This leads to the prediction for the linear entropy

S2(�) ≈
[

1 − exp

(
− 2

S∞
2

√
�

)]
S∞

2 , (76)

as by Eq. (69) one has C(2) = 2. Thus, while the functional
dependence is the same as in Eq. (74), the different dimension-
alities of the subsystems are accounted for by the formula for
S∞

2 and the dependence of the transition parameter � on the
subsystem dimensions. Note that for the other entropies with
α �= 2, the maximal values of the entropies corresponding to
Eqs. (72) and (73) follow from the results in Ref. [18].

Figure 6 shows the rescaled linear entropy for the coupled
kicked tops for several pairs of different dimensions as well as
the prediction from Eq. (76). From this plot it can be seen that
for j1 � 3 the linear entropy of the coupled kicked tops for
different dimensions, after rescaling by the corresponding S∞

2

0 1 2 3
0.0

0.5

1.0

(3, 700)

(5, 500)

(10, 250)

(50, 50)

√
Λ

S2(Λ)

S∞
2

FIG. 6. Rescaled linear entropy, S2/S∞
2 , in de-

pendence on
√

� for different dimensions ( j1, j2 ) =
(3, 700), (5, 500), (10, 250), (50, 50) of the coupled kicked
tops. The solid magenta curve shows Eq. (76) using S∞

2 = 1 which
corresponds to N1, N2 → ∞. Parameters are k1 = 12.0, k2 = 15.0,
α1 = 0.35, and α2 = 0.4.

given by Eq. (47), collapse rather well to one universal curve
described by Eq. (76).

Thus, we we get a remarkable range of universal behavior
and agreement with the prediction (76). Only for the very
small system sizes j1 = 1, 2 (not shown) there are system-
atic differences and a detailed understanding and theoretical
description in this case is an interesting open question for the
future.

E. Statistics of Schmidt eigenvalues

The average Schmidt eigenvalues and the average en-
tanglement entropies provide a compact characterization of
the possible amount of entanglement in dependence of the
universal scaling parameter �. More detailed information is
obtained by considering the statistics of the whole spectrum
of Schmidt eigenvalues [24], or the entanglement spectrum
[75]. For large � one expects that the distribution of the scaled
Schmidt eigenvalues

xi = λi N1 (77)

is given by the Marčenko-Pastur distribution, when N1 and
N2 are large but their ratio Q = N2/N1 � 1 is fixed [18]. This
distribution reads [17]

PQ
MP(x) = Q

2π

√
(x+ − x)(x − x−)

x
, x− � x � x+, (78)

where

x± = 1 + 1

Q
± 2√

Q
. (79)

For chaotic states of coupled kicked tops, i.e., in the regime of
large �, this has been verified in Ref. [24]. Exact results for
finite N1 were obtained in Refs. [45,46].

We want to investigate the dependence of the distribution
of the scaled Schmidt eigenvalues on � for equal subsystem
dimensions as well as for different dimensions. In the un-
coupled case, i.e., at � = 0, all eigenstates are unentangled
such that λ1 = 1 and λi = 0 for i > 1 leading to P(x) =
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FIG. 7. Distribution P(x) of the rescaled Schmidt eigenvalues
xi = λiN1 for (a)

√
� = 3 and (b)

√
� = 15, both with N1 = 2 j1 + 1

for j1 = j2 = 50. The red dashed curve shows the Marčenko-Pastur
distribution (78) for Q = 1. The insets show the same data in a
semilogarithmic plot.

(1 − 1/N1)δ(x) + 1/N1δ(x − N1). With increasing
√

� the
distribution P(x) of the rescaled Schmidt eigenvalues (77)
will move toward the Marčenko-Pastur distribution. Figure 7
shows the result for the case of equal dimension of the
subsystems and illustrates that this transition is rather slow
as even for

√
� = 15 small deviations are visible near x = 4.

These deviations are due to the finite system size and become
smaller with increasing j1 = j2. The slow convergence with√

� to the Marčenko-Pastur distribution has already been
observed for the example of the coupled standard maps in
Ref. [34], for which, however, the transition appears to be
slightly faster, which is consistent with the observations for
the spectral statistics made in Sec. III A.

The case of different dimensions of the subsystems is
shown in Fig. 8. Again for rather large

√
� good agreement

between the distribution for the coupled kicked tops and
the Marčenko-Pastur distribution is found. Interestingly, the
distribution is quite concentrated around x = 1, so that one
could think that there are some states which are close to
maximal entanglement, i.e., λi = 1/N1 for all i. However,
we observe, that this is not the case at least for a finite N2.
To obtain maximal entanglement, sophisticated protocols are
needed [76].
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FIG. 8. Distribution P(x) of the rescaled Schmidt eigenvalues
xi = λiN1 for (a)

√
� = 3 and (b)

√
� = 15, both with N1 = 2 j1 + 1

for ( j1, j2 ) = (15, 160). The full cyan curve shows the Marčenko-
Pastur distribution (78) for Q = (2 j1 + 1)/(2 j2 + 1) = 0.0966 and
the red dashed curve for Q = 1. The insets show the same data in a
semilogarithmic plot.

V. SUMMARY AND OUTLOOK

For bipartite systems the spectral statistics and entangle-
ment of eigenstates are investigated in dependence of a tun-
able interaction. We focus on classically fully chaotic subsys-
tem which can be modeled by circular unitary or orthogonal
ensembles and derive an exact expression for the ensemble
average of the transition parameter. By specifying the sta-
tistical properties of the coupling between the subsystems,
different random matrix transition ensembles are obtained.
In particular assuming a product structure for the coupling
allows for explicitly describing the dependence of the tran-
sition parameter on the individual subsystems Hilbert space
dimensions and the coupling strength. An important model
system following COE statistics is given by two coupled
kicked tops. We utilize this system to illustrate the transition
from noninteracting to random matrix behavior. To this end
we consider the level spacing distribution in the case of equal
and unequal dimensions of the subsystems. For equal dimen-
sions the statistics depends solely on the transition parameter.
For unequal dimensions we find deviations if one of the
subsystems has a small dimension. However, universality is
already achieved when the smaller subsystem has dimension
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larger than ten. For large transition parameter the limiting
case of Wigner distributed level spacings is approached slower
than for systems described by the CUE transition ensemble.
A perturbative description, obtained from the random matrix
transition ensemble with product phases, is in good agreement
with numerical results.

For the average entanglement of eigenstates, in terms of
their HCT entropies including the von Neumann entropy, a
universal scaling for both equal and unequal dimensions is
found. Only if the dimension of one subsystem is smaller
than five, deviations from universality are observed. Applying
perturbation theory for the average first and second Schmidt
eigenvalues gives very good agreement with the numerical
results for the coupled kicked tops for equal and unequal
dimensions for small transition parameters. Using the recur-
sively embedded perturbation theory allows to extend the per-
turbative description toward the large coupling regime. Very
good agreement of the HCT entropies and the von Neumann
entropy with the numerical results is found for all values of
the transition parameter. Finally we study the distribution of
Schmidt eigenvalues for which a rather slow transition from
the unentangled case toward Marčenko-Pastur distribution for
both equal and unequal dimensions is observed.

The results presented in this paper confirm that the theory
based on the transition parameter gives rise to an accurate
description of eigenstate entanglement for bipartite systems
satisfying a unitary symmetry when the specific structure of
the coupling is taken into account. There are several interest-
ing open questions. The observed deviations from universality
if one subsystem is very small are not well captured by the
asymptotic results of the random matrix transition ensemble,
but potentially are accessible by analytic approaches. Thus,
studying those small systems may give rise to further insight
both in terms of eigenstate entanglement as well as in the
time evolution of initially pure states. Another interesting
question for the future is to find an analytical expression
for the transition between the distribution of the Schmidt
eigenvalues at � = 0 and the Marčenko-Pastur distribution
based on the random matrix transition ensemble. Furthermore,
as the system of two coupled kicked tops may be interpreted
as the collective dynamics of two spin chains with nonlocal
interaction one may ask to what extent the results transfer to
interacting many-body systems.
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APPENDIX A: COMPUTATION
OF THE TRANSITION PARAMETER

1. COE

If the bipartite system is such that the individual subsys-
tems are described by random matrix theory in the presence
of an antiunitary symmetry, then one can set up the random
matrix transition ensemble (8) as

UCOE(ε) = U12(ε)
(
U COE

1 ⊗ U COE
2

)
, (A1)

where U COE
1 und U COE

2 are independently chosen COE ran-
dom matrices of dimension N1 × N1 and N2 × N2, respec-
tively. The interaction U12 ≡ U12(ε) is a diagonal unitary
matrix of dimension N1N2 × N1N2. For the moment we do not
yet specify the statistics of its entries.

We now determine the transition parameter � = v2/D2,
where v2 is the mean square of the off-diagonal elements for
U12 in the basis in which U COE

1 ⊗ U COE
2 is diagonal and D

is the mean level spacing. For this consider �i = E†
i U COE

i Ei,
where Ei is the matrix containing the eigenvectors of U COE

i as
columns. Defining ϒ = E1 ⊗ E2 we get the representation of
U12 in the requested basis, � = ϒ†U12ϒ , where

γil = (�)il =
N1N2∑
j,k=1

υ∗
ki(U12)k jυ jl , (A2)

with υ jl = (ϒ) jl . Thus,

v2 =
∑N1N2

i,l=1 |γil |2 − ∑N1N2
i=1 |γii|2

(N1N2)2 − N1N2

= N1N2 − ∑N1N2
i=1 |γii|2

N1N2(N1N2 − 1)
, (A3)

where in the second equality the unitarity of � has been used.
Next the sum over the diagonal elements is determined

N1N2∑
i=1

|γii|2 =
N1N2∑
i=1

N1N2∑
k=1

υ∗
ki(U12)kkυki

N1N2∑
l=1

υli(U
∗
12)llυ

∗
li

=
N1N2∑
k,l=1

(U12)kk (U ∗
12)ll

N1N2∑
i=1

|υik|2|υil |2 . (A4)

Next the product |υik|2|υil |2 is replaced by its average
|υik|2|υil |2 over the COE. By the definition of ϒ and the
independence of U COE

1 and U COE
2 one gets

|υik|2|υil |2 = ∣∣(E1)i1k1

∣∣2∣∣(E1)i1l1

∣∣2 ∣∣(E2)i2k2

∣∣2∣∣(E2)i2l2

∣∣2
,

(A5)
where, due to the product structure, we identify i ≡ (i1, i2),
k ≡ (k1, k2), and l ≡ (l1, l2). For each term one has in case of
the COE [77]∣∣(E1)i1k1

∣∣2∣∣(E1)i1l1

∣∣2 = 2δk1l1 + 1

N1(N1 + 2)
. (A6)

Thus, we get for the average in Eq. (A5)

|υik|2|υil |2 = 2δk1l1 + 1

N1(N1 + 2)

2δk2l2 + 1

N2(N2 + 2)

= 4δk1l1δk2l2 + 2δk1l1 + 2δk2l2 + 1

N1(N1 + 2)N2(N2 + 2)
. (A7)

As the right-hand side is independent of i, one gets

N1N2∑
i=1

|γii|2 =
N1∑

k1,l1=1

N2∑
k2,l2=1

(
4δk1l1δk2l2 + 2δk1l1 + 2δk2l2 + 1

)
× 〈k1k2|U12|k1k2〉〈l1l2|U ∗

12|l1l2〉
(N1 + 2)(N2 + 2)

. (A8)
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Using the partial traces and the Hilbert-Schmidt norm we
arrive at

N1N2∑
i=1

|γii|2 = 4N1N2 + 2
∣∣∣∣U (1)

12

∣∣∣∣2 + 2
∣∣∣∣U (2)

12

∣∣∣∣2 + |tr(U12)|2
(N1 + 2)(N2 + 2)

.

(A9)
Insertion in Eq. (A3) gives the final result (4) for the transition
parameter in the COE case.

2. CUE

The derivation for the CUE follows the same steps as for
the COE. The only difference is to replace relation (A6) by
the CUE result [78, Eq. (10)],∣∣(E1)i1k1

∣∣2∣∣(E1)i1l1

∣∣2 = δk1l1 + 1

N1(N1 + 1)
. (A10)

With this the result (6) is obtained.

3. Random matrix transition ensemble

For the random matrix transition ensemble introduced in
Ref. [32], see Sec. II B 2, the interaction is given by the
diagonal matrix with random phases. In this case the par-
tial traces and Hilbert-Schmidt norms have been derived in
Refs. [32,34] as∣∣tr(U RMT

12

)∣∣2 = N1N2

(
1 + (N1N2 − 1)

sin2(πε)

π2ε2

)
, (A11)

∣∣∣∣U RMT(1)

12

∣∣∣∣2 = N1N2

(
1 + (N2 − 1)

sin2(πε)

π2ε2

)
, (A12)

∣∣∣∣U RMT(2)

12

∣∣∣∣2 = N1N2

(
1 + (N1 − 1)

sin2(πε)

π2ε2

)
. (A13)

Using these in Eqs. (4) and (6), respectively, gives the corre-
sponding results Eq. (12) for the COE and Eq. (13) for the
CUE.

4. Random matrix transition ensemble with product phases

To calculate the transition parameter for the random matrix
transition ensemble with product phases, see Sec. II B 3, we
first consider the squared norm of the trace and the Hilbert-
Schmidt norm of the partial traces of the interaction U12(ε)
with the coupling in Eq. (17). To this end we collect the
random variables into the vectors ξ = (ξ j ) j=1,...,N1 and ξ̃ =
(ξ̃k )k=1,...,N2 where all components are i.i.d. distributed uni-
formly on [−1/2, 1/2]. Averaging over the random variables
in the coupling allows for writing

|tr(U12)|2 =
N1∑

j, j′=1

N2∑
k,k′=1

∫
[−1/2,1/2]N1+N2

dξd ξ̃ e2π iε(ξ j ξ̃k−ξ j′ ξ̃k′ ). (A14)

For each term in this fourfold sum the integrand depends at
most on four of the integration variables, namely, if j �= j′
and k �= k′, and we can integrate over the remaining random
variables each giving a factor of one. This gives∫

[−1/2,1/2]4

dξ jdξ j′d ξ̃kd ξ̃k′ e2π iε(ξ j ξ̃k−ξ j′ ξ̃k′ ) = 4

ε2π2
Si

(επ

2

)2
, (A15)

where Si(x) is the sine integral [67, Eq. (6.2.9)]. Moreover,
it does not depend on the values of j, j′, k, and k′ and there
are N1N2(N1N2 − N1N2 + 1) possible combinations of indices
for this case. Furthermore, there are N1N2(N2 − 1) cases for
which j = j′ and k �= k′ and N2N1(N1 − 1) cases for which
j �= j′ and k = k′ and for which the integrand in Eq. (A14)
depends on three integration variables only. Finally, there are
N1N2 cases for which j = j′ and k = k′ where the integrand
depends on two integration variables only. In all cases the cor-
responding integrals can be evaluated analytically. Combining
the integrals and taking the frequency of their appearance into
account gives

|tr(U12)|2 = N1N2

{
1 + 2

ε2π2

[
(N1 + N2 − 2)χ (επ )

+ 2(N1 − 1)(N2 − 1)Si
(επ

2

)2
]}

, (A16)

where χ (x) = xSi(x) + cos(x) − 1 has been used as abbrevi-
ation. Using the same arguments one finds∣∣∣∣U (1)

12

∣∣∣∣2 = N1N2

[
1 + (N2 − 1)

2 χ (επ )

ε2π2

]
, (A17)∣∣∣∣U (2)

12

∣∣∣∣2 = N1N2

[
1 + (N1 − 1)

2 χ (επ )

ε2π2

]
. (A18)

The transition parameter for the COE follows by inserting
Eqs. (A16), (A17), and (A18) in Eq. (4), and for the CUE via
Eq. (6).

5. Coupled kicked tops

To determine the transition parameter for the coupled
kicked tops, the partial traces and Hilbert-Schmidt norm
have to be computed for the interaction U12(ε) as defined in
Eq. (27). The result is

|tr(U12)|2 =
j1∑

m1,s1=− j1

j2∑
m2,s2=− j2

E (s1, s2)E (m1,−m2), (A19)

∣∣∣∣U (1)
12

∣∣∣∣2 =
j1∑

s1=− j1

j2∑
s2,m2=− j2

E (s1, s2)E (s1,−m2), (A20)

∣∣∣∣U (2)
12

∣∣∣∣2 =
j1∑

s1,m1=− j1

j2∑
s2=− j2

E (s1, s2)E (m1,−s2), (A21)

where E (s, m) = exp(−i ε√
j1 j2

sm) has been used as
abbreviation.

For large j1, j2 the sums can be approximated by integrals
which can be evaluated exactly, giving

|tr(U12)|2 ≈
[

4

√
j1 j2
ε

Si(κ/2)

]2

, (A22)∣∣∣∣U (1)
12

∣∣∣∣2 ≈ 8
j1 j2
ε2N1

χ (κ), (A23)∣∣∣∣U (2)
12

∣∣∣∣2 ≈ 8
j1 j2
ε2N2

χ (κ), (A24)

where κ := εN1N2

2
√

j1 j2
. The explicit expression of the transition

parameter � is then obtained using Eq. (4).

022221-13



HERRMANN, KIELER, FRITZSCH, AND BÄCKER PHYSICAL REVIEW E 101, 022221 (2020)

For very large ε the transition parameter �, determined
from Eq. (4) and Eqs. (A22)–(A24) saturates with value

�max = N2
1 N2

2 [N1N2 + 2(N1 + N2)]

4π2(N1N2 − 1)(N1 + 2)(N2 + 2)
. (A25)

Thus, for fixed N1 and N2 it is not possible to obtain arbitrarily
large �.

Note that for the interaction (27) of the coupled kicked
tops choosing the specific value ε = 2π gives U12(ε) = Id.
This operator does not create any interaction between the two
kicked tops. This illustrates the limits of the applicability of
the transition parameter which has been obtained from pertur-
bation theory and therefore provides the correct description
for small values of ε only.

APPENDIX B: COE RANDOM MATRIX
TRANSITION ENSEMBLE

In this Appendix for completeness we derive results for
the entropies for the COE random matrix transition ensemble
defined in Eq. (11). The results for the CUE case have been
obtained in Refs. [33,34].

The perturbative behavior of λ1 and λ2 can be determined
following the steps in Sec. IV B using the coupling (15). The
result is

λ1 = 1 −
∫ ∞

0
ds

∫ ∞

0
dω

(
1 − s√

s2 + 4�ω

)
e−ω/2

√
2πω

= 1 − 4√
2π

√
� (B1)

and

λ2 =
∫ ∞

0
ds

∫ ∞

0
dω

(
1 − s√

s2 + 4�ω

)
e−2s e−ω/2

√
2πω

. (B2)

A comparison of these predictions with numerical results for
the COE random matrix transition ensemble (11) is shown in
Fig. 9. Note that in Fig. 9(b) an average over 10 realizations
is shown to reduce the fluctuations which are due to the small
Hilbert space dimension of the first subsystem.

The perturbative description of the entanglement entropies
Sα is given by the averaged moments μα in Eq. (68) with the
terms

C(α) = C1(α) − C2(α) = 2
√

2
�

(
α − 1

2

)
�(α − 1)

, (B3)

using

C1(α) =
√

2

π

∫ 1
2

0
dt

1 − (1 − t )α

t3/2(1 − t )3/2

= 4√
π

2F1

(
−1

2
,

3

2
− α;

1

2
;

1

2

)
, (B4)

C2(α) =
√

2

π

∫ 1
2

0

tα

t3/2(1 − t )3/2

=
√

2

π
B1/2

(
α − 1

2
,−1

2

)
, (B5)
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0.0

0.5

1.0

(a)

√
Λ

λi

210
0.0

0.5

1.0

(b)

√
Λ

λi

FIG. 9. Average Schmidt eigenvalues λi in dependence on
√

�

for i = 1, 2, ..., 6 (top to bottom with different symbols) for the
COE transition ensemble (a) equal dimensions N1 = N2 = 101 and
(b) different dimensions (N1, N2) = (7, 1401). The solid gray line
shows the prediction (B1) for λ1, the dashed gray line shows the
prediction (B2).

and

C3(α) = 1

π

∫ 1
2

0
dt1

∫ 1
2

0
dt2

× 1 + (1 − t1 − t2)α − (1 − t1)α − (1 − t2)α

t3/2
1 (1 − t1)3/2t3/2

2 (1 − t2)3/2
,

(B6)

which takes the coupling (15) into account.

APPENDIX C: MATRIX ELEMENT DISTRIBUTION FOR
PRODUCT STRUCTURE

In this Appendix we derive the distribution of the matrix
elements (14) for the case that the coupling matrix V12 has the
product structure V12 = V1V2 with V� only acting on the �th
subsystem. This situation for example occurs for the coupling
(17) of the random matrix transition ensemble with product
phases and the coupling (27) of the coupled kicked tops. As
defined in Sec. II B 2, we have

ṽ2ω jk = |〈 jk|V12| j′k′〉|2 = |〈 jk|V1V2| j′k′〉|2,
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where in the second equality the product structure of V12 has
been used. As | jk〉 and | j′k′〉 are eigenstates of the uncoupled
system, one can write

ṽ2ω jk = |〈 jk|V1| j′k′〉|2|〈 jk|V2| j′k′〉|2
= ṽ1

2ω1 jk ṽ2
2ω2 jk = ṽ2ω1 jk ω2 jk ,

which defines ω1 jk and ω2 jk . In the COE case both ω1 jk and
ω2 jk follow the Porter-Thomas distribution (15), while for the
CUE both obey the exponential distribution (16). Thus, for the
distribution ρV12 (ω) of the matrix elements of V12 one gets for
the COE

ρV12 (ω) =
∑

j′k′ �= jk

δ(ω − ω j′k′ )

=
∑

j′k′ �= jk

δ
(
ω − ω1 j′k′ ω2 j′k′

)

=
∫

dω1dω2 δ(ω − ω1ω2)
e−(ω1+ω2 )/2

2π
√

ω1ω2

=
∫

dω2
e−( ω

ω2
+ω2 )/2

2πω2
√

ω

= 1

π
√

ω
K0(

√
ω). (C1)

0 2 4 6
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FIG. 10. Matrix element distribution for the coupled kicked tops
in comparison with the prediction (C1), red dashed line, and expo-
nential distribution (16), green dotted line, and the Porter-Thomas
distribution (15), blue dash-dotted line.

Here Kν is the modified Bessel function of the second kind
[67, Eq. (10.25.3)]. Similarly, one gets for the CUE case

ρV12 (ω) = 2K0(2
√

ω). (C2)

Figure 10 shows the matrix element distribution for the
coupled kicked tops in comparison with the prediction (C1).
Very good agreement is found, while the random matrix
transition ensemble (8) with coupling (11) gives in the CUE
case the exponential distribution (16) and in the COE case the
Porter-Thomas distribution (15).
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Życzkowski, Tensor products of random unitary matrices,
Random Matrices: Theory Appl. 1, 1250009 (2012).

[70] S. Tomsovic, Bounds on the time-reversal noninvariant
nucleon-nucleon interaction derived from transition strength
fluctuations, Ph.D. thesis, University of Rochester, 1986.

[71] A. Y. Abul-Magd, Level statistics for nearly integrable systems,
Phys. Rev. E 80, 017201 (2009).

[72] S. K. Foong and S. Kanno, Proof of Page’s Conjecture on the
Average Entropy of a Subsystem, Phys. Rev. Lett. 72, 1148
(1994).

[73] J. Sánchez-Ruiz, Simple proof of Page’s conjecture on the
average entropy of a subsystem, Phys. Rev. E 52, 5653 (1995).

[74] S. C. L. Srivastava, A. Lakshminarayan, S. Tomsovic, and A.
Bäcker, Ordered level spacing probability densities, J. Phys. A
52, 025101 (2019).

[75] H. Li and F. D. M. Haldane, Entanglement Spectrum as a Gen-
eralization of Entanglement Entropy: Identification of Topo-
logical Order in Non-Abelian Fractional Quantum Hall Effect
States, Phys. Rev. Lett. 101, 010504 (2008).

[76] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher,
Concentrating partial entanglement by local operations, Phys.
Rev. A 53, 2046 (1996).

[77] N. Ullah and C. E. Porter, Invariance hypothesis and Hamilto-
nian matrix elements correlations, Phys. Lett. 6, 301 (1963).

[78] Z. Puchała and J. A. Miszczak, Symbolic integration with
respect to the Haar measure on the unitary groups, Bull. Pol.
Ac.: Tech. 65, 21 (2017).

022221-17

https://doi.org/10.1103/PhysRevE.99.062217
https://doi.org/10.1103/PhysRevE.99.062217
https://doi.org/10.1103/PhysRevE.99.062217
https://doi.org/10.1103/PhysRevE.99.062217
https://doi.org/10.1038/s41534-019-0192-5
https://doi.org/10.1038/s41534-019-0192-5
https://doi.org/10.1038/s41534-019-0192-5
https://doi.org/10.1038/s41534-019-0192-5
https://doi.org/10.1103/PhysRevE.99.032213
https://doi.org/10.1103/PhysRevE.99.032213
https://doi.org/10.1103/PhysRevE.99.032213
https://doi.org/10.1103/PhysRevE.99.032213
https://doi.org/10.1103/PhysRevA.62.030301
https://doi.org/10.1103/PhysRevA.62.030301
https://doi.org/10.1103/PhysRevA.62.030301
https://doi.org/10.1103/PhysRevA.62.030301
https://doi.org/10.1103/PhysRevB.98.174304
https://doi.org/10.1103/PhysRevB.98.174304
https://doi.org/10.1103/PhysRevB.98.174304
https://doi.org/10.1103/PhysRevB.98.174304
https://doi.org/10.1007/BF01208259
https://doi.org/10.1007/BF01208259
https://doi.org/10.1007/BF01208259
https://doi.org/10.1007/BF01208259
https://doi.org/10.1016/0003-4916(88)90165-0
https://doi.org/10.1016/0003-4916(88)90165-0
https://doi.org/10.1016/0003-4916(88)90165-0
https://doi.org/10.1016/0003-4916(88)90165-0
https://doi.org/10.1103/PhysRevA.90.032303
https://doi.org/10.1103/PhysRevA.90.032303
https://doi.org/10.1103/PhysRevA.90.032303
https://doi.org/10.1103/PhysRevA.90.032303
https://doi.org/10.1103/PhysRev.104.483
https://doi.org/10.1103/PhysRev.104.483
https://doi.org/10.1103/PhysRev.104.483
https://doi.org/10.1103/PhysRev.104.483
http://dlmf.nist.gov/
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1142/S2010326312500098
https://doi.org/10.1142/S2010326312500098
https://doi.org/10.1142/S2010326312500098
https://doi.org/10.1142/S2010326312500098
https://doi.org/10.1103/PhysRevE.80.017201
https://doi.org/10.1103/PhysRevE.80.017201
https://doi.org/10.1103/PhysRevE.80.017201
https://doi.org/10.1103/PhysRevE.80.017201
https://doi.org/10.1103/PhysRevLett.72.1148
https://doi.org/10.1103/PhysRevLett.72.1148
https://doi.org/10.1103/PhysRevLett.72.1148
https://doi.org/10.1103/PhysRevLett.72.1148
https://doi.org/10.1103/PhysRevE.52.5653
https://doi.org/10.1103/PhysRevE.52.5653
https://doi.org/10.1103/PhysRevE.52.5653
https://doi.org/10.1103/PhysRevE.52.5653
https://doi.org/10.1088/1751-8121/aaefa4
https://doi.org/10.1088/1751-8121/aaefa4
https://doi.org/10.1088/1751-8121/aaefa4
https://doi.org/10.1088/1751-8121/aaefa4
https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.1016/0031-9163(63)90484-0
https://doi.org/10.1016/0031-9163(63)90484-0
https://doi.org/10.1016/0031-9163(63)90484-0
https://doi.org/10.1016/0031-9163(63)90484-0
https://doi.org/10.1515/bpasts-2017-0003
https://doi.org/10.1515/bpasts-2017-0003
https://doi.org/10.1515/bpasts-2017-0003
https://doi.org/10.1515/bpasts-2017-0003

