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Solitons in fluctuating hydrodynamics of diffusive processes
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We demonstrate that fluid mechanical systems arising from large fluctuations of one-dimensional statistical
processes generically exhibit solitons and nonlinear waves. We derive the explicit form of these solutions and
examine their properties for the specific cases of the Kipnis-Marchioro-Presutti model (KMP) and the symmetric
exclusion process (SEP). We show that the two fluid systems are related by a nonlinear transformation but still
have markedly different properties. In particular, the KMP fluid has a nontrivial sound wave spectrum exhibiting
birefringence, whereas sound waves for the SEP fluid are essentially trivial. The appearance of sound waves and
soliton configurations in the KMP model is related to the onset of instabilities.
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I. INTRODUCTION

Statistical systems of particles moving randomly on the
line with an exclusion rule restricting their relative positions
[1], also known as single-file processes, constitute examples
of nonequilibrium statistical processes, such as driven diffu-
sive systems, and have been the object of intense study (for
comprehensive expositions see Refs. [2–5], and for a recent
concise review, see Ref. [6]).

An interesting aspect of these models is that in the diffusive
scaling limit where they are subject to the macroscopic fluctu-
ation theory [7–9], they give rise to a class of fluid dynamics
equations. Specifically, in the scaling limit, these systems
satisfy a large-deviation principle where the rate function
for rare large fluctuations can be obtained as the solution
of a variational problem [10,11]. The optimal paths for this
variational problem, constrained on the fluctuations, satisfy
a set of coupled hydrodynamic equations with Hamiltonian
structures [10,12]. The microscopic structure of the model
is encoded in the transport coefficients that appear in the
equations, giving rise to different classes of fluid dynamics
[13]. Related results were derived in Refs. [14–16].

In general, the resulting fluid equations are not analytically
solvable. Nevertheless, they constitute interesting and novel
fluid dynamical systems. In determining their properties, a
crucial question is whether they admit any solitary wave
solutions. The existence of such solutions is usually a signal,
although not a guarantee, that the underlying systems are
integrable. However, at face value, these fluid dynamical
systems do not appear to be integrable with the exception of
the relatively trivial case of independent random walkers.

In this paper, we study solitary wave solutions as well as
nonlinear waves and sound waves for a class of exclusion pro-
cess fluid mechanical systems. We cast the equations of mo-
tion to a form closely related to ordinary hydrodynamics and
analyze their symmetries and constant-profile solutions. The
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methods used are general, but we focus on the specific cases
of the symmetric exclusion process (SEP) and the Kipnis-
Marchioro-Presutti model (KMP) [17]. We demonstrate the
existence of both solitons and nonlinear waves, derive explicit
expressions for the soliton solutions, and examine the disper-
sion relation of sound waves. Although the SEP and KMP
systems are related, their solutions do not map one to one,
and they have markedly different properties. In particular, the
KMP fluid has a nontrivial sound wave spectrum exhibiting
birefringence, whereas sound waves for the SEP fluid are
trivial and can exist only over an empty (ρ = 0) or completely
full (ρ = 1) background.

Traveling wave solutions for the KMP system were ob-
tained in Ref. [18], and our results for this system are very
close to the ones in that reference. Our main contribution
consists of a general method with which soliton and wave
solutions can be found for any diffusivity and conductivity
functions D(ρ) and σ (ρ), a recasting of the equations into
a form closely related to dispersive hydrodynamics and a
nontrivial mapping between the SEP and the KMP models.
We also comment on the implications of the solutions for the
stability of the underlying diffusive systems.

II. GENERAL FORMULATION AND SYMMETRIES

A. Review of the hydrodynamics of macroscopic fluctuations

We present a brief introduction to macroscopic fluctua-
tion theory (MFT) and the emergence of a hydrodynamic
description of exclusion processes. This is meant to provide
context and a general background to the hydrodynamic sys-
tems studied in the following sections. Readers interested
in the specifics of MFT are advised to study the original
papers [10,11] (and Ref. [19] for a nice physical derivation),
whereas experts in the field or those only interested in the
hydrodynamics can skip ahead to Sec. II B.

Statistical processes in one dimension are generically de-
scribed in terms of the occupation number of lattice cites i at a
set of discrete times. In exclusion processes, these occupation
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numbers are 0 or 1, and they change from discrete time
τ to τ + 1 according to prescribed transition probabilities.
In Markovian processes, these probabilities depend on the
occupation numbers at time τ as well as a set of external
driving parameters (“fields”). For driving fields constant in
time and a finite number of sites, such processes are expected
to reach an equilibrium distribution.

Due to the probabilistic nature of their time evolution,
occupation numbers, whether in or out of equilibrium, are
subject to statistical fluctuations. The determination of the
statistics of these fluctuations is, in general, a hard problem.
Substantial progress in this direction can be achieved in the
scaling limit of a large number of sites and a large number of
time steps [10]. In that limit, the lattice cite number i and the
discrete time τ are traded for continuous variables x, t ,

x = εi, t = δτ, (1)

with ε and δ being the (small) space and time discrete scales.
Occupation numbers are traded for a macroscopic (coarse-
grained) occupation density ρ(x),

ρ(x) = ε
N[i, i + �x/ε]

�x
, (2)

with N[i, j] denoting the total occupation number of sites
i, i + 1, . . . , j and �x � ε but macroscopically small. The
parameter L = ε−1 plays the role of the Avogadro number and
is macroscopically large.

In the scaling limit, the average density ρ(x, t ) evolves as
a diffusion process obeying the continuity equation,

ρ̇ = −∂ j, (3)

where the overdot stands for ∂t and ∂ stands for ∂x. The current
j(x, t ) is determined by ρ itself and an external driving field
E (x, t ) as

j = −D(ρ)∂ρ + σ (ρ)E . (4)

D(ρ) is a density-dependent diffusion constant (diffusivity)
whereas σ (ρ) is a density-dependent conductivity. Equa-
tion (4) is a constitutive relation for the process with the
functions D(ρ) and σ (ρ) determined by the specifics of the
diffusion process.

The basic tenet of MFT is the transition probability formula
for a finite excursion of the macroscopic system from a
density profile ρo(x) at t = to to a profile ρ f (x) at t = t f .
Specifically, the probability that the density profile will follow
the path ρ(x, t ) given that, at time t = to, ρ = ρo(x) is given
by [10]

I[to,t f ][ρ(x, t )] ∼ exp

(
−ε−1

∫ t f

to

dt
∫

dx
( j + D∂ρ)2

2σ

)
, (5)

where the current j is related to ρ through the continuity
relation (3) ρ̇ + ∂ j = 0. This is analogous to the Einstein
relation for the probability of density fluctuations in thermal
equilibrium. The basic difference is that since it is a transition
probability, it applies to systems both in and out of equilib-
rium.

The probability that the system will have density ρ f (x)
at time t = t f given that it has density ρo(x) at time t = to
will be given by summing the transition probability over all
intermediate configurations; that is, by the path integral of the

transition amplitude (5) over all ρ(x, t ) and j(x, t ) satisfying
(3) and the boundary conditions ρ(x, to, f ) = ρo, f (x). This is
analogous to Euclidean quantum field theory with ε playing
the role of the Planck constant. In the macroscopic limit
ε → 0, only the classical paths will be relevant for the proba-
bility, that is, evolutions ρ(x, t ) and j(x, t ) that minimize the
exponent in (5). This leads to an action principle, minimizing

S =
∫

dt dx

[
( j + D∂ρ)2

2σ
+ p(ρ̇ + ∂ j)

]
. (6)

In the above, p(x, t ) is a Lagrange multiplier field imple-
menting the continuity equation constraint ρ̇ + ∂ j = 0. The
field j(x, t ) is not dynamical and appears quadratically in the
action, and integrating it out (that is, substituting the solution
of its equation of motion j = σ ∂ p − D ∂ρ), we obtain

S =
∫

dt dx
[
pρ̇ + D ∂ p ∂ρ − 1

2σ (∂ p)2
]
, (7)

where we dropped a total x derivative in the integrand.
The action (7) determines the optimal paths ρ(x, t ) and

also appears in the exponential of the transition amplitude
(5) (the Lagrange multiplier term vanishes on shell, and the
total derivative contribution vanishes for periodic spaces).
Therefore, it determines the statistical distribution of ρ(x, t )
through its Hamilton-Jacobi equation. Note that it involves
the fundamental variable ρ as well as the conjugate variable
p. The equations of motion in ρ and p are first order in
time, and their solution is determined by initial conditions
ρ(x, to), p(x, to), or by boundary conditions ρ(x, to), ρ(x, t f ),
the latter being relevant to the calculation of the probability of
large fluctuations through (5).

The dynamical system defined by the action (7) for ρ, p has
the generic form of a fluid mechanical system. Its properties
are the main object of study in this paper and are analyzed in
the subsequent sections.

B. A symmetric form and time reversal

The action (7) is of Hamiltonian form with Lagrangian
density,

L = pρ̇ + D(ρ) ∂ p ∂ρ − 1
2σ (ρ)(∂ p)2, (8)

ρ and p are canonically conjugate fields and obey the equa-
tions of motion,

ρ̇ = −∂ (σ ∂ p − D ∂ρ), ṗ = −D ∂2 p − 1
2σ ′(∂ p)2, (9)

where the prime stands for the ρ derivative. We see that ∂ p
plays the role of the field E in (4) and represents a driving
force field that creates an additional drift current σ ∂ p. In the
minimization process, it obeys its own evolution equation,
Eq. (9). For p = 0, we recover the diffusion equation for
particles in the exclusion process [8,20] as expected with a
diffusion current −D ∂ρ.

The Lagrangian (8) is invariant under constant shifts of
p → p + c, leading to the conservation of the total number
of particles. It also has a time reversal invariance, and we
will recast the system in terms of variables that make the time
reversal symmetry explicit. To that end, we trade the variable
ρ for the new variable p̄,

p̄ = −p + f (ρ), (10)
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with the function f (ρ) satisfying

f ′ = 2D

σ
, (11)

[ f (ρ) is essentially the ρ derivative of the free energy of
the fluid.] The Lagrangian in terms of the variables p and p̄,
dropping total time derivatives, rewrites as

L = −ρ(p, p̄) ṗ + 1
2σ (p, p̄)∂ p ∂ p̄, (12)

or noting that ρ = f −1(p + p̄) depends only on p + p̄,

L = 1
2 Q(p + p̄)( ˙̄p − ṗ) + 1

2	(p + p̄)∂ p ∂ p̄, (13)

with Q(·) = f −1(·) and 	(·) = σ [ f −1(·)].
The above Lagrangian is manifestly invariant under the

time reversal symmetry,

p ↔ p̄, t → −t . (14)

In terms of the original variables, this means that

ρT = ρ(−t ), pT = −p(−t ) + f [q(−t )] (15)

are also solutions of the equations of motion (9). That is, the
change p → p̄ can drive ρ to evolve backwards in time.

For independent random walkers (which we will refer to as
independent particles), D = 1 and σ = 2ρ, so f = ln ρ, and
the Lagrangian becomes

L = 1
2 ep+p̄ ( ˙̄p − ṗ) + ep+p̄∂ p ∂ p̄, (16)

or

L = 
�̇ + ∂
 ∂�, 
 = ep, � = ep̄, (17)

which corresponds to two decoupled diffusion and antidif-
fusion processes. The transition from ρ, p to �,
 is the
Hopf-Cole canonical transformation [21,22].

For the SEP process, DSEP = 1 and σSEP = 2ρ(1 − ρ), so

p̄ = −p + ln
ρ

1 − ρ
. (18)

The SEP process has the additional particle-hole reflection
symmetry,

ρ → 1 − ρ, p → −p, (19)

that leaves the Lagrangian and the action invariant.
For the KMP process, DKMP = 1 and σKMP = 2ρ2, so

p̄ = −p − 1

ρ
. (20)

Note that, if −1 < ρp < 0, then both p and p̄ are negative.
The KMP process has the additional scaling symmetry,

p → λp, p̄ → λ p̄, (21)

that leaves the Lagrangian and the action invariant and leads
to the additional conserved charge D = ∫

dx ρp through the
conservation equation,

∂t (ρp) + ∂x(ρ ∂ p − p ∂ρ + 2ρ2 p ∂ p) = 0. (22)

Unlike the free particle case, no decoupling or simplification
of the equations of motion arises in the SEP and KMP cases
by any obvious change of variables.

C. Mapping SEP to KMP

Assume ρ1, p1 are SEP variables with Lagrangian,

L = p1ρ̇1 + ∂ p1∂ρ1 − ρ1(1 − ρ1)(∂ p1)2. (23)

The transformation,

ρ2 = ρ1e−p1 , p2 = −ep1 (24)

maps the Lagrangian, up to the total time derivative term
∂t (ρ1 p1 − ρ1), to

L = −[
p2ρ̇2 + ∂ p2∂ρ2 − ρ2

2 (∂ p2)2
]
. (25)

This is the negative of the Lagrangian of the KMP process,
so ρ2, p2 obey KMP equations of motion. Note that (24) is
a Hopf-Cole type canonical transformation but with a crucial
additional minus sign. The inverse transformation, mapping
KMP to SEP, is

ρ1 = −ρ2 p2, p1 = ln(−p2). (26)

Any solution of the SEP process provides a solution of the
KMP process. The opposite, however, is not true as only KMP
processes with p2 < 0 map to acceptable SEP processes. (An
alternative transformation that allows p2 > 0 maps to SEP
with density outside of the acceptable range of 0 < ρ1 < 1.)
Furthermore, the KMP fluids that map to SEP satisfy

ρ2 p2 = −ρ1 ⇒ −1 < ρ2 p2 < 0, (27)

which means that both p2 and p̄2 are negative, preventing a
time reversal transformation from producing solutions with
p2 > 0.

The mapping (24) can be used to relate the transition
probabilities for large fluctuations of the SEP model to those
of the KMP model. The actions under the mapping, taking
into account the total derivative, map as

S2 = −S1 + ρ1(p1 − 1)|t f
to . (28)

Therefore, a large fluctuation of the SEP model maps to
a corresponding large fluctuation of the KMP model with
probability related through Eqs. (5) and (28).

The SEP-KMP mapping allows us to relate the symmetries
of the models. The reflection symmetry (19) of the SEP
process maps into a corresponding symmetry of the KMP
process,

ρ2 → −p2(1 + ρ2 p2), p2 → 1

p2
. (29)

This is physical, preserving the positivity of ρ2 only in the
range (27) as expected. The charge symmetry p1 → p1 + c
of the SEP model maps to the scaling symmetry (21) of the
KMP model. The charge symmetry p2 → p2 + c of the KMP
model, on the other hand, reveals a corresponding symmetry
for the SEP model,

ρ1 → ρ1 + cρ1e−p1 , p1 → p1 + ln(1 + ce−p1 ) (30)

leading to the conservation of the additional charge C =∫
dx ρ1e−p1 through the conservation equation,

∂t (ρ1e−p1 ) + ∂x{e−p1 [ρ1(1 − 2ρ1)∂ p1 − ∂ρ1]} = 0. (31)

We stress that the SEP-KMP mapping presented here is
distinct from a corresponding mapping identified in Ref. [21].
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In our language, the mapping in Ref. [21] applies to sys-
tems with D(ρ) = 1 and quadratic diffusion function σ (ρ) =
2Aρ(B − ρ) and consists of the linear rescaling,

ρ → Bρ, p → B−1 p ⇒ σ → 2ρ(1 − ρ), (32)

which leaves the Lagrangian invariant and maps the system
to the SEP fluid. Our transformation, however, is nonlinear,
it mixes ρ and p and maps the Lagrangian to minus itself.
Moreover, the linear transformation (32) becomes singular for
the KMP fluid, which requires B → 0, A → −1 and makes
the mapping between solutions of the two systems, in general,
singular.

The significance of the existence of the SEP-KMP mapping
(26) is an interesting and presumably unexplored feature of
the SEP and KMP systems. In particular, it raises the obvious
question of whether it is a member of a more general family
of transformations. It would also be very useful to have a
microscopic explanation of this mapping at the level of the
diffusion processes. At this point, we have no answer to these
questions. Given that the above two systems are, in fact, quite
special from the hydrodynamical point of view as will be

demonstrated in the next section, it is not inconceivable that a
mapping exists only and specifically for these systems.

III. MAPPING TO REGULAR FLUIDS

The density ρ and conjugate variable p do not directly
map to regular fluid variables. We would like to express the
problem in terms of variables and equations as closely related
to regular fluids as possible. To this end, we define

θ = p − p̄

2
= p − 1

2
f . (33)

In terms of ρ, θ , the Lagrangian becomes

L = θρ̇ − 1

2
σ (∂θ )2 + D2

2σ
(∂ρ)2. (34)

This has the form of a standard fluid action. Defining the fluid
velocity as

v = σ

ρ
∂θ, (35)

we arrive, after some calculation and rearrangements, at the
equations of motion,

ρ̇ + ∂ (ρv) = 0,

v̇ = σ

2ρ

(
ρ2

σ

)′′
v2∂ρ + σ 2

(
ρ

σ 2

)′
v ∂v − σ

ρ
∂

[
D√
σ

∂

(
D√
σ

∂ρ

)]
. (36)

The first equation is the kinematical continuity equation for
the fluid, whereas the second is the dynamical (Newton’s)
equation. The Newton equation has the general form of dis-
persive hydrodynamics. We note, however, that the transport
term v ∂v has a nonstandard ρ-dependent coefficient and there
is a nonstandard dynamical v2∂ρ term with a ρ-dependent
coefficient. The form of both these coefficients depends on
σ (ρ), whereas D(ρ) enters only the interaction potential in
the last term in (34) and (36).

Obtaining standard hydrodynamics requires further restric-
tions on σ (ρ):

(a) For the v2∂ρ term to vanish

(
ρ2

σ

)′
= constant ≡ a ⇒ σ = ρ2

aρ + b
. (37)

(b) For the transport term v ∂v to have a constant coeffi-
cient,

σ 2

(
ρ

σ 2

)′
= 1−2

∂ ln σ

∂ ln ρ
= constant ≡ 1 − 2B ⇒ σ = AρB.

(38)
We observe that the special cases of σ = 2ρ (independent
particles) and σ = 2ρ2 (the KMP process) satisfy both condi-
tions. By the mapping of the previous section, the KMP fluid
also generates solutions for the SEP fluid. Therefore, we will
eventually focus on the above two special cases.

The cases of independent particles D = 1, σ = 2ρ can
further be reduced to two independent linear processes by

putting, as in Sec. II,

� = √
ρe−θ , 
 = √

ρeθ ⇒ L = �
̇ + ∂� ∂
.

(39)

The equations of motion are

�̇ + ∂2� = 0, 
̇ − ∂2
 = 0, (40)

so 
 and � are a diffusing and an antidiffusing density,
respectively. (The existence of the latter is compatible with the
time reversal symmetry of the system derived in the previous
section.) In this case, there is also a Galilean boost invariance,

�(x, t ) → e−(u/2)x+(u2/4)t�(x − ut, t ),


(x, t ) → e(u/2)x−(u2/4)t
(x − ut, t ) (41)

leaving the Lagrangian and the equations of motion invariant.
This is an essentially trivial case, leaving the KMP process

and the related SEP process as the main nontrivial fluids
of interest. Note that, for the KMP fluid, the kinematical
transport term is −3v ∂v with a coefficient different from the
standard value of −1 which obtains for independent particles,
so this is a strongly nonclassical fluid.

IV. SOLITON AND WAVE CONFIGURATIONS

We now proceed to examine motions corresponding to a
constant fluid profile traveling at speed u, potentially with an
underlying particle current. Such configurations are nonlinear
waves if they repeat periodically or solitary waves if they fall
off to a constant value away from a guiding center. We will
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call the latter solitons for brevity, even though we have no
indication of the integrability of the fluid equations and no
multisoliton solutions.

A. Constant profile solutions

The conditions for a constant profile configuration moving
at speed u are

ρ(x, t ) = ρ(x − ut ), v(x, t ) = v(x − ut ), (42)

so on any fluid function ∂t = −u∂ . The continuity equation
can be solved to give v as a function of ρ,

v = c

ρ
+ u. (43)

The integration constant c quantifies the underlying current
(drift), c = 0 corresponding to all particles in the fluid moving
at the same velocity u. Substituting v in the Euler equation and
rearranging yields[

uc

ρσ
− 1

2

(
ρ2

σ

)′′(
c

ρ
+ u

)2

+ cσ

ρ

( ρ

σ 2

)′( c

ρ
+ u

)]
∂ρ

+ ∂

[
D√
σ

∂

(
D√
σ

∂ρ

)]
= 0. (44)

Remarkably, the expression in the first set of square brackets
is an exact second ρ derivative,

uc

ρσ
− 1

2

(
ρ2

σ

)′′(
c

ρ
+ u

)2

+ cσ

ρ

( ρ

σ 2

)′( c

ρ
+ u

)

= −
[

(c + uρ)2

2σ

]′′
, (45)

which allows to integrate Eq. (44) to

D√
σ

∂

(
D√
σ

∂ρ

)
=

[
(c + uρ)2

2σ

]′
+ 1

2
K1 (46)

for a constant K1.
The above equation can be solved through a hodographic

transformation. We define the hodographic variable τ through
the equation,

dx

dτ
= D√

σ
, thus,

D√
σ

∂ = d

dτ
, (47)

and Eq. (46) is written

d2ρ

dτ 2
=

[
(c + uρ)2

2σ

]′
+ 1

2
K1. (48)

A further integral of the above equation is then obtained as(
dρ

dτ

)2

= (c + uρ)2

σ
+ K1ρ + K2, (49)

with a new constant K2, in a “hodographic energy conserva-
tion” expression. Finally, combining (49) and (47), we can
eliminate the hodographic variable and obtain

(∂ρ)2 = (c + uρ)2 + (K1ρ + K2)σ

D2
≡ −W (ρ). (50)

This is a separable equation, the right hand side representing
an “effective potential” W (ρ) and is solved implicitly by∫

D dρ√
(c + uρ)2 + (K1ρ + K2)σ

= x − xo. (51)

We have, in total, four integration constants c, K1, K2, and
xo, the last one corresponding to translation invariance and
eliminated by an appropriate choice of origin.

B. Remarks on the solutions

Equation (51) suggests that the profile ρ(x) can be consid-
ered as the motion of a one-dimensional particle with coordi-
nate ρ in potential W (ρ) and energy E = 0 with x playing the
role of the evolution parameter. Finding the solution involves
solving the nonlinear differential equation (51) and inverting
it to determine ρ(x). This will depend on the specific choices
of D(ρ) and σ (ρ). Furthermore, whether the solutions are
physically acceptable with ρ(x) remaining finite and positive
everywhere and respecting any other constraints, such as
ρ � 1 in the SEP case, depends on the choice of integration
constants.

We can still draw some important conclusions from the
general form of the solution:

(i) For K1 = K2 = 0, the solution depends only on the
diffusion function D(σ ), which is 1 in most cases of interest.
Setting D = 1 and exp(−xo/u) = uρo, we obtain

ρ = − c

u
+ ρoeux, so ρ(x, t ) = − c

u
+ ρoeu(x−ut ). (52)

Therefore, all fluids share a common set of (unphysical)
exponential solutions.

(ii) Static solutions for which u = 0 (stationary solitons)
and c = 0 (no drift) depend only on the function D(ρ)2/σ (ρ).
By contrast, stationary solutions (only u = 0) and drift-free
solutions (only c = 0) depend on both D(ρ) and σ (ρ).

(iii) For D = 1 and σ (ρ), a polynomial of degree n in ρ,
the effective potential is a polynomial of degree n (or 2, if
n < 2), so the form of the solution is generically the same for
all such fluids. However, as will become apparent, the specific
form of the effective potential and, in particular, its zeros will
be crucial for the existence of localized solitons or waves.

We conclude by remarking that traveling wave solutions
could be examined in the original formulation of the systems
in terms of ρ and p rather than the hydrodynamic formulation
in terms of ρ and v. This was performed in Ref. [18] for
the specific case of the KMP fluid, and the results found
there are in agreement with the results that we derive in
Sec. V B. The method used in Ref. [18] relies on the ρ, p
traveling wave equation being of a Hamiltonian form, and
it could be generalized to arbitrary σ (ρ) but requires D(ρ)
to be a constant. The use of the hodographic variable τ in
our derivation can be traced to that fact and circumvents this
restriction.

V. SOLITON AND WAVE SOLUTIONS
FOR SPECIFIC FLUIDS

Our main focus is the identification of the localized soliton
and nonlinear wave solutions in the special fluids of interest,
and we treat each case in detail.
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A. Independent particles

For independent particles D = 1 and σ = 2ρ, the effective
potential is quadratic in ρ, and ρ(x) corresponds to the motion
of a harmonic oscillator, stable or unstable, depending on the
value of K1. This is consistent with the solutions of the linear
(anti)diffusion equations in terms of �,
, and it is easier to
work with these fields. In the present case, the (anti)diffusive
fields are

�(x, t ) = φ(x − ut )e−at , 
(x, t ) = ψ (x − ut )eat , (53)

with the functions φ(x) and ψ (x) satisfying

∂2φ + u ∂φ + aφ = ∂2ψ − u ∂ψ + aψ = 0. (54)

The general solution is

φ = e−ux/2(Aeqx/2 + Be−qx/2),

ψ = eux/2(Ãeqx/2 + B̃e−qx/2), q2 = u2 − 4a (55)

from which

ρ = φψ = AB̃ + ÃB + AÃeqx + BB̃e−qx, (56)

v = 2 ∂θ = ∂ψ

ψ
− ∂φ

φ
= u + ρ

ÃB − AB̃

ρ
. (57)

The constants A, B, Ã, B̃, and a play the role of c, K1, K2,
and xo in the effective potential solution, noting that the
transformation A → λA, B → λB, Ã → λ−1Ã, B̃ → λ−1B̃
leaves the solution invariant, therefore reducing the number
of relevant constants to four.

The above density (56) has a constant part and a sinusoidal
or exponential part, depending on the sign of q2, and by
varying the parameter a (which is invisible at the level of fluid
functions ρ and v), we can obtain the full range of solutions
for any ρ. Note, also that, for q 
= 0 and ÃB 
= AB̃, there is a
drift, even for u = 0, unlike the static case.

However, the exponential solutions diverge at infinity,
whereas it can be checked that the oscillatory ones become
negative in intervals. Only in the case of A = B, Ã = B̃,
we have a positive density repeating periodically between
vanishing points with a velocity v = u and no drift, which
is the Galilean boost of a static solution. Altogether, these
solutions are not very physical.

B. KMP fluid

For the KMP fluid, D = 1 and σ = 2ρ2. The effective
potential W (ρ) entering Eq. (51) is

W = −(c + uρ)2 − 2ρ2(K1 + K2ρ)

= k1ρ
3 + k2ρ

2 − 2cuρ − c2, (58)

where k1 = −K1, k2 = −2K2 − 2cu are new constants that
span the full range of real values. W (ρ) is a cubic function
that behaves generically as in Fig. 1 or 2, depending on the
sign of k1 and the value of the remaining parameters.

Solutions for ρ(x) correspond to motion along the range
of ρ where W � 0. Solutions where ρ < 0 in any interval are
excluded as unphysical. Similarly, solutions where ρ becomes
infinite in any point, although mathematically interesting, are
also excluded.

FIG. 1. Possible solutions for k1 > 0.

The above requirements imply that only potentials W (ρ)
that develop a finite well between a local maximum and a
local minimum can support physical solutions. Note, also that
W (0) = −c2 � 0. This leaves the following possibilities:

(i) For k1 > 0, the potential must be as in Fig. 1. Depending
on where the line W = 0 cuts the graph, we see that only cases
B–D correspond to physical solutions: B to a single constant
density configuration with small-amplitude sound waves; C
to a finite amplitude wave, where ρ bounces periodically
between a maximum and a minimum; and D to a soliton, ρ

bouncing off the maximum and going asymptotically to the
minimum as x → ±∞.

(ii) For k1 < 0, the potential must be as in Fig. 2. In general,
cases B–D could yield physical solutions. However, they all
require W (0) = 0, that is, c = 0, to ensure positivity of ρ. For
the KMP potential, this implies that the linear term −2cux also
vanishes, and x = 0 is one of the extremal points. Therefore,
there are no physical solutions for the KMP fluid.

(iii) For k1 = 0, we need again c = 0, which also elimi-
nates the linear term leaving only the trivial vanishing solution
with no sound waves. Finally, for k1 = k2 = 0, we obtain ei-
ther unphysical (cu 
= 0) or trivially constant (c = 0) solutions
with no sound waves.

This leaves k1 > 0 and W (ρ) having three real positive
roots as the domain with physical solutions for the KMP fluid,

W (ρ) = k1(ρ − ρ1)(ρ − ρ2)(ρ − ρ3), k1 > 0,

0 � ρ1 � ρ2 � ρ3. (59)

The three roots ρ1–3 are related to the parameters k2, c, and
u as implied by the form of the potential in (58), that is, as
follows:

k2 = −k1(ρ1 + ρ2 + ρ3), −2cu = k1(ρ1ρ2 + ρ2ρ3 + ρ3ρ1),

c2 = k1ρ1ρ2ρ3. (60)

FIG. 2. Possible solutions for k1 < 0.
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FIG. 3. Density (blue) and velocity (green) profiles of the KMP
soliton.

For ρ1 < ρ2 < ρ3, the solution is a finite amplitude wave;
for ρ1 → ρ2, the solution is a soliton; and for ρ2 → ρ3, the
solution is a small-amplitude (sound) wave. We examine the
three types of solutions below.

1. Solitons are perhaps the most interesting solutions. In
this case, the potential W (ρ) is of the form

Ws = k1(ρ − ρo)2(ρ − ρp), (61)

with ρo as the background density and ρp as the density at the
peak of the soliton. Comparing with the form of W in (58), we
deduce

k2 = −k1(2ρo + ρp), c = ±ρo

√
k1ρp,

u = ∓
√

k1

ρp

(
ρo

2
+ ρp

)
. (62)

Equation (51), in this case, can be solved and inverted explic-
itly to find ρ(x). Setting ρp = ρo + A with A as the amplitude
of the soliton and k1 = k2/A with k as a new parameter, we
obtain overall

ρs(x) = ρo + A

cosh2 k
2 x

, vs(x) = u + c

ρs(x)
, (63)

with

u = 1 + 3ρo

2A√
1 + ρo

A

k, c = −
√

1 + ρo

A
kρo

A plot of the density and velocity of the soliton is given in
Fig. 3 .

The excess particles carried by the soliton, on top of the
background, is

Ns = 4A

k
. (64)

Note that the background fluid far away from the soliton has
a nonzero velocity,

vs(±∞) = kρo

2A
√

1 + ρo

A

, (65)

which is not possible to eliminate as the fluid is not boost
invariant.

FIG. 4. Density (blue) and velocity (green) profiles of a KMP
nonlinear wave.

The above solution is valid as long as ρo > 0 such that c 
=
0. For ρo = c = 0, the form of the solution in (63) remains
valid, but the equation for u need not be satisfied, and we have
solutions for arbitrary velocity u, including u = 0. Clearly the
limit ρo → 0 is discontinuous.

2. Finite amplitude waves correspond to a potential,

Ww = k1(ρ − ρb)(ρ − ρt )(ρ − ρc), (66)

where ρt < ρc are the trough and crest values of the density
and the positive parameters k1 and ρb(<ρt ) control the peri-
odicity (wavelength) and speed of the wave. Equation (51),
now, is solved in terms of elliptic functions, and we will not
give their explicit form. We simply state the expression of
the wavelength λ of the wave in terms of u, ρt , ρc, and the
parameter ρb after eliminating k1,

λ = 2
ρb(ρt + ρc) + ρtρc

u
√

ρbρtρc(ρc − ρb)
K

(
ρc − ρt

ρc − ρb

)
, (67)

where K (·) is the K-elliptic function. This is a so-called
“cnoidal” wave. A numerical plot of the density and velocity
of the wave is given in Fig. 4.

3. Sound waves correspond to small-amplitude periodic
waves. We could examine them by expanding the action (34)
around a constant background solution, but we can, instead,
recover them by considering the potential,

W = k1(ρ − ρb)[(ρ − ρo)2 − ε2], (68)

where ε  ρo represents the amplitude of the wave. The
wavenumber k of the wave is given by the curvature of the
potential at ρ = ρo,

k2 = 1
2W ′′(ρo) = k1(ρo − ρb). (69)

The relation of parameters k1, ρb with u and c are similar to
the soliton case. The fluid has a background density ρo and a
background velocity,

vo = u + c

ρo
= u

ρo

ρo + 2ρb
= kρo

2
√

ρb(ρo − ρb)
. (70)

Setting u = ω/k, the phase velocity of the wave with ω as its
cyclic frequency and eliminating k1 and ρb in favor of u and
vo, we obtain the dispersion relation,

ω = k
(
2vo ±

√
v2

o − k2
)
. (71)
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We observe that sound waves around a static background do
not exist, but a constant background velocity allows for sound
waves of wavenumber,

|k| � vo, (72)

and that there is birefringence with two possible velocities
for each wavelength. For long wavelengths, the two speeds
of sound are vo and 3vo.

The existence of sound waves for the KMP hydrodynamic
equations is related to the stability of the system. For a
KMP system on a ring of unit length, wave configurations
would have a wavelength quantized to λ = 1/n or k = 2πn
for integer n. The lowest excitation that the system can have
is sound waves at the fundamental frequency k = 2π . The
existence of such sound waves signifies that the constant
profile configuration may be destabilized against fluctuations.
Putting k = 2π in (72) above, and expressing it in terms of the
current j = ρv, we obtain

j � 2πρo. (73)

This is precisely the critical current derived in Ref. [23] re-
quired for instability to kick in. The bifurcation of the disper-
sion relation (71) at the critical point, leading to birefringence,
is a hallmark of the onset of instabilities, one branch being
stable and the other unstable.

We conclude the discussion of KMP fluids by pointing
out that the symmetry transformation (29) in terms of fluid
variables becomes

ρ → θ (1 − ρθ ), θ → 1

θ
. (74)

For a constant profile configuration with v = 2ρ ∂θ, θ will, in
general, increase linearly with x, and the above transformation
produces unphysical solutions. Since their SEP counterparts
according to the mappings (24) and (26) would both be
physical, we conclude that some acceptable SEP solutions
would map to unphysical KMP configurations.

C. SEP fluid

Solutions for SEP fluids could, in principle, be derived
from those of KMP fluids using the mapping between the
systems. However, given the limitations in the range of ap-
plicability of the mapping pointed out in Sec. II B, and the
related fact that some constant-profile SEP solutions would
not correspond to physical KMP solutions as pointed out at
the end of the previous section, it is more reliable to derive the
solutions independently.

The effective potential in this case is

W = −(c + uρ)2 − 2ρ(1 − ρ)(K1 + K2ρ)

= k1ρ
3 + k2ρ

2 − (k1 + k2 + u2 + 2cu)ρ − c2, (75)

again with two new constants k1, k2 that span the full range
of real values. Note that the reflection symmetry (19) of the
model becomes, in terms of fluid variables,

ρ → 1 − ρ, v → − ρ

1 − ρ
v, (76)

and for a constant profile solution,

u → −u, c → −(u + c). (77)

The analysis of possible solutions is the same as in the
KMP case with some important differences. First, the density
must remain in the range of 0 � ρ � 1; and second, when
k1 < 0, we can choose c = 0 without the linear term vanish-
ing, so the case of k1 < 0 is not eliminated. In fact, we can
see that taking ρ → 1 − ρ in (75) k1 → −k1, so the cases
of k1 > 0 and k1 < 0 are related by the reflection symmetry.
In particular, solitons for k1 < 0 are actually antisolitons. So
we can, in principle, examine only one case and obtain the
remaining solutions by applying (76), but we prefer to present
them both in parallel for clarity.

As in the KMP case, we obtain physically acceptable solu-
tions when W (ρ) has three non-negative (possibly degenerate)
zeros. Putting,

W = k1(ρ − ρ1)(ρ − ρ2)(ρ − ρ3), k1 > 0,

0 � ρ1 � ρ2 � ρ3 � 1, (78)

and comparing with (75), we obtain

c2 = k1ρ1ρ2ρ3, (u + c)2 = −k1(1 − ρ1)(1 − ρ2)(1 − ρ3).

(79)

For k1 > 0, the second quantity is nonpositive, and the only
acceptable solution is when ρ3 = 1, u = −c. So the fluid
must necessarily reach ρ = 1 at some point (or points). Con-
versely, for k1 < 0, we must have ρ1 = 0 and c = 0, and the
density must vanish at some points.

Overall, we see that we have one less parameter than in
the KMP case as we have no control over either the crest or
the trough values of the density. Otherwise, the solutions look
similar to the KMP ones.

1. Solitons correspond to k1 > 0, ρ1 = ρ2 = ρo, ρ3 = 1.
We obtain

ρ = ρo + 1 − ρo

cosh2 kx
2

, v = −k
ρo

√
1 − ρo

ρo + sinh−2 kx
2

. (80)

Their traveling speed u and excess particle number Ns are

u = k
ρo√

1 − ρo
, Ns = 4

1 − ρo

k
= 4

ρo
√

1 − ρo

u
. (81)

We note that the underlying velocity is opposite to their speed,
signaling a strong drift, reaching an asymptotic value of v∞ =
−u(1 − ρo)/ρo away from the soliton.

2. Antisolitons correspond to k1 < 0, ρ1 = 0, ρ2 = ρ3 =
ρo and are related to solitons through the reflection symmetry
(19). We obtain

ρ = ρo − ρo

cosh2 kx
2

, v = u = k
1 − ρo√

ρo
,

Nas = −4
ρo

k
= −4

(1 − ρo)
√

ρo

u
. (82)

Interestingly, antisolitons have no drift since v = u. (Note
that, although the current j = ρv changes sign under reflec-
tion, the velocity v does not.)

At half-filling, ρo = 1/2, solitons and antisolitons become
symmetrical, although not entirely since the soliton still has
a drift. Remarkably, if we arrange for the asymptotic soliton
fluid velocity v∞ and antisoliton velocity u to match such
that a well-separated soliton-antisoliton pair be an asymptotic
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solution, then soliton and antisoliton travel at opposite speeds,
have the same profile, and carry equal and opposite particle
numbers, suggesting a particle-antiparticle scattering event.

3. Finite amplitude waves for k1 > 0 correspond to ρ1 :=
ρb < ρ2 := ρt , ρ3 = 1 with ρt representing the trough den-
sity of the wave (the crest density is necessarily 1). These
waves have speed,

u = −c =
√

k1ρbρt . (83)

As for solitons, there is one less parameter than the KMP case
since the crest density is fixed. The parameter ρb fixes both
the wavelength and the speed of the wave, and the solution
for ρ is given by an elliptic function. The expressions of the
wavelength of the wave in terms of ρb, ρt , and u are

λ = 4

u

√
ρbρt

1 − ρb
K

(
1 − ρt

1 − ρb

)
. (84)

The dual wave with trough density reaching zero, correspond-
ing to k1 < 0, ρ1 = 0, ρ2 = ρc < ρ3 = ρb, has a wavelength
given by

λ = 4

u

√
(1 − ρb)(1 − ρc)

ρb
K

(
ρc

ρb

)
. (85)

4. Sound waves can exist only over background densities
ρo = 1 and ρo = 0. Sound waves at full filling (ρo = 1) are
actually degenerate as the fluid can have no velocity since
v = (1 − ρ)∂θ identically vanishes. Similarly, sound waves
around its reflection symmetric empty state ρo = 0 are also
essentially degenerate since the underlying fluid moves at the
velocity of propagation u of the wave, so the entire wave prop-
agation is due to fluid transport. Sound waves can propagate
at any wavelength for any frequency over these degenerate
backgrounds. Working with k1 < 0, ρ1 = ρ2 = 0, ρ3 = ρb,
we obtain u = √−k1ρb and a linear dispersion relation for
any speed u,

ω = uk. (86)

VI. CONCLUSIONS AND OUTLOOK

The existence of soliton and wave solutions is an interest-
ing property of diffusion process fluids. The soliton profiles,
in particular, are typical of soliton solutions in integrable sys-
tems. This raises the possibility that the underlying structure
of these fluids is also integrable. Other fluid mechanical sys-
tems, such as the hydrodynamics description of the Calogero-
Sutherland model, admit true solitons as these systems are
integrable [24,25]. However, in the absence of multisoliton
solutions or an analytic derivation of conserved quantities or a
Lax pair, the integrability of diffusion process fluids remains
an open issue.

Although, in this paper, we studied in detail the SEP and
KMP systems, our methods, and, in particular, Eq. (51), are
completely general and work for any D(ρ) and σ (ρ). There
are other instances in the literature where general results
can be derived for arbitrary transport coefficients, such as,
e.g., Refs. [26,27]. In particular, if D(ρ) = 1, and σ (ρ) is a
quadratic polynomial, the effective potential W (ρ) is quartic.
For such cases, (51) has the same generic structure and is
solved in terms of elliptic functions. The fact that quadratic
σ (ρ) can generically be mapped to the SEP system by a linear
rescaling [21] is also suggestive. The specific physical results
for solitons and waves, however, seem to be quite different
between the SEP and the KMP systems. A relevant (and
straightforward) exercise would be to examine the solutions
of generic quadratic systems and see if they fall on the SEP or
KMP side.

The most interesting question is the implications of the
solutions identified in the present paper for large fluctuation
properties of the underlying statistical processes. The hydro-
dynamic variable v, in particular, has no direct interpretation
for the diffusion process where the original variable p is
more relevant to the analysis of the statistics of their large
fluctuations. The relation of the emergence of sound waves to
the onset of instabilities pointed out in Sec V B 3 is consistent
with the fact that solitons and waves are related to instabilities.
In fact, the appearance of solitonlike configurations in the nu-
merical work of Ref. [28] makes it clear that our solutions are
relevant to the destabilizing fluctuations in the corresponding
statistical systems. For a compact space (ring) where such
instabilities manifest, there is no sharp distinction between
solitons, nonlinear waves, and sound waves. Furthermore,
Ref. [23] established a link between transitions to an unstable
phase and the breakdown of the “additivity principle” [29].
It would be nice to have a unified description of solitons,
instabilities, and additivity in which the results of this paper
will be put in context and may be of use. These and other
relevant questions on the physical interpretation of soliton and
wave solutions are left for future work.
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