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Dyson has shown an equivalence between infinite-range Coulomb gas models and classical random matrix
ensembles for the study of eigenvalue statistics. In this paper, we introduce finite-range Coulomb gas models as
a generalization of the Dyson models with a finite range of eigenvalue interactions. As the range of interaction
increases, there is a transition from Poisson statistics to classical random matrix statistics. These models yield
distinct universality classes of random matrix ensembles. They also provide a theoretical framework to study
banded random matrices, and dynamical systems the matrix representation of which can be written in the form
of banded matrices.
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I. INTRODUCTION

There has been extensive use of random matrices in
many branches of physics as well as in other disciplines.
For example, random matrices have found applications in
quantum chaotic systems, most significantly complex nuclei,
atoms, molecules, and mesoscopic systems [1–13]. In recent
years, novel applications have emerged in biology [14,15],
economics [16,17], and communication engineering [18–20].
In these applications, classical random matrix ensembles
(uniform circular and Gaussian ensembles) have provided a
framework for understanding complex spectra.

Dyson demonstrated that the joint probability distributions
(JPDs) of eigenvalues of these ensembles are equilibrium
states of a Brownian motion model of Coulombic particles
interacting via a logarithmic potential [21]. The positions of
the Brownian particles are identified as the eigenvalues of
the random matrix ensemble. In his original papers, Dyson
considered (a) Coulombic particles moving on a real line with
a harmonic binding (referred to as Gaussian ensembles) and
(b) Coulombic particles moving on the unit circle (referred
to as circular ensembles). In related work, Calogero and
Sutherland [22] have demonstrated that the corresponding
quantum Hamiltonians are exactly solvable.

In an important generalization, Dyson also considered
nonharmonic confining potentials on the real line [23]. In
this paper we will refer to these as linear ensembles, viz.,
ensembles of Hermitian matrices. Similar generalizations can
be done for circular ensembles, viz., ensembles of unitary
matrices. The equilibrium properties of these non-Gaussian
ensembles have been studied in detail [24,25]. Similarly
nonuniform circular ensembles have also been studied [26].
Further, nonequilibrium ensembles have also been studied
extensively [26–28].

In the Dyson model and the above extensions, all parti-
cles have pairwise Coulombic interactions (i.e., each particle
interacts with all other particles). In this paper, we consider
the natural generalization to the case where particles have
finite-range interactions. We will refer to these as finite-
range Coulomb gas (FRCG) models. Such ensembles have

important applications in the study of banded random matrices
(BRMs). Two specific examples are systems of quantum
kicked rotors (QKRs) and embedded Gaussian ensembles.
Surprisingly, these generalizations have received very limited
attention in the literature. In this paper and the following paper
[29], we present detailed analytical and numerical results for
FRCG models. A brief account of this paper and Ref. [29]
has been published in Ref. [30]. Some of the analytical results
reported in this paper were obtained earlier by one of the
authors [31] and have been used in Refs. [32–34].

This paper is organized as follows. In Sec. II, we review
Dyson’s Brownian motion models. In Sec. III, we generalize
the Dyson models to obtain FRCG models. In Secs. IV and
V, we derive the level density of short-range models for linear
and circular ensembles, respectively. In Sec. VI, we derive the
level density of long-range models for both linear and circular
ensembles. In Sec. VII, we show the universality of spectral
fluctuations with respect to different binding potentials in
the circular and linear cases. In Sec. VIII, we give some
exact results for spectral properties of short-range models
(d = 0, 1), where d is a parameter quantifying the range of
the interaction. In Sec. IX, we present a mean-field (MF)
approximation for d > 1. In Sec. X, we present a detailed
study of spectral properties for d = 2 via an integral-equation
approach. In Sec. XI, we describe the corresponding integral
equation for d > 2. We conclude with a summary and discus-
sion in Sec. XII.

Before proceeding, it would be appropriate to delineate
the results in this paper vis-à-vis Ref. [30]. Here, we provide
a comprehensive analytical framework for studying FRCG
models. In particular, Secs. IV–VII present important results
for FRCG models. We use the moment method to derive
analytical forms for the eigenvalue densities in both linear and
circular ensembles. These densities are essential to calculate
the spectral fluctuations. We also discuss FRCG models with
a quartic potential, and demonstrate a phase transition in the
eigenvalue density. In general, our results for the density are
valid for an arbitrary external potential. We also present a
proof for the equivalence of circular and linear ensembles.
In Secs. VIII–X, we provide a detailed derivation of results
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FIG. 1. Spacing distributions, pk (s) vs s, for d = 2. Here, k is
the order of the distribution, with k = 0 corresponding to the nearest
neighbor. The different frames correspond to (a) β = 1, (b) β = 2,
and (c) β = 4. In each case, we show pk (s) up to k = km(β ). For
k � km, the exact result is numerically indistinguishable from the MF
result on this scale.

briefly mentioned in Ref. [30]. In Sec. X, we provide explicit
values of eigenvalues and eigenvectors for d = 2, which are
used to obtain the spectral fluctuations shown in Figs. 1–6. In
particular, the higher-order spacing distributions are used to
verify the validity of mean-field theory. In Sec. XI, we present
an analytical framework for FRCG models with arbitrary
range.

II. DYSON’S BROWNIAN MOTION MODELS

In this section we will introduce various models used in
this paper. We consider N-dimensional random Hermitian
matrices A, which can be symmetric Hermitian, complex
Hermitian, quaternion real Hermitian, or quaternion real self-
dual. These are labeled by the Dyson parameters β = 1, 2, 4,
respectively [1,6]. The matrices are N dimensional in real,

complex, and quaternion space. In Secs. II A–II C, we will
review Dyson’s formulation of Brownian matrix ensembles.

A. Linear and circular ensembles

The JPD of matrices A in the case of Gaussian random
matrix ensembles is given by

P(A) = C exp(−TrA2/4v2), (1)

where C is the normalization constant (we will generally use
C, C̃, etc., to denote the normalization constants for various
distributions). Each matrix element A(γ )

jk has β distinct “sites,”
labeled by γ = 0, . . . , β − 1. The matrix elements of A follow
independent Gaussian distributions and have mean zero and
variance v2 for each of the β distinct sites. The ensembles
corresponding to Eq. (1) are a Gaussian orthogonal ensemble
(GOE), Gaussian unitary ensemble (GUE), and Gaussian
symplectic ensemble (GSE) for β = 1, 2, 4, respectively. A
natural generalization of Eq. (1) is a non-Gaussian ensemble
defined by

P(A) = C exp[−β TrV (A)], (2)

where V (A) is a positive-definite function of the matrix A.
In a similar fashion, one can define circular ensembles of

unitary matrices U (symmetric for β = 1, general for β = 2,
and self-dual for β = 4). The JPD of U is

P(U ) = C exp[−β TrV (U )], (3)

where V (U ) is a positive-definite function of U and U †.
The case V = 0 corresponds to the usual circular ensemble
introduced by Dyson [21]. We will refer to this as the “uniform
circular ensemble,” as opposed to V �= 0 for the “nonuniform
circular ensemble.” These ensembles are referred to as a
circular orthogonal ensemble, circular unitary ensemble, and
circular symplectic ensemble for β = 1, 2, 4, respectively.

B. Brownian motion model for matrices

Dyson [21] introduced a Brownian matrix process M(τ )
(overdamped case, i.e., Smoluchowski process [35]), in fic-
titious time τ , yielding Eqs. (1) and (2) as equilibrium den-
sities. For linear ensembles, M(τ ) represents a Hamiltonian
operator. Remarkably this leads to a Brownian process for the
eigenvalues of {A} ≡ {M(∞)}, which interact via a Coulomb
gas (logarithmic) potential. In a similar fashion, a Brownian
model can be written for the circular case, which yields the
equilibrium density in Eq. (3) [21].

We review Dyson’s formulation, starting with the Langevin
equation for the matrix variable M(τ ) in the linear ensembles:

dM(τ )

dτ
= −βV ′[M(τ )] + ξ (τ ). (4)

Here, ξ (τ ) is a Gaussian white-noise matrix which is similar
in structure to M. Note that M(τ ) is a matrix variable execut-
ing Brownian motion in the space of matrices M. The first two
moments of the matrix elements ξ

(γ )
jk are [21]

ξ
(γ )
jk (τ ) = 0, (5)

ξ
(γ )
i j (τ )ξ (η)

kl (τ ′) = δγη[δikδ jl + (2δγ 0 −1)δilδ jk]δ(τ −τ ′). (6)

Here, the bar denotes the ensemble average.
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We discretize the Langevin equation over an infinitesimal
time interval δτ . The matrix increment, δM ≡ M(τ + δτ ) −
M(τ ), has a drift term [the first term of the right-hand side in
Eq. (4)] and a diffusive term [the second term of the right-hand
side in Eq. (4)]. The first term contributes to the average and
the second term contributes to the covariance of the matrix
elements. The average of δM is given by

δM = −βV ′(M )δτ. (7)

The second moments of elements of δM are given by

δM (γ )
i j δM (η)

kl = δγη

[
δikδ jl + (2δγ 0 − 1)δilδ jk

]
δτ. (8)

In the Gaussian case, δM is an infinitesimal GOE, GUE, and
GSE, respectively, for β = 1, 2, 4. The off-diagonal variances
are v2δτ in each case. The corresponding Fokker-Planck (FP)
equation for the probability distribution of the matrix elements
is given in Ref. [23]. The equilibrium JPD of M(∞) is the
same as in Eq. (2).

For circular ensembles of matrices U , the infinitesimal
increment is δU = iSδMSD. Here, S is unitary and SD is the
transpose of S for β = 1, Hermitian adjoint for β = 2, and
quaternion dual for β = 4.

C. Brownian motion formulation for eigenvalues

We consider the eigenvalues {x j ; j = 1, . . . , N} of matrices
M(τ ), which obey the Brownian process on the real line.
The increment in eigenvalue δx j = x j (τ + δτ ) − x j (τ ) for the
matrix increment δM can be computed by using second-order
perturbation theory. Using Eqs. (7) and (8), the first two
moments of δx j at fixed time τ , correct up to first-order in
δτ , are

δx j = β

⎡
⎣−V ′(x j ) +

∑
k �= j

(xk − x j )
−1

⎤
⎦δτ = −β

∂W

∂x j
δτ, (9)

where

W = −
∑
j<k

log |xk − x j | +
∑

j

V (x j ), (10)

and

δx jδxk = 2δ jkδτ. (11)

[See Appendix C in [28] for the derivation of moments in
Eqs. (9) and (11).] These moments are also known as “con-
ditional moments.”

The Fokker-Planck equation for the JPD p(x1, . . . , xN ) is

∂ p

∂τ
=

N∑
j=1

[
∂2 p

∂x2
j

− β
∂

∂x j

(
p
∂W

∂x j

)]
. (12)

The equilibrium JPD of eigenvalues is

p(x1, . . . , xN ) = C exp(−βW )

= C
∏
j<k

|x j − xk|β exp

⎡
⎣−β

∑
j

V (x j )

⎤
⎦. (13)

Here, V (x) = x2/4v2 gives the Gaussian ensemble results.
For circular ensembles, one deals with the eigenangles θ j

instead of real variables x j . Using second-order perturbation

theory for unitary matrices, Eqs. (9)–(11) are replaced by

δθ j = β

⎡
⎣−V ′(θ j ) + 1

2

∑
k �= j

cot

(
θk − θ j

2

)⎤⎦δτ = −β
∂W

∂θ j
δτ,

(14)
where

W (θ j ) = −
∑
j<k

log

∣∣∣∣ sin

(
θk − θ j

2

)∣∣∣∣+∑
j

V (θ j ), (15)

and

δθ jδθk = 2δ jkδτ. (16)

In Eqs. (14) and (15), the potential V (θ j ) = V (eiθ j ).
The Fokker-Planck equation for the JPD p(θ1, . . . , θN ) is

given by Eq. (12), with x j replaced by θ j and W as in Eq. (15).
The equilibrium JPD is

p(θ1, . . . , θN ) =C exp
(− βW

)

=C
∏
j<k

| sin(θ j − θk )|β exp

⎡
⎣−β

∑
j

V (θ j )

⎤
⎦.

(17)

Note that the logarithmic potential terms in Eqs. (10) and (15)
correspond to the two-dimensional Coulomb potential. This
is the reason for the usage of the term “Coulomb gas.” In the
next section, we will generalize the above formulation for the
FRCG.

III. FINITE-RANGE COULOMB GAS MODELS

We now introduce FRCG models as a generalization of
the above FP equation for the eigenvalue dynamics. In the
FP equation (12), we restrict the eigenvalue interaction to the
range d , i.e., W is given by

W = −
∑
j<k

′
log |xk − x j | +

∑
j

V (x j ). (18)

Here
∑′ denotes the sum over all | j − k| � d with j �= k.

In Eq. (18), the logarithmic terms represent the finite-range
repulsive two-dimensional Coulomb gas potential, and V is
a one-body binding potential. In equilibrium, the JPD of
eigenvalues is

p(x1, . . . , xN ) =C exp(−βW )

=C
∏
j<k

′|x j − xk|β exp

⎡
⎣−β

∑
j

V (x j )

⎤
⎦, (19)

where the prime denotes that the product is restricted to | j −
k| � d . We will refer to these ensembles as linear ensembles.
Note that we have considered the case of arbitrary potential
V (x) in the above discussion. The Gaussian case corresponds
to V (x) = x2/4v2.

At this stage, it is appropriate to make some remarks about
these FRCG models.

(1) In the d = 0 case, the interaction term in Eq. (18)
is absent and the particles {xi} move independently. This
corresponds to the Poisson limit. In the d = N − 1 case, all
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particles interact with each other. This corresponds to the
Wigner-Dyson classical ensembles. Thus, as d changes from
zero to N − 1, there is a crossover from the Poisson limit to the
Wigner-Dyson limit. We would like to understand the nature
of this crossover.

(2) The term “finite range” refers to the range in eigenvalue
indices, not actual distances. In principle, nearest-neighbor
eigenvalues could lie far apart on the real number line.

(3) It is relevant to ask whether the above crossover is
realized in physical systems. In Ref. [29], we will demonstrate
that the FRCG models (and their extension to noninteger d)
provide a framework to understand transitions in QKRs and
BRMs.

(4) The FRCG models were first proposed by one of the
authors [31]. Their formal properties were studied by Pandey
[31], Bogomolny et al. [32,34], and Jain and Khare [33]. We
will discuss connections to earlier work at appropriate places
in this paper and Ref. [29]. The present paper constitutes a
detailed application of FRCG models to study transitions in
physical systems.

(5) It is tempting to ask whether the FRCG models can
be motivated from a Brownian matrix evolution with banded
noise matrices. Then, the d = N − 1 limit would correspond
to the usual Dyson prescription in Secs. II B and II C. We cau-
tion the reader that such a connection is not straightforward.
At present, we will treat the FRCG models as generalizations
of Dyson’s Brownian motion models for eigenvalue spectra.
Clearly, an important direction for future work is to identify
the matrix ensembles which yield the JPD of eigenvalues in
Eq. (19).

The corresponding banded version of the circular ensemble
follows again from Dyson’s prescription. The JPD of the
resultant equilibrium ensemble is

p(θ1, . . . , θN ) = C exp(−βW ), (20)

where {θ j} are eigenangles in ascending order. The term W is
given by an appropriate generalization of Eq. (15):

W = −
∑
j<k

′
log

∣∣∣∣ sin

(
θk − θ j

2

)∣∣∣∣+∑
j

V (θ j ). (21)

In this case, V (θ ) is a potential periodic on the unit circle. We
can also write p as in Eq. (19):

p(θ1, . . . , θN ) = C
∏
j<k

′| sin(θ j − θk )|β exp

⎡
⎣−β

∑
j

V (θ j )

⎤
⎦.

(22)
Note that V (θ ) = 0 and d = N − 1 corresponds to the

usual Dyson’s circular ensemble, which we also refer to
as the uniform circular ensemble. The introduction of V
renders it a nonuniform circular ensemble [26]. We will
concentrate primarily on Gaussian ensembles in the linear
case, and uniform ensembles in the circular case. However,
we will consider some non-Gaussian and nonuniform circular
ensembles also. We will derive analytic results in this paper,
and supplement them with Monte Carlo (MC) calculations in
Ref. [29]. In Ref. [29], we will also discuss applications of
FRCG ensembles.

IV. LEVEL DENSITY: LINEAR ENSEMBLES WITH
d = O(1)

The level density in the linear case is defined by

ρ(x1) =
∫ ∞

0
. . .

∫ ∞

0
p(x1, . . . , xN )dx2 . . . dxN . (23)

The corresponding pth moment is given by

Mp =
∫ ∞

0
xpρ(x)dx

=
∫ ∞

0
. . .

∫ ∞

0
xp

j p(x1, . . . , xN )dx1 . . . dxN

= 1

N

∑
j

〈
xp

j

〉
. (24)

Here, the angular brackets denote

〈F 〉 =
∫ ∞

0
. . .

∫ ∞

0
F (x1, . . . , xN )p(x1, . . . , xN )dx1 . . . dxN ,

(25)
for a function F (x1, . . . , xN ). After a partial integration, we
get

Mp = 1

N

∑
j

〈
xp+1

j

p + 1
β

∂W

∂x j

〉

= β

N (p + 1)

⎡
⎣−1

2

∑
j �=k

′
〈(

xp+1
j − xp+1

k

x j − xk

)〉

+
〈∑

j

xp+1
j V ′(x j )

〉⎤⎦

= β

N (p + 1)

⎡
⎣−1

2

〈∑
j �=k

′ p∑
q=0

xq
j x

p−q
k

〉
+
〈∑

j

xp+1
j V ′(x j )

〉⎤⎦.

(26)

In the second step of the above equation, we have differenti-
ated W and written the double sum in the symmetrized form.

For d = O(1), x j and xk in the double sum of Eq. (26) can
be taken to be equal to each other. For a given j, 2d values of
k contribute to the sum. Thus

Mp = − βdMp + β

N (p + 1)

〈∑
j

xp+1
j V ′(x j )

〉

= β

N (p + 1)(βd + 1)

〈∑
j

xp+1
j V ′(x j )

〉

= β

(p + 1)(βd + 1)

〈
xp+1

j V ′(x j )
〉
. (27)

In the last step of the above equation, j is any of the N indices.
Now, using

C
∫ ∞

0
xp exp

(
− βV (x)

βd + 1

)
dx

= Cβ

(p+1)(βd+1)

∫ ∞

0
xp+1

j V ′(x j ) exp

(
− βV (x)

βd + 1

)
, (28)
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we identify the level density as

ρ(x) = C exp

(
− βV (x)

βd + 1

)
. (29)

Here, C is the normalization constant. Note that, in the Gaus-
sian ensemble, the density has a Gaussian form, but with a
larger variance. In Ref. [29], we will verify Eq. (29) by MC
simulations. We will consider the following two potentials: (a)
harmonic potential

V (x) = 1
2κx2, κ > 0, (30)

and (b) quartic potential

V (x) = κ

(
x4

4
− α

x2

2

)
, κ > 0. (31)

In the harmonic and quartic cases, κ sets the scale of the
V axis. In the quartic potential, α determines whether the
potential is single well (α < 0) or double well (α > 0).

V. LEVEL DENSITY: CIRCULAR ENSEMBLES
WITH d = O(1)

For the circular ensembles, we follow the method described
in the previous section. Consider the moment Mp of the
density ρ(θ ) defined by

Mp =
∫ 2π

0
eipθρ(θ )dθ

=
∫ 2π

0
eipθ j p(θ1, . . . , θN )dθ1 . . . dθN

= − C

N

∑
j

∫ 2π

0

eipθ j

ip
e−βW

(
∂W

∂θ j

)
dθ1 . . . dθN . (32)

Here, a partial integration has been used in the last step. Using
W from Eq. (21), and using angular brackets to denote the
ensemble averages as in Eq. (25), we have

Mp = C

ipN

∑
j

∫ 2π

0

eipθ j

ip
e−βW

×
[
−
∑

k

′
β cot

(
θ j − θk

2

)
+ βV ′(θ )

]
dθ1 . . . dθN

= C

ipN

⎡
⎣−β

2

〈∑
j �=k

′
(eipθ j − eipθk ) cot

(
θ j − θk

2

)

+
∑

j

βeipθ jV ′(θ j )

〉⎤⎦. (33)

In the first step, we have used

d

dθ j
log

(
sin

∣∣∣∣θ j − θk

2

∣∣∣∣
)

= 1

2
cot

(
θ j − θk

2

)
. (34)

In the second step of Eq. (33), symmetrization has been done
in the double sum. Now, as in the linear case for d = O(1),

we take θ j and θk to be equal in the double sum, leading to

Mp = β

(p + 1)(βd + 1)
〈ei(p+1)θ jV ′(θ j )〉. (35)

This yields

ρ(θ ) = C exp

(
− βV (θ )

βd + 1

)
. (36)

In subsequent discussion, we will consider the following
two potentials: (a) uniform potential V (θ ) = 0 and (b) cosine
potential V (θ ) = κ cos(θ ).

VI. LEVEL DENSITY: LINEAR AND CIRCULAR
ENSEMBLES WITH d = O(N)

We first consider linear ensembles in the long-range case
[d = O(N )]. The typical pair of x j and xk in the last step of Eq.
(26) can be taken to be independent. Thus, Mp can be written
as

Mp= β

N (p+1)

⎡
⎣−1

2

∑
j �=k

′ p∑
q=0

〈
xq

j

〉〈
xp−q

k

〉+
〈∑

j

xp+1
j V ′(x j )

〉⎤⎦.

(37)

The number of distinct terms in
∑′ can be shown to be

Nd = Nd − d (d + 1)/2. Thus, for d = N − 1, we have Nd =
N (N − 1)/2 (i.e., all distinct pairs). For d = (N − 1)/2, we
have Nd = (N − 1)(3N − 1)/8. We assume that each term in
the double sum in Mp contributes equally. Thus, since there
are 2Nd pairs of ( j, k), we obtain

Mp = β

p + 1

⎡
⎣−2Nd

2N

p∑
q=0

〈
xq

j

〉〈
xp−q

k

〉+ 〈xp+1
j V ′(x j )

〉⎤⎦

= β

p + 1

⎡
⎣−Nσ 2

2

p∑
q=0

〈
xq

j

〉〈
xp−q

k

〉+ 〈xp+1
j V ′(x j )

〉⎤⎦. (38)

Here,

σ 2 = 2Nd

N2
= γ (2 − γ ), (39)

with d = γ N . In long-range models,

V (x) = Nu(x) (40)

gives a density with finite support (i.e., independent of N).
Dividing both sides of Eq. (38) by N and ignoring O(N−1)
terms in the limit N → ∞, we get

σ 2

2

p∑
q=0

MqMp−q =
∫ ∞

0
xp+1u′(x)ρ(x)dx. (41)

Note that

1

2

p∑
q=0

MqMp−q = 1

2

∫ ∞

0

∫ ∞

0

xp+1 − yp+1

x − y
ρ(x)ρ(y)dxdy

=
∫ ∞

0

∫ ∞

0
xp+1 ρ(x)ρ(y)

x − y
dxdy. (42)
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Comparing the final steps of Eqs. (41) and (42), we obtain

σ 2
∫ ∞

0

ρ(y)

x − y
dy = u′(x), (43)

where the principal value of the integral is implied. Integral
equations of this type have been considered earlier; see, for
example, Refs. [24,36].

As a first example, we consider the above equation for
the Gaussian case u(x) = x2/4. Then, Eq. (43) yields the
semicircular density

ρ(x) =
√

4σ 2 − x2

2πσ 2
. (44)

Notice that the semicircle radius σ 2 = 1 for d = N − 1,
which is the usual Wigner result. For d � N − 1, the semicir-
cle applies once again but with reduced radius. Consider also
the Jacobi ensemble, with V (x) = a log(1 − x) + b log(1 + x)
where a and b are of order 1. Since V is independent of N ,
u(x) = 0 for |x| < 1. In this case, the density is independent
of σ 2, given by

ρ(x) = 1

π
√

1 − x2
. (45)

For the quartic potential, u(x) = (κ/N )(x4/4 − αx2/2).
For d = N − 1, it is known that the density undergoes a
transition from one-band to two-band at the critical point
αc = √

2N/κ [24]. For d = O(N ), the prefactor becomes κ̃ =
κ/Nσ 2, and αc changes to α̃c = σαc. The results for the
density are

ρ(x) = κ̃

π

{
1

3

[√(
α2 + 6

κ̃

)
− 2α

]
+ x2

}

×
{

2

3

[√(
α2 + 6

κ̃

)
+ α

]
− x2

}1/2

, α < α̃c, (46)

and

ρ(x) = κ̃

π
|x|
√

2

κ̃
− (x2 − α)2, α > α̃c. (47)

The support of these densities is single-band in Eq. (46) and
two-band in Eq. (47), respectively.

For d = O(N ), with V (θ ) = Nu(θ ) in the circular case, we
take θ j and θk to be independent as in the linear case, giving
thereby

σ 2
∫ 2π

0
cot

(
θ − φ

2

)
ρ(φ)dφ = u′(θ ). (48)

Here, again, the principal value of the integral is implied. σ 2

is defined as in Eq. (39).
When u(θ ) = 0, the density is uniform, given by

ρ(θ ) = 1

2π
. (49)

Note that this simple result is a consequence of the circular
symmetry, and is valid for all d and N . This will be useful in
computing the fluctuation results for large d .

For the nonuniform potential u(θ ) = κ cos(θ ), κ changes
to κ̃ = κ/σ 2 for d = O(N ). The density is given by [26,37]

ρ(θ ) = 1

π
[κ (1 − cos θ )(1 − κ − κ cos θ )]1/2, κ � 1

2
,

(50)
and

ρ(θ ) = 1

2π
[1 − 2κ cos θ ], 0 � κ � 1

2
. (51)

The density in Eq. (50) corresponds to the banded case with
a peak at θ = π . On the other hand, the density in Eq. (51)
describes the nonbanded case, valid for the entire range of θ

(again peaked at θ = π ).
Note that the critical point α̃c decreases with d in the

quartic case, whereas the effective transition parameter κ in
the circular case increases with σ 2. Thus, in both the cases, the
onset of the transition occurs more rapidly with decreasing d .

VII. EQUIVALENCE OF FLUCTUATIONS FOR LINEAR
AND CIRCULAR ENSEMBLES

As we have mentioned earlier, the well-known classical
ensembles (Gaussian linear as well as uniform circular) arise
for d = (N − 1) [6]. For these ensembles, it has been proven
analytically that the fluctuation properties are identical for
each β after proper unfolding of the spectra, i.e., there is a dis-
tinct universality class for each β. Further, these properties are
also the same for an arbitrary smooth potential V [30,36,38].

Therefore, it is natural to investigate the nature of univer-
sality for short-range models. In this section, we demonstrate
that (a) for d = O(1) each (d, β) gives rise to a distinct
universality class and (b) for d = O(N ), for each β, the corre-
sponding universality class of classical ensembles applies.

Let us first focus on d = O(1) cases for the circular ensem-
ble. We define

s j = (θ j+1 − θ j )

D(θ j )
, (52)

where D(θ ) is the average spacing at θ . The θ j’s are defined
modulo 2π . Note that the spacing s j has an average equal to
1 for all j. This is commonly referred to as unfolding of the
spectra [3]. D(θ ) is given by

D(θ ) = 1

Nρ(θ )
, (53)

where ρ(θ ) is the normalized level density given in Eq. (36).
For example, in the case of zero potential, D(θ ) = 2π/N .
Note that, for large N and j > k,

1

D(θ )

∣∣∣2 sin
(θ j − θk )

2

∣∣∣ = (θ j − θk )

D(θ )
= (s j−1 + · · · + sk ).

(54)
Thus, using Eq. (22), we obtain the JPD of the nearest-
neighbor spacings s j as

Pd (s1, . . . , sN ) = Cdδ

(
N∑

i=1

si − N

)
N∏

j=1

[s j .(s j + s j+1) . . .

(s j + · · · + s j+d−1)]β, (55)
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valid for N 
 d � 1. This can also be written as

Pd = C0δ

(
N∑

i=1

si − N

)
, d = 0,

= Cdδ

(
N∑

i=1

si − N

)
N∏

j=1

d−1∏
k=0

(s j + · · · + s j+k )β, d � 1.

(56)

The δ-function term in Eqs. (55) and (56) arises because
the eigenvalues lie on the unit circle. Note that, in deriving
Eqs. (55) and (56), we have used Eq. (36) to obtain⎡

⎣∏
j

ρ(θ j )

⎤
⎦

βd+1

= e−β
∑

j V (θ j ). (57)

Thus, the entire V dependence is eliminated in the {θ j} → {s j}
transformation, including the contribution from the Jacobian
of the transformation. Therefore, the fluctuation properties are
independent of V (θ ) for d = O(1) in the circular ensemble.

In a similar way, for the linear ensembles we use Eqs. (52)
and (53) with θ replaced by x. In this case, the density
ρ(x) is given by Eq. (29). Now, using Eq. (19), we obtain
Eqs. (55) and (56) without the δ-function term. For large N ,
the mean of

∑
s j is N with relative fluctuations of O(N−1/2).

Therefore, the δ-function term can be reinstated. This proves
the equivalence of circular and linear ensembles for the fluc-
tuation properties for large N with d = O(1). This result is
independent of the potential V .

Let us next turn to the case of d = O(N ). Equations (55)
and (56) are valid for large N . To take the N → ∞ limit, we
need to consider the JPD of n consecutive spacings where n �
N . Thus,

P(n)
d (s1, ··, sn) ≡ lim

N→∞

∫ ∞

0
· ·
∫ ∞

0
Pd (s1, ··, sN )dsn+1 · ·dsN

(58)

is the JPD for each β and d , and independent of V . We will
deal with explicit forms of P(n)

d in Secs. VIII–X.
The potential V is important in determining the density [see

Eqs. (29) and (36)]. On the other hand, the fluctuations on a
scale n � N are governed by the logarithmic potential. When
d = O(N ) it is natural to expect that, after proper unfolding,
the fluctuations on the scale of order n will be independent of
d and therefore universal for each β.

The above discussion demonstrates the equivalence of
linear and circular ensembles. Therefore, in our subsequent
discussion, we will focus on the case of circular ensembles
with potential V (θ ) = 0.

We now introduce the statistical measures used to charac-
terize eigenvalue fluctuations. These are as follows [3,6].

(1) The (n − 1)th nearest neighbor spacing distribution
(n = 1, 2, 3, . . .) reads as

pn−1(s) =
∫ ∞

0
. . .

∫ ∞

0
δ

⎛
⎝s −

n∑
j=1

s j

⎞
⎠

× P(n)
d (s1, . . . sn)ds1 . . . dsn. (59)

A related quantity is

Qn(s1, sn) =
∫ ∞

0
. . .

∫ ∞

0
ds2 . . . dsn−1P(n)

d (s1, . . . sn), (60)

which is the JPD of two separated spacings s1 and sn.
(2) The spacing variance reads as

σ 2(n − 1) =
∫ ∞

0
s2 pn−1(s)ds − n2. (61)

(3) Two-level correlation function R2 and cluster function
Y2 read as

R2(s) = 1 − Y2(s) =
∞∑

n=1

pn−1(s). (62)

(4) The number variance reads as

�2(r) = r − 2
∫ ∞

0
(r − s)Y2(s)ds. (63)

Note that the results for d = (N − 1) with N → ∞ cor-
respond to the standard results given by Dyson, Mehta [1]
and others [6]. In Wigner-Dyson statistics, all the results
for eigenvalue and eigenvector fluctuations correspond to the
N → ∞ limit. In Ref. [29], we will demonstrate from MC
calculations that these results are applicable for d = O(N ).
Here, we briefly review the main analytical results for fluctu-
ation properties. These will be used for comparison with (a)
results from numerical integration presented in this paper and
(b) the MC results presented in Ref. [29].

The exact spacing distributions have complicated analyti-
cal forms deriving from integral equations. However, p0(s) is
well approximated by the following results [6]:

p0(s) = π

2
s exp

(
−π

4
s2
)
, β = 1, (64)

p0(s) = 32

π2
s2 exp

(
− 4

π
s2

)
, β = 2, (65)

p0(s) = 218

36π3
s4 exp

(
− 64

9π
s2

)
, β = 4. (66)

The number variance for r � 1 is given by

�2(r) = 2

βπ2
ln r + cβ, (67)

where

c1 = 2

π2

[
ln(2π ) + γ + 1 − π2

8

]
, (68)

c2 = 1

π2
[ln(2π ) + γ + 1], (69)

c4 = 1

2π2

[
ln(4π ) + γ + 1 + π2

8

]
. (70)

Here, γ = 0.577 215 6 is the Euler constant. The spacing
variance σ 2(k), up to a good approximation, is closely related
to the number variance �2(k + 1) [3,39] as

�2(k + 1) = σ 2(k) + 1
6 , (71)

which is exact for k → ∞. Note that k in the spacing variance
is an integer, and σ 2(k) measures the mean-square fluctuation
in the length of an interval containing a fixed number of levels.
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On the other hand, the argument of the number variance is
not restricted to integral values, and �2(k + 1) measures the
fluctuations in the number of levels contained in an interval of
fixed length. If we measure σ 2(k) in units of spacing s, then
at least for large s these two quantities should be essentially
the same. A detailed discussion of this point can be found in
Ref. [3].

The two-level cluster functions are known exactly [6]:

Y2(r) = [s(r)]2 +
(∫ ∞

r
s(t )dt

)(
d

dr
s(r)

)
, β = 1, (72)

Y2(r) = [s(r)]2, β = 2, (73)

Y2(r) = [s(2r)]2 +
(∫ r

0
s(2t )dt

)(
d

dr
s(2r)

)
, β = 4.

(74)

Here,

s(x) = sin(πx)

πx
. (75)

We will see in Ref. [29] that the Dyson-Mehta results
already arise for FRCG models with large values of d , even
for d � N .

VIII. FLUCTUATION PROPERTIES FOR d = 0, 1

We start with the simplest case, viz., d = 0. From Eq. (58)

P(n)
0 (s1, . . . , sn)

= lim
N→∞

C0

∫ ∞

0
δ

⎛
⎝ N∑

j=1

s j − N

⎞
⎠dsn+1 . . . dsN

= lim
N→∞

C̃0

⎛
⎝N −

n∑
j=1

s j

⎞
⎠

N−n−1

=
n∏

j=1

e−s j . (76)

In the first step of Eq. (76), the integration is facilitated by the
change of variables

x j = s j(
N −∑n

i=1 si
) , j = n + 1, . . . N, (77)

and using δ(ax) = |a|−1δ(x). In the last step, the normaliza-
tion constant is unity. This is the standard Poisson result as
there is no interaction between the “particles.” The spacings
s j are independent and have exponential distributions. Note
that the results in this case are independent of β.

In this case, the fluctuation measures given in Eqs. (59)–
(63) yield the following well-known results:

pn−1(s) = s(n−1)

(n − 1)!
e−s, σ 2(n − 1) = n, (78)

and

R2(s) = 1, Y2(s) = 0, �2(r) = r. (79)

Next, we consider the d = 1 case. Now, each particle (i.e.,
eigenvalue) interacts with its nearest neighbor. From Eq. (56)

it is clear that there will be an extra factor sβ
j in the JPD

P1(s1 . . . sN ). Again, from Eqs. (55) and (58), we find

P(n)
1 (s1, . . . sn)

= lim
N→∞

C1

∫ ∞

0

N∏
j=1

sβ
j δ

(
N∑

i=1

si − N

)
dsn+1 . . . dsN

= lim
N→∞

C̃1

(
N −

n∑
i=1

si

)(N−n)(β+1) n∏
j=1

sβ
j

=
n∏

j=1

(β + 1)β+1

β!
sβ

j e−(β+1)s j . (80)

In this case, the spacings are again independent, and

p0(s) = (β + 1)(β+1)

β!
sβe−(β+1)s. (81)

Further, the (n − 1)th spacing distribution is given by

pn−1(s) = (β + 1)(β+1)n

[(β + 1)n − 1]!
s(β+1)n−1e−(β+1)s. (82)

The proof of this also follows directly from Eq. (59) by change
of variables s j = sx j . The spacing variance is obtained as

σ 2(n − 1) = n

β + 1
. (83)

To obtain the number variance �2, we first consider the
Laplace transform of the two-level cluster function. Using
Eqs. (62) and (82), and introducing α as the Laplace variable,
we find

1

α
−
∫ ∞

0
e−αsY2(s)ds

=
(

β + 1

β + 1 + α

)β+1 1

1 − ( β+1
β+1+α

)(β+1)

= 1

α
− β

2(β + 1)
+ β(β + 2)

12(β + 1)2
α + O(α2). (84)

Comparing the constant term, and the α-order term, we have∫ ∞

0
Y2(s)ds = β

2(β + 1)
, (85)

∫ ∞

0
sY2(s)ds = β(β + 2)

12(β + 1)2
. (86)

Since the two Y2 integrals in Eq. (63) converge rapidly, we can
use Eqs. (85) and (86) in Eq. (63) to get

�2(r) = r

β + 1
+ β(β + 2)

6(β + 1)2
. (87)

The rapid convergence of integrals comes from the fact that
the inverse Laplace transform gives exponential terms in Y2.
For example, for β = 1 we find

Y2(s) = e−4s. (88)

For other β values, Y2(s) contains several exponential terms
and is given in Eq. (95) for d = 1, β = 2.
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IX. MEAN-FIELD APPROXIMATION FOR d > 1

In this section, we present an approximation which re-
duces the arbitrary d case to an effective d = 1 case. This
reduction is analogous to the MF approximation in statistical
mechanics. The MF approximation will give good estimates
for the above fluctuation measures. In Eq. (55), we set
s j+1, s j+2, . . . , s j+d−1 � s j in each of the factors under the
product sign, neglecting fluctuations in neighboring spacings.
This yields

Pd (s1, . . . , sN ) � C̄dδ

(
N∑

i=1

si − N

)
N∏

j=1

sβd
j . (89)

Then, integrating over variables sn+1, . . . , sN as in the d =
0, 1 cases, we obtain

P(n)
d � lim

N→∞
C̃d

(
N −

n∑
i=1

si

)(N−n)ξ n∏
j=1

sβd
j

=
n∏

j=1

ξ ξ

�(ξ )
s(ξ−1)

j e−ξs j , ξ = (βd + 1), (90)

i.e., the spacings are independent for large N . This approxima-
tion is valid for n � d . Note that Eq. (90) is exact for d = 0, 1.

Substituting Eq. (90) in Eq. (59), we obtain the spacing
distribution for n � 1:

pn−1(s) = ξ nξ

�(nξ )
snξ−1e−ξs. (91)

The spacing variance is given by

σ 2(n − 1) = n

βd + 1
+ γ (β, d ). (92)

The leading term in Eq. (92) (i.e., the linear term in n) is
determined by the MF result in Eq. (91). The constant term
γ (β, d ) does not arise in the MF approximation, and its
introduction is motivated by our exact d = 2 result below. For
d > 2, we estimate this constant from our MC calculations as
discussed in Ref. [29].

To calculate the number variance, we use Eqs. (90) and (91)
to obtain the Laplace transform of the two-level correlation
function R2(s) in Eq. (62). We find for α � 0

1

α
−
∫ ∞

0
e−αsY2(s)ds =

∞∑
n=1

1[
(1 + α

ξ
)ξ
]n

= ξ ξ

[(ξ + α)ξ − ξ ξ ]
. (93)

Here, the final expression results from the sum of an infinite
geometric series. The cluster function Y2 falls off exponen-
tially for all d = O(1). For example, for d = 1, β = 2 (i.e.,
ξ = 3), we have from Eq. (93) after taking the inverse Laplace
transform

L−1

{∫ ∞

0
e−αsY2(s)ds

}
= L−1

{
1

α
− 27

(3 + α)3 − 27

}
.

(94)

This gives

Y2(s) = 2e−9s/2 sin

(
3

2

√
3s + π

6

)
. (95)

Using Eq. (93), we can evaluate the number variance �2(r) in
Eq. (63) as

�2(r) = σ 2(r − 1) + (ξ 2 − 1)

6ξ 2
. (96)

For d > 2, one can improve the MF approximation by
considering a reduction to an effective d = 2 case. This
process gives an estimate for γ (β, d ) in Eq. (92), but the
corresponding calculation requires solutions of the integral
equation discussed below for d = 2.

X. FLUCTUATION PROPERTIES FOR d = 2

Let us now consider FRCG ensembles with next-nearest-
neighbor interactions, i.e., d = 2. This case will involve sig-
nificant complications as compared to the d = 1 case. This
is due to the correlations introduced between the consecutive
level spacings. From Eq. (55), the JPD of the nearest-neighbor
spacings for d = 2 is

P2(s1, . . . sN ) = C2δ

(
N∑

i=1

si − N

)
N∏

j=1

sβ
j (s j + s j+1)β. (97)

The corresponding JPD of n � 2 consecutive spacings is

P(n)
2 (s1, . . . sn) = lim

N→∞
C2

∫ ∞

0
δ

(
N∑

i=1

si − N

)

×
N∏

j=1

sβ
j (s j + s j+1)βdsn+1 . . . dsN , (98)

or

P(n)
2 (s1, . . . sn) = C̃2 exp

[
−(2β + 1)

n∑
i=1

si

]

×
n∏

j=1

sβ
j

n−1∏
k=1

(sk + sk+1)βG(s1, sn). (99)

Here, the exponential factor arises from the δ function. The
factor (2β + 1) becomes (βd + 1) for general d , as there are
d multiplying factors of s terms. The term G(s1, sn) arises
because there are two extra factors in Eq. (97) which depend
on s1 and sn, viz., (s1 + sN )β and (sn + sn+1)β .

As s1 and sn are well separated by the integration variables
(sn+1, . . . , sN ), and the interaction is short ranged, we assume
that G(s1, sn) is factorizable:

G(s1, sn) � F (s1)F (sn). (100)

From Eq. (99), a further integration on sn yields
P(n−1)

2 (s1, . . . , sn−1). In this process, the function F (s)
does not change, but the constant changes. This implies that
F (s) is an eigenfunction of the integral equation:∫ ∞

0
e−(2β+1)ssβ (t + s)β fμ(s)ds = λμ fμ(t ). (101)
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Here, λμ and fμ are eigenvalues and eigenfunctions of this
equation. The kernel (t + s)β is a polynomial of order β in t ,
implying that there are (β + 1) eigenvalues. We order them
as λ0 < λ1 . . . < λβ . The eigenfunction fμ is a polynomial of
order β, and this enables us to solve Eq. (101) numerically by
matrix diagonalization. The eigenfunction fβ corresponding
to the largest eigenvalue will have only positive coefficients.
Thus, for fβ normalized as in Eq. (103) below, we obtain

P(n)
2 (s1, . . . sn) = 1

λn−1
β

exp

⎡
⎣−(2β + 1)

n∑
j=1

s j

⎤
⎦

×
n∏

j=1

sβ
j

n−1∏
k=1

(sk + sk+1)β fβ (s1) fβ (sn),

(102)

valid for n = 2, 3, . . ..
It is useful to describe some properties of the integral

equation (101). The kernel (t + s)β is symmetric in t and s,

so the integral equation is Hermitian. Therefore, the eigen-
values λμ are real and the eigenfunctions fμ are orthogonal.
The eigenfunctions are appropriately normalized, giving the
orthonormality relation:∫ ∞

0
e−(2β+1)ssβ fμ(s) fν (s)ds = δμν. (103)

The properties of Hermitian operators can be exploited to ob-
tain sum rules involving the eigenvalues and eigenfunctions.
The kernel I (s, t ) of the identity operator can be expressed as

I (s, t ) =
β∑

μ=0

fμ(s) fμ(t ). (104)

The spectral decomposition property can be written as

(t + s)β =
β∑

μ=0

λμ fμ(s) fμ(t ). (105)

This property can be generalized, using Eqs. (101) and (104),
as

∫ ∞

0
. . .

∫ ∞

0
ds2 . . . dsn exp

⎡
⎣−(2β + 1)

n∑
j=1

s j

⎤
⎦×

n∏
k=1

sβ

k (s1 + s2)β (s2 + s3)β . . . (sn + sn+1)β =
β∑

μ=0

λn
μ fμ(s1) fμ(sn+1). (106)

Notice that, for n = 1 in Eq. (106), we recover Eq. (105). Finally, we have the trace relation

∫ ∞

0
. . .

∫ ∞

0
ds1 . . . dsn exp

⎡
⎣−(2β + 1)

n∑
j=1

s j

⎤
⎦×

n∏
k=1

sβ

k (s1 + s2)β (s2 + s3)β . . . (sn + s1)β =
β∑

μ=0

λn
μ. (107)

In Eq. (102), we integrate over all variables except s1 and sn to obtain

Qn(s1, sn) = e−(2β+1)(s1+sn )sβ

1 sβ
n fβ (s1) fβ (sn)

β∑
μ=0

(
λμ

λβ

)n−1

fμ(s1) fμ(sn). (108)

For n = 1, this gives the nearest-neighbor spacing distribution

p0(s) = Q1(s1) = e−(2β+1)ssβ
[

fβ (s)
]2

. (109)

We point out that the distributions in Eqs. (108) and (109) are normalized to unity. Further, because of unfolding, the average
spacings are all unity.

For higher-order spacing distributions (pn−1 or pk for k = n − 1, n � 1), we substitute Eq. (102) in Eq. (59) to obtain

pn−1(s) = pk (s) = 1

λn−1
β

∫ ∞

0
. . .

∫ ∞

0
δ

(
s −

n∑
i=1

si

)
exp

(
−(2β + 1)

n∑
i=1

si

)
×

n∏
i=1

sβ
i

n−1∏
j=1

(s j + s j+1)β fβ (s1) fβ (sn)ds1 . . . dsn.

(110)

Thus, for example,

p1(s) = 1

λβ

e−(2β+1)s
∫ ∞

0
sβ

1 (s − s1)βsβ fβ (s1) fβ (s − s1)ds1.

(111)
We have performed a numerical integration of Eq. (110), and
plot pk (s) for different values of k for d = 2 and β = 1, 2, 4
in Fig. 1. We can also calculate R2(s) and Y2(s) from Eq. (62)
with pn−1(s) from Eq. (110). We will show numerical results
for R2(s) and Y2(s) for d = 2 later.

It is convenient to define an average over level spacings:

〈〈X (s)〉〉 =
∫ ∞

0
e−(2β+1)ssβX (s)ds. (112)

The variance of the nearest-neighbor spacing distribution is
given by

σ 2(0) = 〈〈s2 fβ (s)2〉〉 − 1. (113)
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The covariance between s1 and sn can be derived from
Eq. (108) as

〈〈s1sn〉〉 − 1 =
β−1∑
μ=0

(
λμ

λβ

)n−1

〈〈s fβ fμ〉〉2, (114)

valid for n � 2. Note that the covariance goes to zero expo-
nentially as n increases.

Using Eqs. (113) and (114) in Eq. (61), we obtain the
variance of the nth spacing distribution as

σ 2(n − 1) = nσ 2(0) +
n∑

j=2

(n − j + 1)〈〈s1s j〉〉

= n

⎡
⎣〈〈s2 f 2

β 〉〉 − 1 + 2
β−1∑
μ=0

λμ

λβ − λμ

〈〈s fβ fμ〉〉2

⎤
⎦

− 2
β−1∑
μ=0

λμλβ

(λβ − λμ)2
〈〈s fβ fμ〉〉2

+ 2
β−1∑
μ=0

(
λμ

λβ

)n
λμλβ

(λβ − λμ)2
〈〈s fβ fμ〉〉2. (115)

The result in Eq. (115) consists of three terms: linear in n,
constant, and exponentially decaying in n. In the large-n limit,
the spacing variance becomes

σ 2(n − 1) = n

2β + 1
+ γ (β, 2), (116)

where γ (β, 2) is a constant. This will be explicitly verified
below for β = 1, 2, 4. We will use the notation γ (β, d ) to
denote this constant for general d .

For β = 1, one can derive the above quantities explicitly.
The two eigenvalues and their eigenfunctions are as follows:

λ0 =
(

1 −
√

3

2

)
2

27
, λ1 =

(
1 +

√
3

2

)
2

27
, (117)

f0(s) =
(
s −
√

2
3

)
√

2|λ0|
√

2
3

, f1(s) =
(
s +
√

2
3

)
√

2|λ1|
√

2
3

. (118)

The other statistical quantities are

σ 2(0) = 1

3

(
2 −

√
2

3

)
, (119)

〈〈s1sn〉〉 − 1 = (−1)n−1

3

(√
3
2 − 1

)n−1

(√
3
2 + 1

)n−1
, (120)

and

σ 2(n − 1) = n

3
+ 1

18
+ (−1)n−1

18

(√
3
2 − 1

)n
(√

3
2 + 1

)n
→ n

3
+ 1

18
for large n. (121)

The equalities in Eqs. (120) and (121) apply for n � 2.
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FIG. 2. Comparison of spacing distributions for d = 2 and β =
1, 2, 4. The different frames show exact results for (a) p0(s),
(b) p1(s), and (c) p2(s).

For β = 2, 4 we have numerically computed the eigen-
values and eigenfunctions from the integral equation (101).
These are tabulated in Tables I–III in the Appendix. Fig-
ures 1–6 show different statistical measures obtained from
numerical integrations for d = 2 and β = 1, 2, 4. In Fig. 1,
we show the higher-order spacing distributions pk (s) for
β = 1, 2, 4. In Fig. 2, we make a comparison between the
spacing distributions p0, p1, and p2 for all three β values.
In Fig. 3, we show a comparison of p0(s) for d = 0, 1, 2 for
each β. In Figs. 3(a), 3(b), and 3(c), we have also included
the corresponding classical-ensemble results for the GOE,
GUE, and GSE, respectively. (As mentioned earlier, these
arise for d = N − 1.) These plots demonstrate the crossover
from Poisson to classical results in the FRCG models as d is
increased from zero to N − 1. In Fig. 4, we show a comparison
between our exact results and the MF approximation. We have
compared results for pkm (s) vs s, where km is the smallest value
for which the exact results are numerically indistinguishable
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FIG. 3. Nearest-neighbor spacing distribution, p0(s) vs s, for
d = 0, 1, 2 and (a) β = 1, (b) β = 2, and (c) β = 4. The d = 0 case
corresponds to Poisson ensembles. For comparison, we also show the
corresponding results for classical ensembles, which arise for d =
N − 1. These correspond to GOE, GUE, and GSE for β = 1, 2, 4,
respectively.

from the MF results on this scale. The quality of agreement
improves further for higher values of k. Notice that km is
smaller for higher values of β. Figures 5 and 6 correspond
to the two-point correlation function R2(s) and the two-point
cluster function Y2(s), respectively.

We have also used the eigenvalues and eigenfunctions to
compute σ 2(n − 1) and verified Eq. (116) with γ (2, 2) =
0.045 156 6 and γ (4, 2) = 0.030 598 5. For β = 1, γ (1, 2) =
1/18 as in Eq. (121).

Following the above discussion regarding σ 2(n − 1), and
from the result for �2(n) in the d = 1 case in Eq. (87), we
rewrite the result of number variance for d = 2 as

�2(n) = σ 2(n − 1) + 2β(2β + 2)

6(2β + 1)2
. (122)

This will be verified by MC calculations in Ref. [29].
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FIG. 4. Comparison between exact and mean-field (MF) results
for pkm (s) in the d = 2 case. The different frames show the cases
(a) β = 1, (b) β = 2, and (c) β = 4. For k � km, the exact and MF
results are numerically indistinguishable on the scale of this plot.

XI. FLUCTUATION PROPERTIES FOR d > 2

The d > 2 case is analytically less tractable, as expected.
However, the basic structure of many of the equations is
formally similar to that for the d = 2 case. Let us start with
the JPD in Eq. (55) for d > 2. We follow the calculations in
Sec. X. The first major change is encountered in the integral
equation (101), which now becomes∫ ∞

0
e−(βd+1)t tβ (t + sd−1)β . . . (t + . . . + s1)β

× fμ(t, sd−1, . . . , s2)dt = λμ fμ(sd−1, . . . , s1). (123)

In this case, there are ζ + 1 eigenvalues and eigenfunctions,
where ζ can be calculated from the multinomial form of fμ:

ζ = (β + 1)(3β + 1) . . .

(
d (d − 1)

2
β + 1

)
. (124)
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FIG. 5. Two-point correlation function R2(s) for (a) β = 1,
(b) β = 2, and (c) β = 4. In each frame, we plot R2(s) vs s for
d = 0, 1, 2 and the classical-ensemble result (d = N − 1). The d =
0 case yields the Poisson result.

Thus μ = 0, 1, . . . , ζ . We consider the eigenvalues in ascend-
ing order with λζ as the highest.

The appropriate generalization of Eq. (102) is

P(n)
d (s1, . . . , sn) = 1

λn−1
ζ

exp

[
−(βd + 1)

n∑
i=1

s j

]

×
⎧⎨
⎩

d−1∏
k=0

(n−k,1)>∏
j=1

(s j + s j+1 + · · · + s j+k )β

⎫⎬
⎭

× fζ (s1, . . . , sd−1) fζ (sn, . . . , sn−d+2).
(125)

This expression can be used to calculate various fluctua-
tion properties. However, the subsequent calculations become
more involved as d increases. Thus, we use MC techniques
(described in Ref. [29]) to obtain the complete picture for
arbitrary d .
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FIG. 6. Analogous to Fig. 5, but for the two-point cluster func-
tion Y2(s) = 1 − R2(s).

As we have mentioned in the introductory section, signif-
icant work on FRCG models was also done by Bogomolny
et al. [32,34]. It is useful to compare and contrast our approach
with that of Bogomolny et al. The cases d = 0, 1 are simple,
so we will focus on cases with d � 2.

(1) We use the integral equation to directly calculate the
JPDs and the corresponding fluctuation properties. In this con-
text, we adopt a scaling approach to simplify the complicated
integral equations. This should be contrasted with Ref. [34],
where Bogomolny et al. use a saddle-point approximation to
make the equations tractable.

(2) Due to the simplicity of our approach, we are able
to explicitly calculate important physical quantities (inclusive
of prefactors), e.g., level densities, spacing variance, number
variance, spacing distributions, etc.

(3) We present a MF approximation for d � 2, which
enables the straightforward calculation of all statistical quan-
tities for arbitrary d . Our MF approximation is validated by
comparison with analytical results for d = 2, and MC results
for d > 2 (presented in Ref. [29]).
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(4) In Ref. [29], we present detailed MC results for the
case with arbitrary d , enabling us to characterize the crossover
from the Poisson limit to the Wigner-Dyson limit.

(5) We present detailed numerical results in Ref. [29] to
demonstrate that FRCG models provide a good framework to
understand the spectral statistics of QKRs and BRMs.

(6) In the context of point 5, we formulate FRCG models
with fractional d to cover the entire parameter range for QKRs
and BRMs.

XII. SUMMARY AND DISCUSSION

In this paper, we have generalized Dyson’s Brownian mo-
tion model for eigenvalues of random matrix ensembles to in-
troduce FRCG models. These FRCG models are parametrized
by the range d , which characterizes the extent of the particle-
particle interaction in the Coulomb gas model. The FRCG
models are solvable, and we have presented detailed analyt-
ical results. In this context, we calculate various fluctuation
properties, e.g., spacing distributions, spacing variance, two-
level correlation functions, etc. Further, we have presented
an approximate MF solution which works very well for d �
2. This MF solution is validated by comparison with exact
results for d = 2.

From our analytical and numerical results, we observe
that FRCG models provide an elegant route for transition
from Poisson to classical ensembles as the interaction range
increases from d = 0 to N − 1. Further, the onset of this
transition is rapid. There are several interesting features of this

crossover. For example, the number variance �2(r) exhibits
a linear dependence on r for FRCG models with d = O(1),
whereas this quantity grows logarithmically (≈ ln r) for the
classical ensembles. Moreover, Y2(s) decays exponentially (or
faster) for small d , but decays algebraically for the classical
ensembles. It is clearly relevant to quantify this crossover as
a function of d , and we undertake this task in part II of this
two-part exposition in Ref. [29].

In Ref. [29], we present MC results for FRCG models. The
MC approach will provide “exact” results for FRCG models
at intermediate values of d , where the framework described
in Ref. [29] becomes unwieldy. Our results will confirm
that FRCG models provide distinct universality classes of
random matrix ensembles. In Ref. [29], we will also study the
applications of FRCG models. In this context, we will discuss
BRMs and QKRs in detail We will also demonstrate that
FRCG models are appropriate models for BRMs and QKRs.
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APPENDIX

In this Appendix, we present the eigenvalues and eigen-
functions for the integral equation (101) for the cases β =
1, 2, 4. For β = 1, these have been computed analytically.
For β = 2, 4, we have numerically computed them from
Eq. (101).

TABLE I. Eigenvalues with the corresponding eigenfunctions for d = 2, β = 1.

d = 2, β = 1
Eigenvalue (λμ) Eigenfunction [ fμ(s)]

λ0 = −0.016 65 −4.952 04 + 6.064 99s
λ1 = 0.164 79 1.57394 + 1.927 68s

TABLE II. Eigenvalues with the corresponding eigenfunctions for d = 2, β = 2.

d = 2, β = 2
Eigenvalue (λμ) Eigenfunction [ fμ(s)]

λ0 = 0.000 243 23.233 95 + 68.271 15s + 38.145 44s2

λ1 = −0.004 44 −8.883 87 − 1.262 02s + 12.731 37s2

λ2 = 0.034 91 −2.502 06 − 4.995 04s − 3.230 88s2

TABLE III. Eigenvalues with the corresponding eigenfunctions for d = 2, β = 4.

d = 2, β = 4
Eigenvalue (λμ) Eigenfunction [ fμ(s)]

λ0 = 0 506.723 15 − 3395.757 46s + 7145.497 25s2 − 5752.008 76s3 + 1524.938 79s4

λ1 = −0.000 002 214.395 77 − 650.108 29s − 71.316 45s2 + 1073.963 83s3 − 523.065 43s4

λ2 = 0.000 03 80.952 49 − 15.735 72s − 231.862 97s2 − 57.018 16s3 + 161.128 07s4

λ3 = −0.000 28 25.736 71 + 50.345 54s + 6.044 37s2 − 55.749 46s3 − 42.185 08s4

λ4 = 0.001 92 −5.966 73 − 21.166 16s − 31.703 158s2 − 24.210 54s3 − 8.161 36s4
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