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Bose-Einstein condensate confined in a one-dimensional ring stirred with a rotating delta link
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We consider a Bose-Einstein condensate with repulsive interactions confined in a one-dimensional ring where
a Dirac δ is rotating at constant speed. The spectrum of stationary solutions in the δ comoving frame is analyzed
in terms of the nonlinear coupling, δ velocity, and δ strength, which may take positive and negative values. It is
organized into a set of energy levels conforming a multiple swallowtail structure in parameter space, consisting of
bright solitons, gray and dark solitonic trains, and vortex states. Analytical expressions in terms of Jacobi elliptic
functions are provided for the wave functions and chemical potentials. We compute the critical velocities and
perform a Bogoliubov analysis for the ground state and first few excited levels, establishing possible adiabatic
transitions between the stationary and stable solutions. A set of adiabatic cycles is proposed in which gray and
dark solitons, and vortex states of arbitrary quantized angular momenta, are obtained from the ground state by
setting and unsetting a rotating δ. These cycles are reproduced by simulations of the time-dependent Gross-
Pitaevskii equation with a rotating Gaussian link.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) constrained in annular
traps provide a way to study various phenomena related to
superfluidity, including persistent currents and their decay,
phase slips, and critical velocity [1–4]. Persistent currents can
be created experimentally by the application of artificial gauge
fields [5], or by rotating a localized, tunable repulsive barrier
around the ring [6–9]. Through the latter method, hysteresis
between different circulation states was observed in [10].
Within the context of atomtronics, a ring condensate is a key
atomic circuit element. It has demonstrated its capability as a
superconducting quantum interference device [11], entailing
the possibility of high-precision measurements and applica-
tions in quantum information processing [12–14].

In view of a better control of BECs, phase transitions have
been analyzed in different ring settings within the mean-field
approach. They were first studied in a ring under a rotational
drive [15], and then through the interplay between rotation
and symmetry breaking potentials or rotating lattice rings.
One lattice site was studied in [16], a double well in [17],
and a more general unified approach of a ring lattice in [18],
all involving the possibility to adiabatically connect different
quantized states such as persistent currents or solitons.

By solving the Gross-Pitaevski equation (GPE), various
works have studied the energy diagram and metastability of
BECs in rings with a rotating defect [19–21]. In the case of
the one-dimensional (1D) GPE, stationary solutions can be
found through the inverse scattering method or by directly
integrating and writing them in terms of Jacobi functions.
These solutions have been analyzed under box and periodic
boundary conditions [22], under a rotational drive [15], and
under some specific constant potentials [23]. The flow past an
obstacle in the form of a Dirac δ was studied perturbatively
in [24,25]. In [26] a 1D ring with a rotating Dirac δ was ana-
lyzed for some specific rotations, strengths, and nonlinearities.

In this paper, we study a repulsive BEC in a 1D ring
where a Dirac δ link is rotating at constant speed. The use of
analytical solutions, expressed in terms of Jacobi functions,
allows us to compute the stationary wave functions and chem-
ical potentials for the ground state and an arbitrary number
of excited energy levels. The obtained energy diagram, de-
pending on the δ velocities and strengths, both attractive and
repulsive, is analyzed as a function of the coupling strength.
This diagram entails a series of critical velocities which,
together with a Bogoliubov analysis, lay out the distribution
of stable and metastable states in parameter space, and which
adiabatic transitions between them are possible. Within these
transitions, we propose a few adiabatic cycles in which ex-
cited solitonic and vortex states are produced by setting and
unsetting a rotating δ.

This paper is organized as follows. In the next section,
we introduce the theoretical model, defining the GPE and
boundary conditions in the Dirac δ comoving frame, and
we provide a method to compute the spectrum. The results
are in Sec. III, in which we illustrate the main features of
the spectrum (Sec. III A), its stability (Sec. III B), and its
dependence on the nonlinearity (Sec. III C). In Sec. IV, we
propose a set of adiabatic paths to excite the condensate. We
conclude this paper in Sec. V. Mathematical details are found
in the Appendixes.

II. THEORETICAL MODEL

We consider a BEC at zero temperature in a tightly trans-
verse annular trap in which a Dirac δ link is rotating at
constant speed. The pointlike potential is chosen instead of
a finite one such that analytical solutions can be obtained,
with the view that the results may not qualitatively change
with respect to a very peaked Gaussian. Considering only sta-
tionary solutions, and within the mean-field approach, we can
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determine the condensate wave function in the δ comoving
frame, φ(θ ), by the 1D Gross-Pitaevskii equation. Then, φ(θ )
is constrained by δ boundary conditions and normalization,

−1

2
φ′′(θ ) + g|φ(θ )|2φ(θ ) = μφ(θ ), (1)

φ(0) − ei2π�φ(2π ) = 0, (2)

φ′(0) − ei2π�φ′(2π ) = α φ(0), (3)

∫ 2π

0
dθ |φ(θ )|2 = 1, (4)

where g > 0 is the reduced 1D coupling, μ is the chemical
potential, θ ∈ [0, 2π ), and � and α

2 are the velocity and
strength of the δ link; see Appendix A. Here and in the rest
of the paper, we use units h̄ = R = M = 1, R being the radius
of the ring and M the mass of the atoms. Renormalizing a
wave function φ(θ ) → √

Nφ(θ ) amounts to a rescaling of
g → gN . We choose to fix the normalization and study how
the spectrum depends on g.

Any solution of Eq. (1), φ(θ ) = r(θ )ei β(θ ), can be written
in closed form in terms of a Jacobi elliptic function [23]. In
particular, the density ρ(θ ) ≡ r(θ )2 depends linearly on the
square of one of the twelve Jacobi functions (J), and the phase
β(θ ) is fixed by the density,

r2
J (θ ) = A + B J2(k(θ − θ j ), m), (5)

βJ (θ ) =
∫ θ

0
d θ̃

γ

r2
J (θ̃ )

, (6)

where k is the frequency and m ∈ (0, 1) is the elliptic modu-
lus, which generalizes the trigonometric and hyperbolic func-
tions into the Jacobi ones. The constants A and B, the shift
θ j , γ = ρ(θ )β ′(θ ), a constant representing the current, and
α, �, and μ are fixed by Eqs. (1)–(4) in terms of k and
m. The spectrum μ(α,�) is thus given in parametric form,
(α(k, m),�(k, m), μ(k, m)). Running k and m in a systematic
way in the three possible solutions allowed by Eqs. (1)–(4),
dn, d̃n, and dc (see Appendix B), we obtain μ(α,�) as a
series of surfaces that fold onto each other—energy levels
that cross and are degenerate at specific lines, �cr(α). Any
solution found for a specific α and � also satisfies Eqs. (1)–(4)
with � → ±� + integer and β(θ ) → ±β(θ ). To obtain the
complete spectrum, we shift and mirror the obtained spectrum
to � → ±� + integer.

III. STATIC PROPERTIES

Our goal is to analyze the possible stable and adiabatic
changes of the condensate as one varies the strength and
velocity of the Dirac δ. For this we first study the structure
of the spectrum μ(α,�), i.e., the regions in the α-� plane
in which stationary solutions exist for the ground and first
excited states, and how the chemical potential depends on α

and � (Sec. III A). Then we analyze whether the solutions
at each region are stable or metastable against a perturbation
through a Bogoliubov analysis (Sec. III B). The results in
Secs. III A and III B are analyzed and illustrated for g = 10.
In Sec. III C we study how they depend on g.

FIG. 1. Sample of the spectrum μ(α,�) for α > 0. Each colored
surface represents a set of solutions adiabatically connected through
variations of the δ link strength α

2 and velocity �. Due to rotational
symmetry, this structure can be shifted, � → � + integer. The spec-
trum at α < 0 is, qualitatively, a mirror image of the one at α > 0, the
surfaces being continuous (but not smooth) at α = 0. The bottom 3D
swallowtail structure (solid red and green with grid levels) at α < 0
is an exception, and its more complex structure is analyzed through
its projections in Fig. 9 in Appendix B.

A. Spectrum

The spectrum μ(α,�) consists in a set of surfaces that
cross and merge at certain boundaries, such as the ones plotted
in Fig. 1 and their symmetric versions at � → � + integer.
Five sections of μ(α,�) with constant α are plotted in Fig. 2.
Except for the ground state at α < 0, they present a set of
concatenated swallowtail (ST) shapes. For any given α, each
series of swallowtail diagrams represents a set of stationary
solutions continuously connected among them through the
parameters k and m, or through the velocity � and chemical
potential μ. These types of energy diagrams are characteristic
of hysteresis and were analyzed in the context of ring conden-
sates in [27]. We organize and label them, and the surfaces
that they constitute, according to their position, ordered from
lower to higher energy. For each diagram we distinguish a
bottom and a top part, both merging at the tip of the swal-
lowtail. In the following, we present their general features.
The structure of the spectrum is analyzed more thoroughly in
Appendix B.

Each energy level—top or bottom part of a swallowtail
diagram—is symmetric with respect to � = l

2 and bounded
by a pair of critical velocities l

2 ± �cr(α), with l an integer.
Solutions corresponding to a level centered at a link velocity
� = l

2 , are a boost from those in the analogous level at � = 0
or � = 1

2 . The nth set of swallowtail diagrams, n = 1 being
the bottom one, entails densities with n depressions, consider-
ing the valleys characteristic of the Jacobi functions, and the
downward kinks in the case of α > 0. We distinguish three
types of solutions, depending on the depth of the depressions:
vortex states, dark solitons, and gray solitons.
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FIG. 2. Sections α = −4, −1, 0, 1, 4 of the spectrum μ(α, �) for g = 10 conforming a set of swallowtail diagrams. The parts in each
diagram are colored in correspondence to the regions in Figs. 1 and 9 to which they belong, except the middle panel in which the swallowtails
are not separated. Black dots indicate the velocities and chemical potentials of dark solitonic trains.

Vortex states. The red parabolas of plot (c) (α = 0) in Fig. 2
centered at l represent the chemical potential of vortex states
of angular momentum l as observed from the frame moving
at �. The minima of μ(�) are at � = l , where the observer is
comoving with the vortex.

Dark solitons. At precisely � = l
2 , solutions consist in dark

solitonic trains (except for the ground state); see the black
dots in Fig. 2. In the δ comoving frame, the dark solitonic
trains are stationary, with zero current and constant phase,
except for a phase jump of π at each zero in the density. They
correspond to the minima of the energy spectrum μ(�) for
any particular fixed α. In the laboratory frame, they comove
with the condensate and the δ link at � = l

2 .
Gray solitons. Solutions with velocities that depart from

� = l
2 consist in gray solitonic trains, with shallower waves

and faster currents the larger |� − l
2 | is. At α = 0, gray

solitonic trains with n depressions become completely flat and
merge with vortex states at � = l

2 ± |�̃n − n
2 |, with

�̃n =
√

g

2π
+ n2

4
, (7)

see Appendix B or [22]. At α �= 0, the rotational symmetry is
broken, and a pair of critical velocities, corresponding to the
tips of the swallowtails, limit the range of � for which station-
ary solutions exist. In particular, the width of the bottom part
of the nth swallowtail centered at l

2 decreases monotonously
from l

2 ± |�̃n − n−1
2 | at α = 0 to l

2 ± 1
2 at |α| → ∞. The

condensate in the ring is therefore able to sustain stationary
solutions, consisting in gray solitonic trains comoving with
the kink, up to a certain stirring velocity—relative to l

2 —
which decreases with the strength of the δ link.

A sample density and phase for each colored region of
Fig. 1 (and the corresponding ones at α < 0) are plotted in
Fig. 3. The densities corresponding to the bottom of the first
swallowtail surface at α < 0 entail an upward kink. This kink
becomes higher and more peaked as the δ potential becomes
more attractive, and it can be understood as a bright soliton.
In contrast, for the rest of the levels, as α → ±∞, the density
at the δ position becomes zero. The densities corresponding
to the first swallowtail diagram have one depression, which
for α < 0 consists of one valley and for α > 0 a downward
kink. Similarly, the four plots corresponding to the second
swallowtail levels have two depressions. For α > 0, one of
these depressions is also understood as the downward kink
imposed by the δ. From these plots we can also infer the

relation between the phase and the density, β ′(θ ) = γ

ρ(θ ) ,
which implies higher phase gradients (velocities) for lower
densities.

B. Metastability

A Dirac δ with fixed strength and rotating at a constant
speed allows an infinite set of solutions organized in chemical

FIG. 3. Densities (solid lines) and phases (dashed lines) of eigen-
functions in the comoving frame characteristic of the eight regions
defined by the two first swallowtail diagrams. The rows correspond,
in order, to the bottom and top of the first swallowtail diagram,
and the bottom and top of the second one. The left column plots
correspond to α < 0 and the ones on the right to α > 0. All eigen-
functions are computed for g = 10, and the specific values of (α,
�) are (a) (−1, 0.7), (b) (1,0.7), (c) (−0.02, 1.32), (d) (1,0.7), (e)
(−1, 1.2), (f) (1,1.2), (g) (−1, 1.2), and (h) (1,1.2).
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potential levels. The stability of these solutions can be studied
by adding a small perturbation to the stationary wave function

� = e−iμt (φ + u e−iωt − v∗eiω∗t ), (8)

and analyzing how it evolves. Replacing this function in the
time-dependent Gross-Pitaevskii equation [Eq. (A7)] and lin-
earizing in u and v, we obtain the corresponding Bogoliubov
system of equations [28],

− 1
2 u′′ + 2g |φ|2u − μ u − gφ2v = w u, (9)

1
2v′′ − 2g |φ|2v + μ v + gφ∗2u = w v. (10)

Both perturbations, u and v, must satisfy the boundary condi-
tions separately, which read,

u(0) − ei2π�u(2π ) = 0, (11)

u′(0) − ei2π�u′(2π ) = α u(0), (12)

v(0) − e−i2π�v(2π ) = 0, (13)

v′(0) − e−i2π�v′(2π ) = α v(0). (14)

We solve this system of equations by changing variables to

u(θ ) = e−i � θ ũ(θ ), (15)

v(θ ) = ei � θ ṽ(θ ), (16)

and then expanding ũ and ṽ in an orthonormal basis, thus
converting it into a matrix eigenvalue problem, and by the
Direct and Arnoldi methods integrated in the differential
solvers in MATHEMATICA; see Appendix E for more details.

Both methods yield the same eigenvalues, and analyzing
whether they are real or complex, we split each region in
stable and unstable parts. The bottom of the first swallowtail
and both upper parts are found to be completely stable and
unstable, respectively. In contrast, the lower part of the second
swallowtail is stable except for regions of metastability in the
form of stripes in the plane α-� at α < 0, as shown in Fig. 4.

C. Dependence on nonlinearity

The results presented in the previous subsections have been
illustrated with the nonlinearity fixed to g = 10. In Fig. 5 we

−4 −2 0 2 4

−0.5

0.0

0.5

1.0

1.5

FIG. 4. Metastable stripes appearing in the region corresponding
to the bottom of the second swallowtail diagram for g = 10.

FIG. 5. Adiabatic regions corresponding to the bottom and top
of the first swallowtail diagram (first and second columns) and the
bottom of the second one (third column) for g = 20, 10, 5, and 1
(from first to fourth row, respectively). The plots in the third column
also contain the regions where solutions are found to be metastable,
marked in yellow. The second and third columns contain two of the
possible regions related through � → � + integer.

show the same adiabatic regions for g = 20, 10, 5, and 1. The
first and third columns correspond to the bottom part of the
first and second swallowtail diagrams (as in Fig. 2), while
the middle column represents the top part of the first one.
Larger nonlinearity implies a greater span and overlap of all
the levels. As g decreases, and for any fixed α, the tail part
of the swallowtail diagrams becomes smaller, vanishing at
g = 0: both the region in the middle column and the overlaps
of shifted regions in the others decrease in size. A condensate
with larger nonlinearity is therefore able to sustain stationary
solutions for faster stirring velocities, while in the linear limit,
g = 0, the critical velocities are independent of the δ strength
and fixed to � = l

2 ± 1
2 .

Performing the same metastability analysis, we find that
the bottom part of the first swallowtail and both upper parts
remain completely stable and unstable for all the g tested.
The third region of Fig. 5, corresponding to the bottom of the
second swallowtail diagram, is also found to be completely
stable at α > 0, while the metastable stripes at α < 0 become
thinner (thicker) as g decreases (increases).
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IV. ADIABATIC GENERATION OF VORTEX STATES AND
EXCITED SOLITONS

All complex solutions found are continuously connected
at α = 0, where gray solitonic trains merge into vortex states
as their velocity � departs from l

2 , with l an integer (see the
middle panel of Fig. 2). Once a finite δ strength α

2 �= 0 is
set, a gap between the various swallowtail diagrams appears,
and depending on the initial rotational velocity and initial
state, different energy levels can be accessed. In particular,
setting a δ link in the ground state while rotating at �i ∈
(�̃n, �̃n+1), n � 1, a gray solitonic train with n + 1 depres-
sions is obtained—reaching thus the bottom of the (n + 1)th
swallowtail diagram. As the velocity is decreased, the valleys
become deeper, and at � = n

2 the solution turns into a wave
train with n dark solitons. If the velocity is decreased further,
the density profile becomes a gray solitonic train again, with
shallower waves with lower velocity. At any velocity, one can
unset the δ link, making the waves shallower as the δ strength
decreases back to α = 0. For � > �̃n, unsetting the link com-
pletely flattens the density, and the ground state is recovered.
At velocities � ∈ (−�̃n + n, �̃n), the final state consists of a
gray solitonic train, with deeper waves the closer � is to n

2 . If
one unsets the δ link at precisely � = n

2 , a dark solitonic train
is obtained. In the case in which α is brought back to zero at
� < −�̃n + n, the waves also become infinitely shallow, and
they merge with the vortex state of n quanta.

Cycles in which the final state is a vortex can be concate-
nated. Once a vortex is produced, any observer can rotate at
the same velocity as the condensate current, such that in the

comoving frame the vortex is observed as the ground state.
The cycle to produce a vortex from the ground state can then
be repeated. Let us consider the vortex state of five quanta of
angular momenta. It can be produced by setting a δ link rotat-
ing at �i ∈ (�̃5, �̃6), decreasing its velocity to � f ∈ (−�̃6 +
6,−�̃5 + 5), and then unsetting the δ. It involves a middle
step in which a wave train with five dark solitons is produced.
Another possibility is to concatenate five analogous cycles in
which �i ∈ (�̃1, �̃2), and � f ∈ (−�̃2 + 2,−�̃1 + 1), each
involving the production of only one dark soliton. After each
individual cycle, the observer is boosted, � → � + 1.

Any of these proposed paths should avoid the metastable
and nonstationary regions analyzed in the previous section.
In Fig. 6, we schematically demonstrate four such adiabatic
paths. They excite the condensate to one dark soliton and a
vortex state, each one through the setting and unsetting of a δ

link, either repulsive or attractive. In both cases, the δ strength
is limited by the line �cr(α) bounding the adiabatic region
corresponding to the bottom of the second swallowtail. For
the attractive δ, one also needs to avoid the metastable region,
which further limits the value of α. These adiabatic cycles
can be reproduced for all g tested. However, the range of
velocities at which the Dirac δ strength must be set decreases

with g, �̃2 − �̃1 = 3
4

√
π
2g + O(g− 3

2 ). Moreover, in the case of

the cycle with an attractive rotating δ, the constraint on the
magnitude of the δ potential will depend on the metastability
stripes shown in Fig. 5.

For any adiabatic path involving higher swallowtail levels,
the corresponding metastability analysis and determination of

FIG. 6. (a) Four possible cycles that excite the condensate from the ground state (G) to either a dark soliton (DS) or a vortex state with one
quantum of angular momentum (V), and with either a repulsive (subindex 1) or attractive (subindex 2) δ link. (b)–(j) Densities ρ = |φ|2 (red
solid lines) and phases β (blue dashed lines) in the comoving frame corresponding to the vertices in the adiabatic paths of plot (a). All cycles
start by setting a δ link while rotating at �̃1 < � < �̃2, thus turning the ground state into a gray solitonic train with two depressions [(b) for
α < 0 and (d) for α > 0]. Then the δ link is slowed down to � = 1

2 , where a dark soliton plus a kink is obtained [(e) and (g)]. As the δ is unset
at this velocity, either repulsive or attractive, a dark soliton is obtained (f). The density and phase profiles reached through an attractive δ are
actually shifted θ = π with respect to plot (f). If instead the velocity is further decreased to −�̃2 + 1 < � < −�̃1 + 1 [(h) and (j)], and then
α is brought back to zero, the vortex state (i) is reached.
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critical velocity should be performed. Alternatively, one can
simulate these cycles by solving the time-dependent Gross-
Pitaevskii equation with the Dirac δ link replaced by a Gaus-
sian one. We solve this differential equation using the method
of lines, and we reproduce the cycles proposed in Fig. 6.
Moreover, we also obtain dark solitonic trains and vortex
states with up to five solitons or quanta. On the one hand,
these simulations validate the results found for the δ link. On
the other, they indicate that the structure of the spectrum laid
out in the δ case is also able to depict the main features of the
spectrum of a BEC stirred with a peaked Gaussian link.

The velocities �̃n =
√

1
2π

g
gnat

+ n2

4 �nat, constraining the

adiabatic cycles, have been presented in natural units, where
�nat = h̄

MR2 = 1 and αnat = gnat = h̄2

MR = 1. For a condensate
of 87Rb atoms, with mass M = 86.909 u and ring traps of
radiuses R1 = 20 μm to R2 = 100 μm, the natural velocities
range from �

(1)
nat = 1.83 rad/s to �

(2)
nat = 0.073 rad/s. Taking

g = 10 g̃, the threshold speeds to access the first excited states
are �̃n = 2.48, 2.95, and 3.59 rad/s for the smaller radius, and
�̃n = 0.099, 0.118, and 0.143 rad/s for the larger one. In the
linear limit, g = 0, �̃n = n

2�nat.

V. CONCLUSIONS

The spectrum of a 1D ring condensate with a Dirac δ

rotating at constant speed has been analyzed in terms of the
nonlinearity g, the δ velocity �, and the δ strength α/2.
Analytical expressions are provided for the wave function, the
current, and the chemical potential. For a fixed g and α, the
dependence of the chemical potential on the δ velocity, μ(�),
consists of a series of swallowtail diagrams. These diagrams
can be organized from smaller to larger energies, and each
one can be split into a bottom and a top part. The lowest
diagram at α < 0 is an exception, and consists only of the
bottom part, with a more complex structure depending on a
set of critical points Pi. As the magnitude of the δ strength
increases, the sizes of the tails in each diagram decrease,
while the energy gap among each diagram becomes larger. At
α = 0, the top parts of the diagrams merge with the bottom
parts of the immediate upper ones. The spectrum μ(α,�)
thus consists in a multiple swallowtail 3D structure, each
region providing a range of δ strengths and velocities that can
be varied adiabatically to access different solitonic solutions.
These solutions consist of gray or dark solitonic trains, where
the number of depressions in each train has been related to
the position of the swallowtail. In particular, an odd (even)
number of dark solitons comoves with the condensate at � =
l
2 , where l is an odd (even) integer.

To support the possible adiabatic processes allowed by the
Gross-Pitaevskii spectrum, we have analyzed the metastabil-
ity of each solution for the first two swallowtail diagrams. The
top parts are found unstable and the bottom ones stable, except
for the bottom of the second diagram at α < 0, which presents
a series of metastable stripes in parameter space.

We have proposed a method to produce dark and gray
solitons and vortex states of arbitrary quantized angular mo-
mentum by controlling the stirring velocity and strength of the
potential. The method consists in setting and unsetting a Dirac
δ potential while rotating it around the condensate at certain

velocities. In particular, as a rotating observer sets a δ link at
�i ∈ (�̃n, �̃n+1), the bottom part of the (n + 1)th swallow tail
is reached, and a gray solitonic train with n + 1 depressions
is produced. The cycles in the parameter space defined by
α and � corresponding to the various production processes
are constrained by the width of the swallowtail diagrams
and also by the metastable regions. These adiabatic paths
are qualitatively reproduced by solving the time-dependent
Gross-Pitaevskii equation in which a finite width Gaussian
link is rotating at constant speed.
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APPENDIX A: GROSS-PITAEVSKII EQUATION AND
BOUNDARY CONDITIONS

The evolution of the condensate wave function in the Lab
frame, ψL(θL, tL ), is governed by the 1D Gross-Pitaevskii
equation,

ih̄ ∂tL ψL = − h̄2

2MR2
∂2
θL

ψL + g|ψL|2ψL + α

2
δ(θL − � tL )ψL,

(A1)

where M is the atomic mass, R is the radius of the ring,
θL ∈ (0, 2π ) and tL are the angular and time coordinates in the
laboratory frame, α/2 and � are the magnitude and angular
velocity of the Dirac δ, and g > 0 is the reduced 1D coupling
strength. The circular topology imposes continuity conditions
in the wave function,

ψL(�tL, tL ) = ψL(�tL + 2π, tL ), (A2)

and the Dirac δ constrains its derivatives through boundary
conditions. These are obtained by integrating Eq. (A1) in
a small contour around the δ, θL ∈ (�tL − ε,�tL + ε), and
taking the limit ε → 0,

mR2α

h̄2 ψ (�tL, tL ) = (∂θL ψ )|θL=�tL − (∂θL ψ )|θL=�tL+2π . (A3)

We change variables to the δ rotating frame [29],

θ = θL − � tL, ∂θ = ∂θL , (A4)

t = tL, ∂t = ∂tL + �∂θL , (A5)

ψ (θ, t ) = e
i
h̄ ( 1

2 mR2�2tL−mR �θL )ψL(θL, tL ), (A6)

and we use units h̄ = M = R = 1. Then Eqs. (A1), (A2),
and (A3) become

i ∂tψ = −1

2
∂2
θ ψ + g|ψ |2ψ, (A7)

ψ (0, t ) = ei�θψ (2π, t ), (A8)

ψ (0, t ) = 1

α
[(∂θψ )|θ=0 − ei�θ (∂θψ )|θ=2π ]. (A9)
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FIG. 7. Example of a density r(θ )2 with a shift θ j such that
periodic boundary conditions at θ = 0, 2π are satisfied.

For a stationary solution ψ (θ, t ) = e−i μtφ(θ ), where μ is the
chemical potential, these equations result in Eqs. (1)–(3).

APPENDIX B: SOLUTIONS

To obtain the solutions of Eq. (1), we write the wave func-
tion as φ(θ ) = r(θ )ei β(θ ). Separating into real and imaginary
parts, and integrating, the density and phase take the general
form

r2
J (θ ) = A + B J2(k(θ − θ j ), m), (B1)

β ′
J (θ ) = γJ

r2
J (θ )

, (B2)

where J is one of the 12 Jacobi functions, and A, B, k, θ j ,
m, and γJ are constants. The squares of the six convergent
or divergent Jacobi functions are related among themselves
linearly and through shifts in θ , and therefore one may
consider only a convergent one and a divergent one with
general A, B, and θ j . Equation (B2) represents the stationarity
condition, with γJ = r2

J β
′
J the current. The shift θ j is fixed by

the continuity condition, r(0) = r(2π ): the angular length of
the condensate, 2π , has to be equal to an integer number of
periods ( j T ) plus twice the shift, 2π = j T + 2θ j (see Fig. 7).
The period of r(θ ) is given in terms of the elliptic integral of
the first kind [K (m)], T = 2K (m)

k , and therefore

θ j = π − j

k
K (m). (B3)

Since we take k and m as parameters, j can be fixed to
j = 0, 1. Equations (1) and (4) fix A, B, γJ , and μJ in terms
of θ j , k, and m. Using the Jacobi functions dn and dc as the
convergent and divergent independent solutions, respectively,
the amplitudes read

rdn(θ ) =
√

g + k ηdn − 2πk2dn2(k(θ − θ j ), m)
√

2πg
, (B4)

rdc(θ ) =
√

g + k ηdc − 2πk2 − 2πk2dc2(k(θ − θ j ), m)
√

2πg
, (B5)

where

ηdn = E [JA(k(2π − θ j ), m), m] + E [JA(k θ j, m), m], (B6)

ηdc = ηdn + dn(kθ j )sc(kθ j ), (B7)

with E the elliptic integral of the second kind, JA is the Jacobi
amplitude, sc is the Jacobi function, and where dc allows
only for j = 0 and k < K (m)/π in order to be convergent in
θ ∈ [0, 2π ). The phases βdn and βdc are then integrated from
Eq. (B2).

For the types of Jacobi functions chosen, J = dn, dc, the
corresponding currents and chemical potentials read

γJ = ±1

g(2π )3/2

√
g + k ηJ

√
g − 2πk2 + k ηJ

×
√

g − 2πk2(1 − m) + k ηJ , (B8)

μJ = 1

4π
[3g + 2k2(m − 2) + 3k ηJ ]. (B9)

This leaves the frequency k and elliptic modulus m as the only
free parameters. They constrain α and � through the boundary
conditions in Eqs. (2) and (3). k and m are either real, k > 0,
m ∈ [0, 1], or, in the case of real solutions, they may also
take complex values with |m| = 1 and k ∝ 1/

√
1 + m. For

the real solutions (with general real boundary conditions) we
refer to [30]. The elliptic modulus is further constrained by the
condition that γJ ∈ R, which is satisfied when an odd number
of radicants in Eq. (B8) are positive. Note that the transition
to an even number of radicants being negative, where γJ is not
real, happens at γJ = 0.

In the case of α = 0, the wave functions are plane waves,
where μn = g

2π
+ 1

2 (� + n)2, or solitonic trains, which have,
for each level n,

μα=0 = 1

4π

[
3g + 2(n − 1)2(m − 2)

π
K (m)2

+6(n − 1)2

π
K (m)E (m)

]
. (B10)

Both expressions correspond to periodic boundary condi-
tions (solved in Ref. [22]) and coincide at m = 0 and k =
n−1
π

K (0) = n−1
2 . These values determine the critical velocity,

�̃n =
√

g

2π
+ n2

4
, (B11)

that bounds both regions n and n + 1 at α = 0.
For a similar treatment of the Jacobi functions and a

complete derivation of the solutions, see, e.g., [22]. The main
difference between [22] and our work is that in [22] k and
m are not taken as parameters to account for a phase jump
and a kink, but they are adjusted such that periodic boundary
conditions are obtained.

APPENDIX C: COMPUTATION OF THE SPECTRUM

All solutions φ = r ei β satisfying Eqs. (1)–(4) can be ob-
tained by running k and m in their allowed ranges in any of
the three Jacobi functions, two convergent and one divergent,
and which we label as

φdn = r ( j=0)
dn (θ )eiβ ( j=0)

dn , (C1)

φd̃n = r ( j=1)
dn eiβ ( j=1)

dn , (C2)

φdc = r ( j=0)
dc eiβ ( j=0)

dn . (C3)
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Then, for each k and m, the δ strength, velocity, and the
chemical potential are obtained from Eqs. (2), (3), and (1),

αJ (k, m) = r′
J (0) − r′

J (2π )

rJ (0)
, (C4)

�J (k, m) = 1

2π
[βJ (2π ) − βJ (0)], (C5)

μ(k, m) = 1

φ(0)

(
−1

2
φ′′(0) + g|φ(0)|2φ(0)

)
. (C6)

A sample of the spectrum μ(α,�) produced this way is shown
in plot (a) of Fig. 8. Its projection on the α-� plane is potted in
panel (b) of the same figure. In this plane, lines parametrized
by k and fixed m, (αm(k),�m(k)), and lines parametrized by

FIG. 8. (a) Lower part of the spectrum μ(α,�) for g = 10
obtained by scanning the frequency k > 0 and the elliptic modulus
m through its parametric definition, (α(k, m),�(k, m), μ(k, m)).
Three dashed lines in which the frequency has been fixed to k =
1.32, 1.35, and 1.38 and parametrized by m have been drawn in
order to show how the spectrum can be computed in a systematic
way. Alternatively, one can first fix m and then run k, obtaining
lines as the purple solid curve (for m = 0.9974). The ground state
(red bottom surface) and the first excited state (green top surface)
become degenerate at a line in which the curves parametrized by
k (solid purple) and m (black dashed) become tangent. To obtain
the complete spectrum, these surfaces are translated and mirrored at
� → ±� + integer. (b) Projection of (a) in the α-� plane, where
the three lines parametrized by m are also included. The part of
these lines spanning the ground state is colored red, while the one
corresponding to the top level is colored green. (c) The degeneracy or
critical line (light gray) can be computed by constraining the curves
parametrized with k and m to be tangent to each other, as the purple
solid and dashed black ones plotted in the figure.

m and fixed k, (αk (m),�k (m)), are tangent at the degeneracy
line,

∂

∂k
(αm(k),�m(k)) ∝ ∂

∂m
(αk (m),�k (m)), (C7)

see the bottom-right panel of Fig. 8. Therefore, any degener-
acy line may be computed by solving

∂�(k, m)

∂k

∂α(k, m)

∂m
= ∂�(k, m)

∂m

∂α(k, m)

∂k
. (C8)

APPENDIX D: SPECTRAL STRUCTURE

Figure 9 shows the projections of μ(α,�) in the α-� plane
for the ground state and first excited levels. The ground and
first excited states for α < 0 present a more complex structure,
which we analyze in this Appendix. Its bounds are determined
by the limits of the elliptic modulus m—0, 1, or the ones
fixed by γJ = 0—or by Eq. (C8), and they conform to the set
of lines uniting the points P1 − (· · · ) − P5 and P1 − P2 − P6.
Each segment of these bounds is listed in Table I together
with the function and limit of m they represent. The line P2 −
(· · · ) − P5 and its continuation at � = 1

2 is the only curve
not defining the degeneracy of two energy levels. The points
Pi, i = 1, 7, themselves can be further determined. Points P1,
P3, and P7 correspond to α = 0 and velocities �̃1, �̃0, and
�̃2, respectively. The values of P4, P5 are constrained by their
current and elliptic modulus being zero, γJ = m = 0, while P6

has γJ = 0 and m → 1. Point P2 is obtained by minimizing α

with m = 1. All these constraints fix Pi to the values shown in
Table II.

The dependence of the spectrum on g can be analyzed
quantitatively through the expressions in Table II for the
points Pi. P1, P3, P4, and P7 are given in analytical form,
and P2, P5, and P6 are plotted in Fig. 10. αP2 approaches
zero as g increases, and the structures bounded by the lines
P1 − P2 − P3 and P1 − P2 − P6 (middle panel in Fig. 9) vanish
in the limit g → ∞. In contrast, |αP4 |, |αP5 |, and �P3 increase
with g, and the region bounded by these points grows at large
interactions. At g = − 2

π
+ 2πk2

cr � 0.280, where kcr � 0.382
solves πkcr tanh(kcrπ ) = 1, both equations for k2 and k6 in
Table II are satisfied, and points P2 and P6 coincide. In the
limit g → 0, P6 approaches P5 at α = − 2

π
, k5 and k6 tend

to zero, and �P1 = 1
2 : the parts of the region merge into a

flat band. In general, at g = 0, all levels turn into regions
spanning � ∈ [l, l + 1], where all the solutions are stable (see
Appendix F for the linear solutions).

APPENDIX E: BOGOLIUBOV ANALYSIS

The differential equations and boundary conditions con-
straining ũ and ṽ are

w ũ = − 1
2 ũ′′ + i �ũ′ + 1

2 �2ũ + 2g |φ|2ũ − μ ũ − gφ2ṽ,

(E1)

w ṽ = 1
2 ṽ′′ − i �ṽ′ − 1

2 �2ũ − 2g |φ|2ṽ + μ ṽ + gφ∗2ũ,

(E2)

ũ(0) − ũ(2π ) = 0, (E3)
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FIG. 9. Regions in which solutions are adiabatically connected through a variation of the δ strength α/2 and velocity � for g = 10. They
correspond to the bottom (red solid) and top (green grid) of the first swallowtail diagram [plots (a) and (b)] and the bottom (blue solid) and top
(purple grid) of the second one [plot (c)]. Points Pi, i = 1, . . . , 7 characterize the structure of the first energy levels at α < 0. Due to rotational
symmetry, any of these regions can be shifted � → � + integer, as in both surfaces with grids.

ũ′(0) − ũ′(2π ) = α ũ(0), (E4)

ṽ(0) − ṽ(2π ) = 0, (E5)

ṽ′(0) − ṽ′(2π ) = α ṽ(0). (E6)

To turn this system of equations into a linear eigenvalue prob-
lem, we expand ũ and ṽ in an orthonormal basis. This basis
does not consist in periodic plane waves, since the derivatives
must be discontinuous according to the δ conditions, but in
the solutions of Eqs. (1)–(4) with g = 0 and � = 0. Imposing
these constraints on exponential and trigonometric functions,
we obtain the basis,

s0(θ ) = ek0(2π−θ ) + ek0θ√
k0/(−1 + e4πk0 + 4πk0e2πk0 )

, (E7)

s2n+1(θ ) = cos (kn(θ − π ))√
π + sin(2πkn)/(2kn)

, (E8)

s2n(θ ) = sin(n θ )√
π

, (E9)

TABLE I. Relation between the adiabatic regions, the Jacobi
function with which the solutions in the region are computed, and the
constraints of the function at the boundaries. The regions are defined
according to the swallowtail (ST) structure of Fig. 2 and through the
lines bounding them. In the first swallowtail at α < 0, these lines are
described by the union of the various points Pi as in Fig. 9, and where
P∞ ≡ (α → −∞, � = 1

2 ).

Region J Bounds

P1 − P2, Eq. (C8)
Bottom 1st ST α < 0 P1 − P2 − P3 dn

P2 − P3, m = 1
P3 − P4 − P5, m = 0

P3 − P4 − P5 − P∞ dc
P5 − P∞, γ = 0

Bottom 1st ST α > 0 d̃n Eq. (C8)
Top 1st ST α < 0 dn P1 − P2, Eq. (C8)

P2 − P6, m = 1
Top 1st ST α > 0 d̃n Eq. (C8)
Bottom 2nd ST α < 0 d̃n Eq. (C8)
Bottom 2nd ST α > 0 dn Eq. (C8)

with n a positive integer, and where the element s0(θ ) is only
used for α < 0. ũ and ṽ expanded in this set of functions solve
Eqs. (E3) and (E5), and Eqs. (E4) and (E6) are satisfied as long
as k0 and kn are the solutions of, respectively,

α = 2 k0
e2πk0 − 1

e2πk0 + 1
, (E10)

α = 2 kn tan(kn π ). (E11)

APPENDIX F: LINEAR LIMIT

Solutions of Eqs. (1)–(4) with g = 0 can be found analyt-
ically proceeding analogously to Appendix B and replacing
Jacobi functions by trigonometric and hyperbolic ones. They
read

r2
c = Ac[1 + Bc cos (k(θ − π ))2], (F1)

r2
ch = Ach[1 + Bch cosh (k(θ − π ))2], (F2)

TABLE II. Expressions of α and � for the critical points Pi =
(αi, �i ), i = 1, . . . , 7.

Pi αPi �Pi

P1 0
√

g
2π

+ 1
4

P2

αdn(k2, 1),
2k2

(−3πg + 8π 2k2
2 + 2

)
+(

4πk2
2 − 3g

)
sinh(4πk2)

+2(πg − 2)k2 cosh(4πk2)
−6g sinh(2πk2)

−4πgk2 cosh(2πk2) = 0

�P2 = �(k2, 1)

P3 0
√

g
2π

P4 −g 0

P5

αdc(k5, 1),
−2k5 tan(k5π )
+g + 2πk2

5 = 0

1
2

P6

αdn(k6, 1),
2k6 tanh(k6π )

+g − 2πk2
6 = 0

1
2

P7 0
√

g
2π

+ 1
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FIG. 10. Dependence of the critical points Pi = (αPi , �Pi ) on the
nonlinearity g. The plots are only for the values of αPi (g) and �Pi (g),
which do not have closed analytical expressions, and also for αP4 and
�P6 for comparison.

where

Ac = γ 2[2πk + sin(2πk)]

k3 ± k
√

k4 − (2πkγ )2 + γ 2 sin(2πk)
, (F3)

Bc = 2k

2πk + sin(2πk)

(
1

Ac
− 2π

)
, (F4)

Ach = γ 2[2πk + sinh(2πk)]

k3 ± k
√

k4 − (2πkγ )2 + γ 2 sinh(2πk)
, (F5)

Bch = 2k

2πk + sinh(2πk)

(
1

Ach
− 2π

)
, (F6)

and the frequency k is real and the current γ positive. Note that
rc and rch solutions are related by k → i k. For a given k, γ is

FIG. 11. Sections α = −1, 0 and 1 [(a), (b), and (c)] of the first
two energy levels in the spectrum μ(α,�) for g = 0.

limited by the square roots in Ac, Ach being real. The phases α

and � are computed according to Eqs. (B2), (C4), and (C5),
respectively, where now k and γ are taken as parameters, and
the chemical potentials read

μc = k2

2
, (F7)

μch = −k2

2
. (F8)

The spectrum consists in a series of layered levels, each one
spanning all α and � ∈ [ n

2 , n
2 + 1

2 ], given that |k| ∈ [ n
2 , n

2 +
1
2 ], where n = 0, 1, 2, etc.; see Fig. 11. Adding a perturbation
to these solutions in the form of Eq. (8) must satisfy the
same linear equations with μ → μ ± w, as stated by Eqs. (9)
and (10) with g = 0. The solutions only satisfy the boundary
conditions for real eigenvalues, and therefore the frequencies
w are not imaginary and all the are solutions stable.
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