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Excitable pulses are among the most widespread dynamical patterns that occur in many different systems,
ranging from biological cells to chemical reactions and ecological populations. Traditionally, the mutual
annihilation of two colliding pulses is regarded as their prototypical signature. Here we show that colliding
excitable pulses may exhibit solitonlike crossover and pulse nucleation if the system obeys a mass conservation
constraint. In contrast to previous observations in systems without mass conservation, these alternative collision
scenarios are robustly observed over a wide range of parameters. We demonstrate our findings using a model of
intracellular actin waves since, on time scales of wave propagations over the cell scale, cells obey conservation
of actin monomers. The results provide a key concept to understand the ubiquitous occurrence of actin waves in
cells, suggesting why they are so common, and why their dynamics is robust and long-lived.
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I. INTRODUCTION

The study of propagating solitary pulses is a cross-
disciplinary field of research with important applications in
biological, chemical, and physical systems [1,2]. Solitary
waves are commonly distinguished by their collision prop-
erties [3,4]: solitons if after the collision of two pulses, two
pulses emerge (particlelike identity), and dissipative solitons
or excitable pulses if they are annihilated. While solitons
are often discussed in the context of conservative media,
excitable pulses typically arise in dissipative systems that
contain autocatalytic or enzymatic terms [5,6]. Due to their
universal properties, they emerge over a wide range of scales,
e.g., in surface reactions [7,8], gas discharge plasmas [9],
intracellular actin dynamics [10,11], cardiac rhythms [12],
and neuroscience [13].

Annihilation of excitable pulses after a collision is well
understood and recognized as paramount for electrophysio-
logical function, as it would be impossible to maintain direc-
tionality and rhythmic behavior under the reflection of action
potentials [14]. However, in several experimental [7,8,15–17]
and theoretical cases [18–25], it was shown that also soliton-
like behavior can be observed in dissipative reaction-diffusion
(RD) media—a finding that is typically restricted to a narrow
range in parameter space and, to date, is considered as an
exotic exception to the prototypical annihilation of excitable
pulses.

Here we show that solitonlike behavior can robustly
emerge in excitable RD media if they obey a mass-
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conservation constraint. In contrast to previous cases without
mass conservation, no fine-tuning of parameters is needed
to observe crossover and pulse nucleation upon collision.
In particular, neither proximity to an oscillatory onset [26]
nor nonlocal interactions [27–29] nor cross-diffusion [30] is
required. To underline this paradigmatic shift in our under-
standing of excitable media, we refer to pulses in this regime
as excitable solitons.

Our results are particularly important to understand dy-
namical patterns in biological cells, where mass conservation
is often a dominant feature. While cells are open systems that
grow and divide, the total copy number of proteins such as
actin monomers varies over timescales that are long compared
to the timescale needed for actin waves to propagate over
the cell scale. A prominent example are intracellular actin-
membrane waves [31–33] that are associated with fundamen-
tal cellular functions and appear in many cell types [34,35],
including Dictyostelium cells [31,33,36], neutrophils [37], and
fish keratocytes [38]. We therefore demonstrate our findings
using the generalized version of a recently developed RD
model with mass conservation that successfully describes the
dynamics of wavelike actin polymerization in circular dorsal
ruffles [39]. We find rich dynamics of pulses upon collision,
exhibiting not only the common regime of annihilation, but
also solitonlike crossover and pulse nucleation (or backfiring)
over a wide range of parameters.

II. MASS-CONSERVED REACTION-DIFFUSION MODEL

We start with an RD case model that was formulated to
study the front dynamics of circular dorsal ruffles (CDR) [39],
which are waves of actin polymerization that propagate on the
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dorsal side of the cell membrane. We reduce this model to
a simpler version that includes filamentous actin and an in-
hibitor of actin polymerization. The three species in this min-
imal version are as follows: (i) Polymerized actin filaments
(F-actin) that are organized in a network (dendritic-like) mor-
phology, N (x, t ); (ii) actin monomers (G-actin) S(x, t ); and
(iii) an actin polymerization inhibitor, I (x, t ). In accordance
with the CDR model, we employ actin mass conservation
[39]:

�−1
∫

�

{N (x) + S(x)}dx = A,

where x ∈ � is the spatial domain size and A is a constant. In
comparison with the CDR model, we have excluded from the
current model the additional reservoirs of polymerized actin
in the cortex and in stress fibers. Adding them complicates the
analysis and does not qualitatively change the nature of the
solitary pulses, which are the focus of this study.

The continuum model in its dimensionless form reads [39]

∂N

∂t
= N2S

1 + I
− N + DN

∂2N

∂x2
, (1a)

∂S

∂t
= − N2S

1 + I
+ N + ∂2S

∂x2
, (1b)

∂I

∂t
= kNN − kII + DI

∂2I

∂x2
. (1c)

Equations (1a) and (1b) describe the autocatalytic poly-
merization process, converting monomers to filaments, which
is inhibited by the presence of I , and with a constant rate
of depolymerization. Equation (1c) describes the recruitment
of the inhibitor to the filamentous actin. The hierarchy of
diffusion coefficients along the membrane is such that the
monomers diffuse the fastest while the effective diffusion of
polymerized actin is slower and mostly occurs due to the
polymerization activity. The inhibitor diffuses the slowest as
it is adsorbed to the membrane [39]: DI � DN < 1. In fact,
DI is not essential for what follows, but we keep it as it makes
the comparison to the FitzHugh-Nagumo (FHN) model [26]
transparent. In addition, we chose kI < kN [39], but this is not
essential. We employ Neumann (no-flux) boundary conditions
(BC), while similar results (not surprisingly) are obtained with
periodic BC.

III. LINEAR STABILITY ANALYSIS
OF UNIFORM SOLUTIONS

Our interest is in pulses, a situation that requires linear
stability of a uniform solution. Equations (1) admit three
uniform solutions P ≡ (N, S, I )T :

P0 = (0, A, 0)T ,

P± = (N±, A − N±, kN/kIN±)T ,

where N± = 1
2 [A − kN/kI ±

√
(A − kN/kI )

2 − 4], and the
superscript T stands for transpose. Beyond the saddle-node
(fold) bifurcation at

A > Ac = kN/kI + 2

[see Fig. 1(a), top panel], the solutions P± appear: P− is
unstable by definition, while linear stability analysis of P+ to
uniform perturbations shows that it is also unstable to Hopf
oscillations, already from the saddle-node bifurcation point.

Next, we check the linear stability of P0,+ to nonuniform
perturbations on an infinite domain [6],

P − P0,+ ∝ eσ t+iqx + c.c.,

where σ is the growth rate of perturbations that are char-
acterized by wave numbers q, and c.c. stands for complex
conjugate. We find that solution P0 continues to be linearly
stable and does not lie in proximity to any linear oscillatory
instability since all parameters are positive, with dispersion
relations:

σN = −1 − DNq2, (2a)

σS = −q2, (2b)

σI = −kI − DIq
2. (2c)

While the solution P+ was found to be unstable to uniform
perturbations, we find that it is unstable also to traveling
waves, i.e., the nonvanishing imaginary part of its eigenvalue
σ+. However, these traveling waves are beyond the scope of
our interest here and are therefore not shown.

Notably, the signature of mass conservation is reflected in
the persistence of the neutral mode σS (q = 0) = 0 [Eq. (2b)],
which indicates a respective mass exchange between N and
S. This property is absent in the typical RD system without
mass conservation, e.g., FHN [26], and in what follows we
show that it plays an essential role during the collision of two
counterpropagating pulses, as shown in Fig. 1.

IV. SPATIAL DYNAMICS AND THE COLLISION ZONE

As has been shown by Argentina et al. [26], information
about the possible behavior after a collision between pulses
can be deduced by looking at the geometric structure of the
collision zone, i.e., by understanding the instability of the co-
existing symmetric steady-state solution from which the prop-
agating pulses attempt to emerge at the collision, also known
as the nucleation droplet. Such spatially localized states are
associated with an intersection of two-dimensional (2D) stable
and unstable manifolds in space [40–42], meaning that pulse
solutions connect asymptotically to P0 at x → ±∞. In what
follows, we find it useful to employ the nucleation droplet
methodology, while noting that more advanced methods that
include oscillations, bistability, and global connections, the
so-called theory of scattors and separators, were developed by
Nishiura et al. [43–45].

To identify the geometric structure of the nucleation
droplet, we rewrite (1) as a set of ordinary differential equa-
tions in a comoving frame ξ = x − ct , where c is the pulse
propagation speed:

dN

dξ
= u, (3a)

dS

dξ
= v, (3b)

dI

dξ
= w, (3c)
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FIG. 1. (a) Bifurcation diagram for uniform states (top panel), where the solid line indicates linear stability, the dashed line indicates
instability to uniform perturbations, whereas the dashed-dotted line indicates instability to uniform Hopf oscillations, and Ac marks the location
of the saddle node above which three solutions coexist. The parameter plane (bottom panel) reflects distinct behaviors after collision of two
excitable pulses and also the nucleation region (dashed line in the bottom panel). (b) Schematic representation of a simplified geometrical
configuration for the collision process that is based on Ref. [26]; see the text for details. The gray shaded regions represent the essential
directions of the manifolds, which are much higher dimensional. The middle region is related to the fixed point P0, while the right-left domains
are related to the nucleation droplet, as shown in the insets, respectively. The top-bottom insets show propagating pulses and solitonlike
(outer path) or annihilation (inner path) behavior. (i)–(vi) Space-time plots computed by direct numerical integration of (1), with dark shading
indicating a larger amplitude of N , a domain size x ∈ [0, 100], a time interval t ∈ [0, 400], and Neumann (no-flux) boundary conditions, where
(i) A = 7.7, DN = 0.1; (ii) A = 7.8, DN = 0.1; (iii) A = 9.5, DN = 0.1; (iv) A = 9.5, DN = 0.15; (v) A = 9.5, DN = 0.16; and (vi) A = 10.4,
DN = 0.1. In (i)–(v) the initial conditions are linear perturbations of an unstable steady-state solution at respective values (e.g., Fig. 2). The
spatial profiles on the right of (vi) show explicitly nucleation of new excitation after the first collision (see the arrow in the space-time plot)
at indicated times, where dark arrows indicate directions of motion and x ∈ [50, 100]. Other parameters are as follows: DI = 0.001, kN = 2,
kN = 0.3, and Ac � 8.6667.

DN
du

dξ
= N − N2S

1 + I
− cu, (3d)

dv

dξ
= N2S

1 + I
− N − cv, (3e)

DI
dw

dξ
= kII − kNN − cw, (3f)

and we perform linear (asymptotic) analysis in space [40–42]:

P − P0 ∝ eλξ + c.c.

The resulting spatial eigenvalues are

λ0 = 0,

λc = −c,

λ±N = ±D−1
N ,

λ±I = −c ±
√

c2 + 4DIkI

2DI
.

Inspection of the eigenvalues shows two distinct feature as
compared to the FHN system: (i) The eigenvalues are all real
so that the hyperbolic intersection at P0 results in monotonic
tails of the pulses [Fig. 1 (vi), t = 100], unlike in the FHN
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(a)

(b)

FIG. 2. (a) A typical unstable steady-state solution to (1) com-
puted numerically via the boundary value problem at A = 9.5, DN =
0.1, i.e., point (iii) in Fig. 1. (b) Eigenfunction of the steady-state
solution (a) that corresponds to the neutral eigenvalue.

case, where the tails are oscillatory due to complex eigenval-
ues (which also indicates proximity to a Hopf onset in the
FHN case); (ii) in addition to the 2D stable and unstable man-
ifolds (as for FHN), an additional 2D manifold coexists, and
specifically it becomes neutral at c = 0, where λ0 = λc = 0.
The eigenvalue λ0 = 0 is a signature of the mass conserva-
tion while c = 0 implies a spatially symmetric (static) pulse
solution. In fact, the 2D manifold that is associated with
λ±I is not essential and all the results persist also for DI =
0, for which λI = kI/c. Indeed, a computation for DI = 0
shows that both the nucleation droplet and the eigenfunction
are essentially identical, i.e., they exhibit the same shape
as those in Fig. 2. Moreover, elimination of λ±I indicates
that the spatial picture is insensitive with respect to the rates
in the I field, leaving DN as the only control parameter. From
a physical point of view, DN controls the rate of transport of
actin monomers so that the higher the total number of actin
monomers is, the larger DN must be to trigger annihilation
of pulses [see Fig. 1(a)]. Hence, the intersection with the 2D
neutral manifold that arises from mass-conservation, i.e., the
constraint that it imposes on the 2D manifold of λ±N, adds
distinct features as compared to the mass-nonconserved RD
system.

V. NUMERICAL ANALYSIS AND INTERPRETATION

After identifying the necessary conditions for the nucle-
ation droplet, we turn to numerical verification by solving
Eqs. (3) as a standard boundary value problem with c = 0.
Indeed, we obtain a spatially symmetric stationary pulse solu-
tion that asymptotes to P0 as x → ±∞, as shown in Fig. 2(a).
Solving next the eigenvalue problem for the obtained pulse
solution, we find that it is indeed linearly unstable. How-
ever, we also find that the critical information lies in the
neutral eigenvalue, for which the associated eigenfunction is
localized, as shown in Fig. 2(b). Notably, we get the same

nucleation droplet and localized eigenfunction in the absence
of diffusion of the inhibitor, for DI = 0. In the absence of mass
conservation, this type of neutral eigenvalue and the localized
eigenfunction are absent. In the FHN model, the nucleation
droplet goes through an Andronov-Hopf instability [26], and
it is oscillatory.

The form of the localized eigenfunction that qualitatively
persists over the entire parameter space [Fig. 2(b)] implies a
splitting process of the nucleation droplet, and the initiation
of solitonlike behavior over a wide range of parameters. To
verify both nucleation and postcollision behavior, we use the
nucleation droplet as an initial condition for direct numerical
integration of Eqs. (1). The parameters for the calculations are
indicated by the points (i)–(vi) in Fig. 1(a), while the space-
time plots are shown with their respective numeral label. We
chose examples from regimes where two colliding pulses
(i),(v) annihilate (dissipative excitable solitons) or (ii)–(iv)
persist (solitonlike) upon collision.

However, mass conservation apparently holds another
postcollision feature, which is related to the spontaneous
emergence of a new symmetric pulse at the tail of each pulse
after the collision takes place. The behavior is marked as the
nucleation region in Fig. 1(a). Panel (vi) shows a space-time
plot at which these nucleation processes are formed, giving
rise to a persistent wavy pattern. The profiles on the left of
panel (vi) show a single boundary-collision event [see the
double arrow in (vi)] after which a new symmetric pulse
emerges. The formation of this new pulse is related to mass
conservation. After the collision, the lagging inhibitor (after
the leading pulse front, N) is concentrated in space to high
values (t = 130). This overshoot in I creates a steep decrease
also at the back of the pulse, much faster than the steady-state
exponential decay (see t = 100, before the reflection). The
depolymerized mass of N is conserved and converted into a
high density of monomers S, which provide the substrate for
the nucleation of a new (almost symmetric) pulse (t = 142).
This nucleation can then either decay [solitonlike behavior as
in (ii)–(iv)] or grow [(vi), t = 148], and then split into two new
counterpropagating pulses, which subsequently generate the
pattern shown in (vi). Naturally, a similar nucleation mecha-
nism does not occur in RD media without mass conservation
since the deformation of the pulses is not constrained, and
the nucleation droplet is oscillatory, which can at most give
rise to multiple oscillating waves upon pulse collisions [26]
or chaotic dynamics [44].

To summarize the analysis, we follow for convenience the
schematic (and in our case also oversimplified) geometrical
representation by Argentina et al. [26]. In Fig. 1(b), we show
the essential manifolds for pulses that collide either at the
middle of the domain or at the boundaries, where the main dif-
ference as compared to RD media without mass-conservation
[26] is the center manifold for the nucleation droplet; see the
leftmost and rightmost profiles.

VI. DISCUSSION

Mass-conservation constraints are particularly important in
enclosed systems, such as biological cells, for phenomena that
occur on timescales that are fast compared to the rate at which
global protein content changes through protein biosynthesis
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and degradation. Indeed, the importance of mass conservation
for cellular phenomena has recently attracted increasing at-
tention in the context of reaction-diffusion modeling of, for
example, intracellular patterns [46–51]. We have shown in this
study that RD media with mass conservation can support rich
spatiotemporal dynamics following pulse collisions: Annihi-
lation, crossover, and “birth” of new pulses after crossover.
Due to mass conservation, this behavior is robustly observed
over a wide range of parameters, and solely triggered by mass
transport, which is determined by the diffusion coefficient
parameter (DN ) in our model equations. No special condition-
ing, such as proximity to a bifurcation point, nonlocality, or
cross-diffusion, is required, in contrast to RD-type models,
which do not employ explicit mass conservation [52–55]. This
implies that collisions can, in fact, be viewed as organizing
centers of coexisting distinct outcomes. For example, it has
been shown that in excitable media, single focal perturbations
may generate distinct multiple-integer pulse trains due to their
proximity to the Hopf-Shil’nikov bifurcation, which enables
both traveling and standing waves to coexist, along with
excitable pulses [56,57].

These phenomena are specifically relevant to actin waves
that occur in a wide range of cell types [34,35]. Although
still under debate, their role has been associated with essen-
tial cellular functions, such as polarity formation, motility,

and phagocytosis. Sustained wave activity may thus become
a key requirement for proper cell function, and it is even
associated with cancerous phenotypes [58,59]. Solitonlike
collisions and pulse nucleation that robustly emerge in a
mass-conserved system can be seen as a strategy to maintain
prolonged wave activity without depending on local hetero-
geneities or actively introduced nucleation events. In this
regime, waves persist and replicate, in contrast to “classical”
excitable media, where pulses mutually annihilate upon colli-
sion or decay at the boundaries. Moreover, we may also envi-
sion that cells control their level of intracellular wave activity
by gradually shifting between regimes of pulse annihilation
and solitonlike behavior.

We therefore exemplified our findings using a model of
intracellular actin polymerization that describes the dynamics
of circular wave patterns at the dorsal membrane of adherent
cells [39]. We believe that the effects of mass conservation on
pulse collision dynamics presented here will stimulate further
progress in the modeling of actin waves and will thus advance
our understanding of intracellular wave patterns in general.
Moreover, they will also impact studies of nonbiological
media, such as catalytic surface reactions and electrochemical
systems that exhibit solitary waves [7,8,60], where surface
coverages often obey similar conservation characteristics [61],
and polymerization in active gels [62].
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