
PHYSICAL REVIEW E 101, 022218 (2020)

Finite-range Coulomb gas models. II. Applications to quantum kicked
rotors and banded random matrices

Avanish Kumar, Akhilesh Pandey, and Sanjay Puri
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India

(Received 29 July 2019; revised manuscript received 3 January 2020; accepted 31 January 2020;
published 24 February 2020)

In part I of this two-stage exposition [Pandey, Kumar, and Puri, preceding paper, Phys. Rev. E 101,
022217 (2020)], we introduced finite-range Coulomb gas (FRCG) models, and developed an integral-
equation framework for their study. We obtained exact analytical results for d = 0, 1, 2, where d denotes
the range of eigenvalue interaction. We found that the integral-equation framework was not analytically
tractable for higher values of d . In this paper, we develop a Monte Carlo (MC) technique to study
FRCG models. Our MC simulations provide a solution of FRCG models for arbitrary d . We show that,
as d increases, there is a transition from Poisson to Wigner-Dyson classical random matrix statistics.
Thus FRCG models provide a route for transition from Poisson to Wigner-Dyson statistics. The analytical
formulation obtained in part I, and MC techniques developed in this paper, are used to study banded
random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of band-
width b and a QKR of chaos parameter α, the appropriate FRCG model has range d = b2/N = α2/N , for
N → ∞. Here, N is the dimensionality of the matrix in the BRM, and the evolution operator matrix in
the QKR.

DOI: 10.1103/PhysRevE.101.022218

I. INTRODUCTION

Random matrices [1–4] have found extensive applications
in quantum chaos, i.e., the study of quantum systems
the classical counterpart of which is chaotic [5–10]. The
connection between quantum chaos and random matrices is
well established [11,12]. An important paradigm of quantum
chaotic systems is the quantum kicked rotor (QKR) [7,8,10].
The Hamiltonian of the QKR is periodic in time with a
delta-function perturbation. In Ref. [13], we introduced and
analytically studied finite-range Coulomb gas (FRCG) models
which define classes of random matrix ensembles. These are
parametrized by the range of eigenvalue interactions, denoted
as d .

In this paper, we demonstrate the applicability of FRCG
models to quantum chaotic systems. We show that spectral
fluctuations of the time evolution operator over one period
(i.e., the Floquet operator) of the QKR can be modeled by
FRCG models. In other applications, FRCG models have
also been used to study quantum pseudointegrable systems
[14,15]. We expect that they would also be applicable to many
other physical systems.

An unusual property of quantum chaos is the suppres-
sion of chaotic diffusion. In classically chaotic systems
such as the classical kicked rotor, the average energy of
the system grows linearly with time. However, in its quan-
tum chaotic counterpart (i.e., the QKR), the average en-
ergy saturates in time. The suppression of diffusion in the
QKR is also known as dynamical localization [16]. The
origin of this phenomenon lies in the localization of wave
functions of the Floquet operator in the momentum basis

[17–20]. In this context, many studies have focused on the
transition from ergodic (Wigner-Dyson statistics) to inte-
grable behavior (Poisson statistics) in disordered systems
[19–22]. The operator corresponding to the Hamiltonian of
quantum systems exhibiting localization can be described
by banded random matrices (BRMs). Therefore, the eigen-
value statistics of BRM ensembles can also be modeled by
FRCG ensembles.

The organization of this paper is as follows. In Sec. II, we
discuss the Monte Carlo (MC) technique for FRCG models. In
Sec. III, we present MC results for FRCG, and compare with
analytical results given in Secs. IV–VI of Ref. [13]. In Sec. IV,
we define QKRs and BRMs and discuss their connection with
FRCG models. We introduce an effective range d , which is de-
termined by the parameters of the QKR. In Sec. V, we present
a detailed comparison of FRCG results (analytical and MC)
and numerical results for the QKR and BRM. In particular, we
will focus on the crossover from Poison to classical ensemble
statistics as d increases. In Sec. VI, we discuss FRCG models
for fractional values of d , and present their applications in
QKRs. In Sec. VII, we summarize the results presented in
this paper.

It is appropriate to highlight the results here as compared to
our earlier short paper on this subject [23]. Here, we present
details of our MC techniques for the FRCG models. We
provide MC results for FRCG models, showing the crossover
from Poisson to Wigner-Dyson statistics as d increases. We
present results for a wide range of spectral quantities of BRMs
and QKRs (e.g., spacing distributions, spacing variance, cor-
relation functions, etc.), and it is shown that both of these
systems can be described very well by FRCG models. Finally,
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we provide additional results for QKR and FRCG models with
fractional values of d .

II. MONTE CARLO TECHNIQUE FOR FRCG MODELS

As mentioned in Ref. [13], it becomes harder to obtain
complete analytical results for FRCG models with higher
values of d . However, MC results are easily calculable for
arbitrary d , thereby providing us a complete picture of FRCG
models. In this section, we discuss the MC method. The MC
results will supplement our earlier exact results in Ref. [13].

From Ref. [13], we recall the equilibrium joint probability
density (JPD) for the linear case:

p(x1, . . . , xN ) = C exp(−βW ), (1)

where the eigenvalues x j are in ascending order. The potential
W has a two-body logarithmic potential, and one-body confin-
ing potential

W = −
∑′

log |x j − xk| +
∑

j

V (x j ). (2)

Here,
∑′ denotes a sum over all | j − k| � d with j �= k, and

d denotes the range of the interaction in terms of the particle
indices.

The corresponding equilibrium JPD for the circular case is

p(θ1, . . . , θN ) = C exp(−βW ), (3)

where the eigenangles θ j are arranged on a unit circle in
ascending order. The potential W is given by

W = −1

2

∑′
log |eiθ j − eiθk | +

∑
j

V (θ j ). (4)

In this case, V (θ ) is a potential periodic on the unit circle.
Both the linear and the circular JPDs yield the well-known
classical ensembles for d = N − 1. We will shortly describe
an MC method for sampling the above JPDs.

An equivalent formulation uses the Langevin equation
[24]. In the linear case, the Langevin equation for eigenvalues
{x j} is [25]

dx j

dτ
= βEj + w j (τ ). (5)

Here, Ej is the force arising from the potential in Eq. (2):

Ej = −∂W

∂x j
. (6)

The w j in Eq. (5) denotes a Gaussian white noise which
obeys the appropriate fluctuation-dissipation relation. A simi-
lar Langevin equation is obtained for the circular case where
x j → θ j . One can numerically solve these stochastic differ-
ential equations (with adequate precautions to avoid level
crossing) to obtain the equilibrium spectra. The Langevin
method is not as efficient as the MC method for obtaining
equilibrium JPDs. However, if one is interested in nonequilib-
rium evolution also, the Langevin approach will be the method
of choice. We will not focus on the Langevin approach in this
paper.

Our MC approach follows Ref. [26] for the linear case
of Eq. (1), and Ref. [27] for the circular case of Eq. (3).

xk−2 xk−1 xk

xk

xk+1 xk+2

FIG. 1. Schematic of the MC technique to generate eigenvalue
spectra for FRCG models. We consider the case of linear ensembles.
The particles on the line denote the positions of the eigenvalues {x j}.
The eigenvalues interact up to a range d = 2 in the case shown. This
range is measured in terms of the particle indices. In an attempted
MC move, the particle xk is displaced with uniform probability to
x′

k in the range (xk−1, xk+1). The move is accepted with a probability
exp(−β�W ), where �W is the change in the potential in Eq. (2). An
MCS corresponds to N attempted moves. The independent spectra
are realized by sampling the MC evolution at suitable intervals.

Because of the logarithmic singularity in the corresponding
potentials, particle positions cannot change their order. Our
MC implementation directly respects this constraint, resulting
in a more efficient calculation of the equilibrium JPD (see
Fig. 1).

In the linear case, we take a set of N eigenvalues
(x1, . . . , xN ) ordered sequentially on a real line with fixed
boundaries. The boundaries are chosen such that the proba-
bility of finding an eigenvalue outside the range is negligible.
A stochastic move assigns, to any randomly chosen xk , the
new position x′

k between (xk−1, xk+1) with a uniform proba-
bility. The move is accepted with a probability exp(−β�W ),
where �W is the change in the potential in Eq. (2) after the
stochastic move. A Monte Carlo step (MCS) corresponds to N
attempted moves.

In the circular case, we take a set of N eigenvalues
(eiθ1 , eiθ2 , . . . , eiθN ) ordered sequentially on the unit circle. A
stochastic move assigns to a randomly chosen eigenangle θ j

the new position θ ′
j ∈ (θ j−1, θ j+1) with a uniform probability.

After each eigenangle movement, we use periodic boundary
conditions: θ ′

j is computed modulo 2π . (This respects the
original order of their positions on a circle). The move is
accepted with a probability exp(−β�W ), where �W is the
change in the potential in Eq. (4) after the stochastic move.

In Sec. III, we compare MC and analytical results (from
Ref. [13]) for the level density and fluctuation measures. We
will demonstrate that MC results are in excellent agreement
with the analytical results, whenever these are available. Our
purpose is to establish the MC technique as a method of ob-
taining “exact results” for higher values of d , where analytical
results are not available.

All MC results for spectral properties presented in this
paper are obtained as averages over 1000 independent spectra
of dimension N = 1001. For fluctuation measures, we will
show results for all three β values and the Poisson case
(β = 0).

III. MONTE CARLO RESULTS FOR LEVEL DENSITY AND
FLUCTUATION MEASURES

In this section, we present MC results for the level density
in linear ensembles. In the uniform circular case, the level
density is constant. We also present MC results for the fluctua-
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tion measures for many d values, which confirm the transition
from Poisson (d = 0) to classical (d = N − 1) ensembles.

In Ref. [13], we have presented analytical results for
the level density in the linear ensembles with an arbitrary
potential. Here, we compare the MC results for the level
density with the corresponding exact results for the quartic
potential. We have studied this potential for d = O(1) and
O(N ). In each case, excellent agreement is found. Let us show
some representative results. We consider the linear case with
the quartic potential:

V (x) = κ

(
x4

4
− α

x2

2

)
, κ > 0. (7)

Here, κ sets the scale of the V axis. In the quartic potential,
α determines whether the potential is single well (α < 0) or
double well (α > 0). For d = N − 1, there is a critical value
αc such that the level density makes a transition from a one-
band density (α < αc) to a two-band density (α > αc) [26].
For d = O(1), the density is given in Eq. (29) of Ref. [13].
This is shown in Fig. 2 for d = 2. For d = O(N ), the density
is given in Eqs. (46) and (47) of Ref. [13] (see Fig. 3).
Figures 2 and 3 demonstrate that the level density obtained
by the MC technique is numerically indistinguishable from
the corresponding analytical results. We have confirmed (not
shown here) that the same applies for fluctuation measures for
FRCG models with d = 1, 2. Therefore, we will subsequently
equate MC results with exact results for FRCG models with
arbitrary d .

Next we present some results for fluctuation measures
for different d values. Figure 4 corresponds to the nearest-
neighbor spacing distribution for d = 0, 1, 2, 5, 10 and β =
1, 2, 4. For comparison, the respective classical results have
also been plotted. We can see that the MC data for d = 10
are already very close to the classical result. In Fig. 5, we
plot the two-point correlation functions [R2(s) vs s] for d =
0, 1, 2, 3, 5 for all three β values. Figure 6 shows the two-
point cluster function, which is defined as Y2(s) = 1 − R2(s).
In Fig. 7, we show the number variance [
2(r) vs r] for d =
0, 1, 2, 5, 10, 25 and β = 1, 2, 4. For comparison, we have
also plotted the classical random matrix theory (RMT) results.
The transition from Poisson to Gaussian ensembles as d is
increased from zero to N − 1 is very clear.

Before concluding this section, it is useful to compare our
MC results with the mean-field (MF) results discussed in Sec.
IX of Ref. [13]. In Fig. 8, we plot the spacing density [pn−1(s)
vs s] for various values of n, d , and β. The MF result for
pn−1(s) is given in Eq. (91) of Ref. [13]. In all cases shown, we
find very good agreement between MF results and the exact
MC results.

IV. PHYSICAL APPLICATIONS OF FRCG MODELS

Let us now demonstrate the applicability of the FRCG
models to two important physical applications, i.e., the QKR
and BRM. The QKR is a prototypical example of quantum
chaotic systems. The spectral fluctuations of QKR in the
strongly chaotic regime correspond to the classical random
matrix or Wigner-Dyson statistics [28,29]. This statistics can
be obtained from infinite-range Coulomb gas models, as
discussed in Sec. II of Ref. [13] (see also Ref. [30]). In the
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FIG. 2. Level density for the d = 2 FRCG model with β = 2. We
used the quartic potential with κ = 1, and (a) α = −2, (b) α = 0, and
(c) α = 2. The filled circles correspond to MC results, and the solid
lines are analytical results from Eq. (29) in Ref. [13].

following sections, we demonstrate that spectral fluctuations
of QKRs are described by FRCG models. Earlier work has
also shown a deep connection between QKRs and BRMs
[16,17]. Therefore, the statistics of BRM ensembles is also
described by FRCG models. In this section, we introduce
QKRs and BRMs and give their definitions.

A. Quantum kicked rotors

Following Izrailev [28], we consider a finite-dimensional
[N × N] matrix model for QKRs. The evolution operator is
given by U = BG, where

B(α) = exp
[
−i

α

h̄
cos(θ + θ0)

]
, (8)
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FIG. 3. Level density for the d = 750 FRCG model with β = 2.
We used the quartic potential with κ = 1, and (a) α = −2, (b) α = 0,
and (c) α = αc = 1.414. The filled circles correspond to MC results,
and the solid lines are analytical results from Eqs. (46) and (47) in
Ref. [13].

and

G = exp

[
− i

2h̄
(p + γ )2

]
, (9)

with θ and p being the position and momentum operators.
Here, α is the kicking parameter, θ0 is the parity-breaking
parameter, and γ is the time-reversal-breaking parameter (0 �
γ < 1). In position representation,

Bmn = exp

[
−i

α

h̄
cos

(
2πm

N
+ θ0

)]
δmn, (10)

Gmn = 1

N

N ′∑
l=−N ′

exp

[
−i

(
h̄

2
l2 − γ l − 2πμl

N

)]
, (11)
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FIG. 4. Comparison of nearest-neighbor spacing distribution
[p0(s) vs s] for FRCG models with d = 0, 1, 2, 5, 10. We show
results for (a) β = 1, (b) β = 2, and (c) β = 4. In each frame, the
dashed line denotes the classical Gaussian ensemble result.

where N ′ = (N − 1)/2. The indices m, n = −N ′,−N ′ +
1, . . . , N ′. Then, the evolution operator becomes

Umn = 1

N
exp

[
−iα cos

(
2πm

N
+ θ0

)]

×
N ′∑

l=−N ′
exp

[
−i

(
l2

2
− γ l − 2πμl

N

)]
, (12)

where μ = m − n. We have set h̄ = 1. One knows that,
when parity is broken (θ0 �= 0), and α2 � N � 1, then the
eigenvalue spectra of U accurately exhibit classical random
matrix spectral fluctuations (e.g., spacing distribution and
number variance). For γ = 0, the fluctuations are character-
ized by β = 1 [Gaussian orthogonal ensemble (GOE)]. For
γ �= 0 (γ � N−3/2), the fluctuations obey β = 2 [Gaussian
unitary ensemble (GUE)] statistics [28,31].

The numerical results presented in this paper for the spec-
tral statistics of QKRs were obtained by studies of the matrix
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FIG. 5. Comparison of the two-point correlation function [R2(s)
vs s] for FRCG models with d = 0, 1, 2, 3, 5. We show results for
(a) β = 1, (b) β = 2, and (c) β = 4. In each frame, the dashed line
denotes the classical Gaussian ensemble result.

Umn in Eq. (12). For the weakly chaotic regime (small α), we
consider a single matrix of large size. For the strongly chaotic
regime (large α), we study an ensemble of matrices generated
for values of α in a small window around an average ᾱ. In the
latter case, we will label the results by the value of ᾱ.

B. Banded random matrices

Next, we introduce BRM ensembles {A} of dimensionality
N . The matrix A is banded if Ajk = 0 for | j − k| > b, where
b is the bandwidth. The JPD of the matrix distribution for
Gaussian BRM ensembles is

P(A) = C exp(−TrA2/4v2), (13)

with v2 being the variance of the nonzero off-diagonal matrix
elements. The matrices A can be real symmetric, complex
Hermitian, or quaternion self-dual corresponding to β =
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-0.25

0

0.25

0.5

0.75

1
d=0
d=1
d=2
d=3
d=5
GOE

0 1 2 3
-0.25

0

0.25

0.5

0.75

1
d=0
d=1
d=2
d=3
d=5
GUE

0 1 2 3
-0.25

0

0.25

0.5

0.75

1
d=0
d=1
d=2
d=3
d=5
GSE

Y
2(s

)
Y

2(s
)

Y
2(s

)

s

(a)

(b)

(c)

β= 1

β= 2

β=4

FIG. 6. Analogous to Fig. 5, but for the two-point cluster func-
tion: Y2(s) = 1 − R2(s).

1, 2, 4 respectively. For b = N − 1, the GOE, GUE, and Gaus-
sian symplectic ensemble are recovered, respectively. We can
also generalize Eq. (13) to the non-Gaussian case, where A2

in the exponent is replaced by a positive-definite function of
A. We will not discuss the non-Gaussian case here.

It can be shown that the eigenvalue density of the BRM is
semicircular, as in the classical ensembles [32]. The density is
given by

ρ(x) = 2
√

R2 − x2

πR2
, (14)

where the radius R2 = 8βbv2. However, the number of eigen-
values outside the semicircle increases as b decreases. For
example, for N = 1001 the number of eigenvalues outside the
semicircle is 1–2 for the classical case, as compared to 10–20
for the BRM with b 
 50.

There have been several important studies of the level
statistics of BRMs. Fyodorov and Merlin [33] have stud-
ied BRMs analytically using the supersymmetric nonlinear
sigma model. They demonstrated that this model exhibits
localization on the scale � ∼ b2. They also showed that the
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FIG. 7. Number variance [
2(r) vs r] for FRCG models with
d = 0, 1, 2, 5, 10, 25. We show results for (a) β = 1, (b) β = 2,
and (c) β = 4. The dashed line denotes the classical Gaussian
ensemble result.

nonlinear sigma model was equivalent to a one-dimensional
disordered wire with diffusion constant D ∼ �. Numerical
experiments by Casati et al. [34,35] confirmed the localization
of eigenvectors of BRMs on the scale �. Casati et al. [36]
also showed a similar localization of eigenvectors in random
matrices of quantum chaotic systems.

Fyodorov and Mirlin [33] also proposed that the BRM
ensemble with bandwidth range 1 → N − 1 is suitable for
interpolating between the integrable regime (with Poisson
statistics) and the chaotic regime (with classical RMT statis-
tics) of time-reversal invariant quantum systems. We discuss
these limits in the context of the diffusion constant D. The
dynamics is diffusive in the limit D/N = b2/N � 1. In this
case, Altshuler and Shklovskii [37] have showed that the
spectral statistics obey classical RMT. In the opposite limit
b2/N � 1, the dynamics is localized and we expect Poisson
statistics to apply.
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FIG. 8. Spacing density [pn−1(s) vs s] for FRCG models. We
consider various values of d, β, and n as indicated. The filled circles
correspond to MC results, and the solid lines denote the MF result
from Eq. (91) of Ref. [13].

C. Connection between QKR, BRM, and FRCG models

It has empirically been shown by several authors [29,34–
36] that BRMs and QKRs give the same nearest-neighbor
spacing density p0(s) when b2/N = α2/N . These authors
also showed that, in the momentum representation, the QKR
matrix U is banded.

Let us examine the structure of operators in the QKR evo-
lution. We will first demonstrate that, even though p and cos θ

are nonrandom operators, they have matrix properties anal-
ogous to Gaussian random matrix ensembles in U -diagonal
representation. The randomness arises from the statistical
properties of eigenvectors of U (α), which are similar to those
of Gaussian ensembles.

We first consider the case with γ = 0. The cos θ operator
in U -diagonal representation has matrix properties analogous
to the GOE (not shown here). However, since its eigenvalues
are fixed, there are weak correlations among different matrix
elements. Similarly, when we write p in U -diagonal represen-
tation, it has matrix properties analogous to a Gaussian BRM
ensemble with width depending on α. The matrix elements
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FIG. 9. (a) Plot of var(L)/var(1) vs L for the QKR momentum
operator in the U -diagonal basis. We have γ = 0, and the values of
α are such that d = α2/N = 1, 5, 10, 25, 50. (b) Data in panel (a),
plotted against the scaled variable L/d . (c) Analogous to panel (a),
but for a large value of α so that d = O(N ).

p jk in the position basis of U are given by

p jk ≡ 〈φ j |p|φk〉
=

∑
m,n

〈φ j |m〉〈m|p|n〉〈n|φk〉. (15)

Here, |φ j〉 represents the eigenfunctions of the evolution
operator U , and |m〉 represents the basis of the momentum
operator. Note that p is a diagonal matrix in the self-basis.
Equation (15) can be simplified to

p jk = 1

N

∑
l,m,n

l h̄ ei2π l (m−n)/N 〈φ j |m〉〈n|φk〉, (16)

where the eigenfunctions are ordered by the corresponding
eigenvalues. At this stage, it is useful to introduce the param-
eter d = α2/N , which will shortly be identified as the range
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L

FIG. 10. (a) Plot of var(L)/var(1) vs L for the BRM. The band-
width b = 32, so that d = b2/N = 1. (b) Plot of �(L) vs L for
the data in panel (a). (c) Superposition of �(L) vs L/d for b =
32, 72, 100 so that d = 1, 5, 10.

of the corresponding FRCG model. Let us first consider some
values of α for which d � N . In Fig. 9(a), we plot the normal-
ized variance of the off-diagonal elements of p, var(L)/var(1)
vs L, where L is the distance from the diagonal. We see that
the variance decays rapidly with L, demonstrating that p is
banded. A very interesting property of var(L) is that the decay
rate scales linearly with d . This is shown in Fig. 9(b), where
var(L)/var(1) is plotted against L/d , resulting in a neat data
collapse. Figure 9(c) shows the corresponding plot for α =
1000 so that d = O(N ). In this case, the p matrix is no longer
banded. For large d , the variance is var(L) 
 N/12 [31].

For γ = 0.7 (which satisfies γ � N−3/2 [31]), the above
scenario applies again for the operators cos θ and p, with
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FIG. 11. Typical eigenvector of a BRM with bandwidth b = 5.
(a) Plot of |ψn|2 vs n on a direct scale. Here, n is the component of
the eigenvector. The inset shows an expanded region near the point of
localization. (b) Data in panel (a), plotted on a linear-log scale. The
eigenfunction decays exponentially from the point of localization.

GOE-like matrices replaced by GUE-like matrices. The p
matrices are banded (on a scale d = α2/N) or extended,
depending on the value of α.

We have demonstrated above that BRMs arise naturally
in the study of QKRs [34–36]. Let us next examine some
properties of BRMs. We start with the observation that the
sum of two BRMs B1 and B2, with the same bandwidths b
and variances v2

1 and v2
2 , is also a BRM of bandwidth b with

variance v2
1 + v2

2 . The indices 1 and 2 in B1 and B2 refer
to two independent BRMs, which have similar structures in
all respects. We investigate the statistics of the matrix ele-
ments of B2 in the B1-diagonal representation. For simplicity,
we consider the case with β = 1. The cases β = 2, 4 yield
similar results.

In Fig. 10(a), we plot the variance of B2, jk as a function
of L = | j − k|. The bandwidth b = 32, so that d = b2/N = 1.
We observe that the variance decays rapidly as in Fig. 9(a), but
settles to a nonzero value K . This constant is approximately
TrB2

2/N2 for large N , and arises due to the semicircular level
density of B2, as specified in Eq. (14). The constant K is
roughly equal to the radius R of this semicircle. Thus, for
different bandwidth b (and hence different d), we have distinct
values of K . If we substract this constant from the respective
variances, the modified variances �(L) decay and saturate to

0 250 500 750 1000
0

0.005

0.01

0.01

0.02

0 250 500 750 100010-12

10-8

10-4

100

0 500 1000
0

0.01

(a)

(b)

n

|ψ
n
|2

|ψ
n
|2

FIG. 12. Typical eigenvector of a BRM with bandwidth b = 250
so that d = 63. (a) Plot of |ψn|2 vs n. This corresponds to an extended
state. The inset shows the eigenvector when d = N − 1. (b) Data in
panel (a), plotted on a linear-log scale.

zero. In Fig. 10(b), we plot

�(L) = var(L) − K

var(1) − K
(17)

as a function of L for the data in Fig. 10(a). The decay rate is
again proportional to d , which is confirmed by plotting �(L)
vs L/d for d = 1, 5, 10 in Fig. 10(c).

Next we turn our attention to the structure of eigenvectors
of BRMs. In Fig. 11(a), we plot |ψn|2 vs n, where ψn is the
component of a typical eigenvector of B2 with b = 5. It is
sharply localized around a particular value of n. In Fig. 11(b),
we plot |ψn|2 vs n on a linear-log scale. This plot shows
that the decay of eigenvectors is exponential in the distance
from the peak. This localization disappears as d increases. In
Fig. 12, we plot a typical |ψn|2 vs n for b = 250, and see that
the eigenvector is extended.

Where do FRCG models fit into the above framework? We
have proposed recently [23] that QKRs and BRMs can be
modeled by FRCG with range

d = α2/N = b2/N, (18)

valid for all fluctuation measures. As we will see shortly,
both the diffusive and localized limits discussed in Sec. IV B
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FIG. 13. Spacing density p0(s) vs s for the QKR and BRM. The
solid line denotes the FRCG result. We show data for various values
of d and β, as indicated.

are realized in our FRCG models. We should emphasize that
the range d , as defined in Eq. (18), can also take noninteger
values. Therefore, we will subsequently introduce FRCG
models with fractional values of d . This will facilitate a better
understanding of the Poisson–Wigner-Dyson crossover as d
goes from zero to N − 1.

V. SPECTRAL FLUCTUATIONS FOR QKR AND BRM
MODELS AND COMPARISON WITH FRCG MODELS

In this section, we present a detailed comparison between
our FRCG results (obtained by analytic and MC approaches)
and numerical results for QKRs and BRMs. In our subsequent
discussion, the term “theory” will refer to the FRCG results.
For the QKR, we consider the matrices Unm. For the BRM, we
study banded matrices with elements of the GOE type or GUE
type. It is useful to summarize here various parameters for
our numerical studies. The numerical results for QKRs shown
below correspond to N = 1001 (unless otherwise stated),
θ0 = π/2N , and γ = 0.0 and 0.7. We will show results for
several values of the kicking parameter α. Our numerical
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QKR
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(a)

(b)

(c)

s

p 7(s
)

d=3, β=1

FIG. 14. Spacing density pn−1=k (s) vs s for the QKR. The solid
line denotes the FRCG result. (a) Data for d = 3, β = 1 with k =
0, 1, 2, 3, 4, 5. (b) Data for d = 3, β = 2 with k = 0, 1, 2, 3, 4, 5.
(c) Data for d = 3, β = 1 with k = 7. We also superpose the
MF result.

results for BRMs correspond to N = 1001, and several values
of the bandwidth b.

Before presenting results for spectral fluctuations, it is
important to clarify a technical detail about the procedure
we adopt for unfolding of the eigenvalue spectrum. For the
QKR, the level density of eigenvalues is uniform. Therefore,
a multiplication factor of N/2π makes the average density
unity everywhere. As mentioned in Sec. IV, BRMs have the
additional feature that the level density is semicircular. In this
case, for unfolding purposes, we use the radius given after
Eq. (14).

In Fig. 13, we show results for p0(s) vs s for QKRs and
BRMs. In Fig. 14, we plot the higher-order spacing distribu-
tion pk (s) for d = 3 and β = 1, 2 in QKRs. In both figures, the
agreement between QKR and BRM results and FRCG results
is excellent. In Fig. 14(c), we have also plotted the MF result
from Sec. IX of Ref. [13]. Note that the results for d = 0, 1, 2
are obtained analytically in Ref. [13]. The FRCG results for
d = 3, 5 are obtained via the MC technique.

022218-9



KUMAR, PANDEY, AND PURI PHYSICAL REVIEW E 101, 022218 (2020)

0

1

2

3

1 4 7 10
0

1

2

QKR

BRM

Poisson

Poisson

GUE

GOE

σ2 (n
-1

)
σ2 (n

-1
)

(a)

(b)

n
FIG. 15. Spacing variance σ 2(n − 1) vs n for the QKR and

BRM. We show data for d = 0, 1, 2, 5, 10, 25, N − 1 (from top to
bottom), and (a) β = 1 and (b) β = 2. The solid lines denote the
corresponding FRCG results. The dashed lines denote the classical
ensemble results.

In Fig. 15, we show the spacing variance for σ 2(n − 1) vs
n for QKRs and BRMs with N = 5001. We have considered
several values of d in both the GOE and GUE. As before, we
compare our QKR and BRM results with theory from FRCG
models, and see that the agreement is excellent. We make the
following observations.

(a) σ 2(n) vs n is linear for both GOE and GUE for d =
O(1). For d = O(N ), σ 2(n) shows logarithmic behavior as in
classical statistics.

(b) The spacing variance in the β = 2 case is roughly half
of that in the β = 1 case for each value of n.

These behaviors are qualitatively similar to our analytical
results for FRCG models in Ref. [13].

In Figs. 16 and 17, we plot R2(s) vs s for QKRs with
β = 1, 2, and compare with FRCG results. Again, there is
very good agreement between QKRs and theory. For com-
parison, we plot R2(s) vs s in Figs. 18 and 19 for BRMs.
Notice that our results are already very close to the relevant
classical result (GOE or GUE) for d = 3. Thus, there is a
rapid transition from Poisson (d = 0) to classical (d = N − 1)
results.

A more quantitative comparison with physical systems
may require the introduction of Coulomb gas models where
the interaction strength decays gradually with distance rather
than the sharp cutoff considered here. This will be part of our
future investigation of this problem.
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FIG. 16. Two-point correlation function R2(s) vs s for the QKR.
The solid lines denote the corresponding FRCG results. The dashed
lines denote the GOE result. We show data for β = 1 and (a) d = 1,
(b) d = 2, and (c) d = 3.

VI. FRACTIONAL VALUES OF D: COMPARISON WITH
THE QKR MODEL

Our discussion so far has focused on integer values of
d . However, the parameter d relevant for QKRs (d = α2/N )
and BRMs (d = b2/N ) can take noninteger values also. For
a complete description of QKRs and BRMs with arbitrary d ,
we introduce an FRCG model with fractional d . We generalize
the JPD for nearest-neighbor spacings in Sec. VII of Ref. [13]
as follows:

Pd (s1, . . . , sN )

= Cdδ

(
N∑

i=1

si − N

)
N∏

j=1

[d]∏
k=0

(s j + . . . + s j+k )β�(k), (19)
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FIG. 17. Analogous to Fig. 16, but for the β = 2 case.

where [d] is the largest integer � d . Moreover, �(k) = 1 for
k = 0, 1, . . . , [d] − 1, and �([d]) = d − [d]. We make the
following observations.

(i) For integer d , Eq. (19) reduces to the definition of Pd in
Eq. (56) of Ref. [13].

(ii) All cases with 0 � d � 1 are analytically tractable as
there are only one-particle terms in Pd . This case is analogous
to the d = 0, 1 cases in Sec. VIII of Ref. [13]. The correspond-
ing nearest-neighbor distribution is

p0(s) = (βd + 1)(βd+1)

�(βd + 1)
sβd e−(βd+1)s. (20)

The (n − 1)th spacing distribution is given by

pn−1(s) = (βd + 1)(βd+1)n

�[(βd + 1)n]
s(βd+1)n−1e−(βd+1)s. (21)
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FIG. 18. Two-point correlation function R2(s) vs s for the BRM.
The solid lines denote the corresponding FRCG results. The dashed
lines denote the GOE result. We show data for β = 1 and (a) d = 1,
(b) d = 2, and (c) d = 3.

(iii) Our choice of �(k) ensures that the MF approxima-
tion of Pd yields the results in Eqs. (20) and (21) even for
noninteger d .

Next, we present some results for noninteger d in Fig. 20.
The theoretical results are obtained via MC in this case.
We plot p0(s) vs s for QKR and FRCG models with d =
1.5, 2.5, 3.5 and β = 1, 2. The excellent agreement confirms
the applicability of our fractional FRCG model to understand
the spectral statistics of QKRs.

VII. SUMMARY AND DISCUSSION

Let us conclude this paper with a summary and discussion
of our results in this two-part exposition on FRCG models and
their application in physical systems.

In Ref. [13], we introduced FRCG models as a natu-
ral generalization of Dyson’s Brownian motion models for
eigenvalue spectra of random matrix ensembles. These are
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FIG. 19. Analogous to Fig. 18, but for the β = 2 case.

parametrized by the range of interactions between eigen-
values, denoted as d . Our FRCG models provide a route
for transition from Poisson statistics (for d = 0) to classical
random matrix statistics (for d = N − 1, where N is the di-
mensionality of the matrices). In Ref. [13], we also introduced
an integral-equation approach for analytical solution of these
FRCG models. The integral equation is analytically tractable
for d � 2. However, for d > 2, the equations become in-
creasingly complicated. For d > 2, we have proposed a MF
approximation, which yields simple and accurate solutions. In
this paper (part II in the series), we have also proposed a MC
technique which yields precise results for spectral statistics of
FRCG models. The MC technique is validated by comparison
with analytical results, wherever these are available. We use
the term “theory” to describe exact analytic and MC results
for FRCG models.

It is natural to ask whether the elegant framework of
FRCG models has useful physical applications. This is
the primary focus of the present paper, where we have
demonstrated that the eigenvalue statistics of QKRs and
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FIG. 20. Plot of p0(s) vs s for the QKR with fractional values
of d . The solid lines denote the appropriate FRCG result. We show
results for various values of β and d , as indicated.

BRMs is described by FRCG models. The QKRs are charac-
terized by a kicking parameter α, which describes how chaotic
the system is. The BRMs are parametrized by the bandwidth b,
which is the off-diagonal distance up to which the matrix has
nonzero entries. Earlier work has shown that QKRs and BRMs
yield the same results for p0(s) if α2/N = b2/N . In this paper,
we have shown that FRCG models with d = α2/N = b2/N
provide a framework for deriving the spectral properties of
QKRs and BRMs. We have presented results from a detailed
comparison of diverse spectral properties in QKRs, BRMs,
and FRCG. In all cases, the agreement is excellent.

The QKR has been a fundamental paradigm in the area
of quantum chaos. Therefore, it is gratifying to see that
FRCG models provide an excellent description of the QKR
statistics. An important direction for future research is the
identification of other physical systems which are modeled
by FRCG. There are many systems which exhibit a crossover
from Poisson to classical statistics as a parameter is varied. In
this context, there have been studies of diverse systems such
as atomic spectra [38], random matrix models [39], quantum
chaotic systems [40,41], Anderson localization [19,42,43],
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quark-gluon plasma [44], and neural networks [45]. Clearly,
there are several different routes whereby this transition can
be realized. It is our belief that the FRCG scenario may find
application in several of these systems.
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