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Nonchaotic laser pulse dissociation through deformed tori
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We consider the nonlinear classical dynamics of a diatomic molecule under the action of a laser field in
the framework of the driven Morse oscillator model. We investigate the influence of the dipole function and
the laser field on the deformations of the surviving, invariant tori. For intense and high-frequency fields, some
invariant tori traverse the separatrix of motion, visiting both the bound and unbound regions of the interatomic
potential. Based on this fact, we propose the use of appropriately designed laser pulses to induce dissociation
of trajectories on such invariant tori. This mechanism constitutes a controlled nonchaotic route for dissociation,
which is an alternative to chaotic multiphoton dissociation and to chirped pulse dissociation.
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I. INTRODUCTION

The study of chaotic systems has proved to be important
for many branches of physics, including the control of the
dynamics of atoms and molecules by external time-dependent
fields [1,2]. The onset of chaotic motion, marked by the
extreme sensitivity of the dynamics to the initial conditions,
is the starting point for many investigations. For instance, the
classical ionization of atoms and dissociation of molecules by
single-frequency fields are often recognized to occur through
chaotic routes [3–5]. Nevertheless, it is well known that
invariant surfaces, the so-called KAM tori, may continue to
exist for dynamical systems perturbed away from integrable
ones. As we show here, the study of the deformations of
invariant surfaces can be important for implementing control
mechanisms for chaotic systems.

Along with the kicked rotor and the one-dimensional
(1D) hydrogen atom, the Morse oscillator is a fundamen-
tal model for understanding chaotic behavior of atoms and
molecules under the action of time-dependent fields. The
classical driven Morse oscillator has been extensively applied
to the study photodissociation of diatomic molecules [6–13].
Several quantum-classical comparisons have also been carried
out, and it is generally agreed that there are some correspon-
dences between quantum and classical results, especially far
from multiphoton processes [14–23].

In the dipole approximation, the molecule-field interaction
is given by the product of the dipole function and the time-
dependent external field. Diatomic molecules possess diverse
shapes for the dipole function, with distinct spatial ranges
and, in some cases, presenting oscillatory behavior [24–27].
Previous works have investigated the influence of the shape of
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dipole function on the dissociation dynamics and have found
that it greatly impacts the dissociation probability [28,29].
However, the effects of the dipole function on the surviving
tori have not been considered yet.

The classical free Morse oscillator has two distinct kinds
of motions: bound motion (libration) in a finite low-energy
range and unbound motion from an energy threshold up to
infinity. This energy threshold corresponds to a separatrix of
the two kinds of motion. The dipole coupling with an external
single-frequency field may induce transitions between these
two energy regions. A change in the dynamics from local
chaos and quasiperiodicity to global chaos takes place as the
intensity of the field increases. As a result, the trajectories can
diffuse toward dissociation as the last bounding torus is bro-
ken [6,7]. An alternative to this single-frequency scheme for
achieving dissociation is the use of chirped pulses: The initial
trajectories are trapped in resonant-stability regions in phase
space which can be dragged upward in energy by adiabatically
chirping the field frequency [30,31]. Additionally, a method
for population transfer in diatomic molecules by means of
adiabatic rapid passage has also been considered [32,33].
Moreover, there is still other technique for controlling molec-
ular systems not involving lasers in which an applied external
electric field is made to vary at specific rates in order to make
a desired transition [34].

It has been recently proposed a scheme to control photodis-
sociation on the driven Morse model based on the existence of
surviving tori, which cross the separatrix of motion [35]. It has
been shown that there exist such invariant tori in the presence
of intense and high-frequency fields. The trajectories trapped
on such tori do not dissociate, although they reach energies
above the dissociation threshold. Thus, by placing the initial
trajectories on such tori the dissociation is inhibited.

In the present work, we consider nonlinear dynamics of a
diatomic molecule under the presence of a harmonic laser field
in the framework of the driven Morse oscillator. Extending
the results of Ref. [35], we investigate the impact of the
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dipole function and of the external field parameters on the
deformations of the surviving tori. Based on the existence
of surviving tori which cross the separatrix of motion, we
propose the use of laser pulses to induce dissociation of
trajectories on such tori. To our knowledge, this dissociation
mechanism has not been explored yet.

The paper is organized as follows: In Sec. II, a general
treatment for the deformation of the surviving tori under
external fields is presented. In this section, some results are
obtained from perturbation theory, which help to understand
the role of the diverse parameters of the interaction Hamil-
tonian in the tori deformations. In Sec. III, we consider the
deformations of the surviving tori for the Morse oscillator,
presenting numerical results obtained from directly solving
the equations of motion. Section IV is devoted to show
how external pulses can be devised to induced dissociation
through nonchaotic routes. Finally, conclusions are drawn
in Sec. V.

II. DEFORMATION OF SURVIVING TORI

Consider a one-dimensional system with Hamiltonian
H0(x, p), which may represent a free atom or molecule.
Consider also that the coupling of the system with an exter-
nal field is given by the interaction Hamiltonian H1(x, t ) =
−μ(x)E (t ), with μ(x) representing the dipole function of the
system and an applied time-dependent external field E (t ). In
action-angle variables (J, θ ), the total Hamiltonian can be
written as

H (J, θ, t ) = H0(J ) + H1(J, θ, t ). (1)

For H0 alone, the system is integrable and we have J = J0,
θ = ωt + θ0, and ω(J ) = ∂H0

∂J , with J0, ω, and θ0 independent
of time.

We assume further that the field is given by E (t ) =
ε sin(�t ) and that the dipole can be written in a Fourier series
in the angle variable such that the interaction Hamiltonian
reads

H1(J, θ ) = −ε

∞∑
n=0

[ fn(J ) cos(nθ ) + gn(J ) sin(nθ )] sin(�t ),

(2)

where the Fourier components are given by

f0(J ) = 1

2π

∫ 2π

0
μ(J, θ )dθ, (3)

fn(J ) = 1

π

∫ 2π

0
μ(J, θ ) cos(nθ )dθ, (4)

gn(J ) = 1

π

∫ 2π

0
μ(J, θ ) sin(nθ )dθ, (5)

with g0(J ) ≡ 0.
From the KAM theorem, it is known that in the presence of

the perturbation H1, invariant surfaces may continue to exist
for some initial conditions. Let us assume that a surviving
torus exists, such that the original Hamiltonian H (θ, J, t ) can
be locally transformed to a new Hamiltonian H̄ (J̄ ), which is a
function of the new action J̄ only. The corresponding canon-
ical transformation implies that we can relate the old action

with the new action-angle variables, that is, J = J (J̄, θ̄ , t ),
which can be written as

J = J̄ + δ(J̄, θ̄ , t ), (6)

where δ is the term associated to the deviation from the
original torus, which we call deformation parameter.

We may further restrict to a Poincaré section with t =
2πk/� (k integer), eliminating the time in the previous ex-
pression and writing

JPS = J̄ + δPS(J̄, θ̄ ), (7)

where the label PS refers to the values of the original action
variable and deformation parameter in the Poincaré surface-
of-section. Since a certain range in the old action J corre-
sponds to a constant J̄ , the surviving torus covers a range
in the energy of the unperturbed system H0(J ). The excur-
sion in energy in a surface-of-section of a given deformed
torus can be defined as the difference between the maximum
and minimum values of the unperturbed energy H0 in that
surface, i.e.,

	E = max{H0(JPS)} − min{H0(JPS)}, (8)

where JPS is calculated for a fixed J̄ from Eq. (7). In Ref. [35]
the quantity 	E is referred to as the energy inclination.

We note that the maximum and minimum values of H0 as
well as the corresponding energy inclination are of paramount
importance for our controlling method of energy transitions,
in particular dissociation, which is explored in Sec. IV. For
a given set of external field parameters and a given dipole
function, these quantities furnish the energy range covered by
a deformed torus, and, as we shall see, transitions between
two energies within this range can be induced by means of
appropriately designed pulses.

In order to access the dependence of the deformation
on the interaction Hamiltonian parameters, we have applied
the canonical perturbation theory [36]. In order to avoid the
small denominators, we assume that the field is off-resonance,
meaning that the value of the initial action variable is suffi-
ciently far from any nonlinear resonance nω(J res

n ) − � = 0,
with n being an integer J res

n being the corresponding resonant
value of the action. To first order on the field amplitude ε we
have obtained

δPS(J̄, θ̄ ) ≈ ε

∞∑
n=0

[−λn(�, J̄ ) sin(nθ̄ ) + σn(�, J̄ ) cos(nθ̄ )],

(9)

with

λn(�, J̄ ) = n fn(J̄ )�

�2 − n2ω(J̄ )2
, (10)

σn(�, J̄ ) = ngn(J̄ )�

�2 − n2ω(J̄ )2
. (11)

Equations (10) and (11) show that for fixed amplitude of
the external field, increasing values of the frequency of the
external field tend to decrease the deformation of the tori and,
consequently, decrease the energy inclination. Thus, regular-
ization of the phase space with respect to tori deformation
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is expected in the high-frequency regime. For very high-
frequency fields, the deformation parameter depends essen-
tially on the amplitude-frequency ratio ε/� and on the Fourier
expansion of the interaction Hamiltonian. Consequently, sur-
viving tori with large deformations may exist for intense and
high-frequency fields. Moreover, if the unperturbed frequency
ω(J ) is a decreasing function of the action, in the high-
frequency regime, � > ω(J ), then the resonance condition
will only be met for large values of n. Usually | fn(J )| and
|gn(J )| decrease with n, and, consequently, nonlinear reso-
nances can be easily avoided. This situation should hold for
systems such as the one-dimensional hydrogen atom and the
Morse oscillator [37]. We note further that the dependence of
the deformation with the dipole function occurs through the
Fourier components fn(J̄ ) and gn(J̄ ).

III. THE DRIVEN MORSE OSCILLATOR

Consider the Hamiltonian of the driven Morse oscilla-
tor given by H0, representing the molecular Hamiltonian in
the absence of external fields and by H1 representing the
field-molecule interaction [35]. The Hamiltonian H0 can be
written as

H0 = p2

2
+ 1

2
(e−2x − 2e−x ), (12)

For convenience, dimensionless variable are considered here.
The connection with molecular parameters can be found, e.g.,
in Ref. [28]. The energy range for bound motion (libration)
is −0.5 < E < 0, and unbound motion is set for positive
energies E > 0, with a separatrix at E = 0.

As in the previous section, the interaction of the oscillator
with a harmonic field is given by

H1 = −μ(x)E (t ) = −μ(x)ε sin �t, (13)

with μ(x) being the dipole function. We consider a dipole
function depending on three parameters, ξ , η, and xe,

μ(x, ξ , η) = sin[η(x + xe)]

η
exp[−ξ (x + xe)4], (14)

where η sets the oscillatory behavior, ξ sets the spatial range,
and xe sets an overall displacement of the dipole. For η → 0,
ξ = 0.0029, and xe = 2.135 the dipole corresponds to that of
the HF molecule [38]. The shape of the permanent dipole of
many diatomic molecules can be approximated by adjusting
these parameters [25]. Here, we will focus on the η and ξ

parameters, setting xe = 2.135.
In action-angle variables (J, θ ) the total Hamiltonian for

E < 0 becomes [7,39]

H = H0(J ) − εμ(x(J, θ ), ξ , η) sin(�t ), (15)

where

H0(J ) = − 1
2 (1 − J )2 (16)

and [7]

x(J, θ ) = ln

[
1 + √

2J − J2 cos θ

(1 − J )2

]
. (17)

The action for bound motion corresponds to the interval
0 � J < 1 and the unperturbed frequencies are given by

ω(J ) = 1 − J . Note that H0(J ) is a monotonically increasing
function of J in the bound region. The deformation param-
eter to first order in ε is given by Eq. (9) setting the σn

terms to zero (since the dipole is an even function of θ ).
All the results presented in the subsequent figures were
obtained by direct numerical integration of the equations
of motion.

Figure 1 shows the energy inclination 	E and the maxi-
mum value of H0 as a function of the dipole range parameter ξ

in the Poincaré section defined by t = 2πk/� (k integer). The
energy of the initial conditions was set to E = −0.162 (cor-
responding to the ν = 9 level of HF) and the angle variable
was set to θ = 0. Figure 1(a) shows that the energy inclination
decreases for increasing frequency (fixed amplitude ε = 1.6),
while Fig. 1(c) shows that the inclination increases for larger
amplitudes (fixed frequency � = 9). The blue, red, and black
curves on these panels have the same ε/� ratio and show
the agreement with the perturbative analyses of Sec. II. The
behavior of the inclination with the dipole range parameter
ξ is quite interesting: It presents a minimum close to ξ =
0.009, the inclination being large either for long-range dipoles
ξ → 0 and for short-range dipole, e.g., ξ = 0.04. Figures 1(b)
and 1(d) show that the invariant tori can reach energies above
the separatrix of the free motion H0 = 0 for some value of ξ ,
especially in the case of high ε-� ratio.

As in the previous figure, Fig. 2 shows the energy in-
clination 	E and the maximum value of H0 but now as a
function of the dipole oscillation parameter η in the Poincaré
section defined by t = 2πk/� (k integer). The dependence
of the energy inclination on the field parameters is essen-
tially the same obtained in Fig. 1, whereas the behavior of
the inclination with the dipole parameter η is oscillatory.
Interestingly, the inclination is quite large for a highly os-
cillatory dipole, e.g., for η = 3.25, although the magnitude
of such dipole is comparatively smaller than for η = 0 [see
Eq. (14)]. Again, Figs. 1(b) and 1(d) show that the invariant
tori can reach energies above the separatrix of the free motion
H0 = 0 for some value of η, especially in the case of high
ε-� ratio.

Figure 3 compares the behavior of the energy inclination
as a function of the dipole parameters for three distinct initial
energies. Figure 3(a) shows the inclination versus ξ , while
Fig. 3(b) shows the inclination versus η. Two main aspects
can be noted: (i) increasing the initial energy leads to a in-
creasing of the energy inclinations and (ii) changing the dipole
parameter leads to a small shift of the energy inclination
curves.

Figure 4 shows the stroboscopic map (red dots) for a set
of trajectories with initial energy corresponding to the ν = 9
level of HF and initial angle variable θ distributed in the inter-
val [−π/4, 0]. The dipole parameter were set to represent the
HF dipole, η = 0 and ξ = 0.0029, while the field parameters
are ε = 3 and � = 8. The unperturbed tori corresponding to
the ν = 4 and the ν = 9 energy levels of HF, as well as the
separatrix, are shown in dotted lines. We note that in the
presence of the field, the deformed tori couples several energy
levels with energies beyond that of the separatrix. Therefore,
by suitably adjusting the duration of the field, trajectories can
be lead to dissociation on such surviving tori. We tackle this
problem in the following section.
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FIG. 1. (a) Energy inclination 	E and (b) maximum value of H0 in the Poincaré surface of section as a function of the dipole range
parameter ξ for ε = 1.6. (c) Energy inclination 	E and (d) maximum value of H0 in the Poincaré surface of section as a function of the dipole
range parameter ξ for � = 9. In all panels the initial energies were set to −0.162, which corresponds to the energy of the ν = 9 vibrational
level of the HF molecule and η = 0.

IV. PULSE-DRIVEN NONCHAOTIC DISSOCIATION

In order to design a field to perform the dissociation, we
choose a laser pulse of the form

E (t ) = S(t )ε sin(�t ), (18)

where S(t ) is a square envelope function,

S(t ) =
{

1, 0 < t < tp

0, otherwise . (19)
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FIG. 2. (a) Energy inclination 	E and (b) maximum value of H0 in the Poincaré surface of section as a function of the dipole oscillation
parameter η for ε = 1.6. (c) Energy inclination 	E and (d) maximum value of H0 in the Poincaré surface of section as a function of the dipole
oscillation parameter η for � = 9. In all panels the initial energies were set to −0.162, which corresponds to the energy of the ν = 9 vibrational
level of the HF molecule and ξ = 0.0029.
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FIG. 3. Energy inclination 	E as a function of (a) ξ and (b) η for initial energies: −0.477 (ν = 0), −0.317 (ν = 4), and −0.138 (ν = 10)
and for field parameters: ε = 1.44 and � = 9.

The idea for performing a nonchaotic energy transition is the
following: Consider that the initial conditions are placed in
some lower energy region of a deformed torus. If the field
is turned on at t = 0, then the trajectories will move on that
torus, eventually raising their energy until they reach the
higher energy region of the torus. At this moment, if the field
is turned off, then the trajectories will remain with the higher
energy. In particular, if the torus had crossed the separatrix of
motion, then the trajectories will be dissociated.

The analysis of the energy inclinations and the correspond-
ing maximum values of H0 allows to select the possible values
of frequency and amplitude of the field needed to perform the
dissociation. For fixed field parameters, the energy inclination
represents the possible gap in energy that a trajectory in the
deformed torus can transverse. Once selected, the amplitude
and the frequency, analyses of the torus deformation will
give information about how the initial conditions should be
distributed. Finally, it remains to set the duration of the
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 1
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Level =9Level =4
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x

FIG. 4. Stroboscopic map for trajectories initially at the ν = 9 level of HF and with initial angle variable θ ∈ [−π/4, 0] (red dots). The
field parameters are ε = 3 and � = 8. The dipole parameters correspond to the HF molecule. The black dotted curves indicate the energy
levels ν = 4 and ν = 9 and also the separatrix of motion in the absence of the field.
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FIG. 5. Molecular Hamiltonian H0 as a function of time for ε =
3 and � = 8. (a) Initial condition corresponding to the ν = 9 level of
HF and θ = 0. (b) Initial condition corresponding to the ν = 4 level
and θ = 1.2π .

external pulse, tp. Direct calculation of H0(J ) as a function of
time provides the information about the pulse duration. In he
following, we illustrate this methodology for the nonchaotic
dissociation of the HF molecule.

Figure 5 shows the energy H0 as a function of time for field
parameters ε = 3 and � = 8 and for the dipole parameters of
the HF molecule. In Fig. 5(a) the initial condition is set to
the energy of the ν = 9 level, while in Fig. 5(b) to the energy
of the ν = 4 level. The dotted lines indicate the energy levels
and the dissociation threshold. Based on these panels, we can
choose the appropriate duration of the pulses to perform the
dissociation from the desired energy level.

Figure 6 illustrates the dissociation through deformed
tori by showing the stroboscopic map for two sets of 100
trajectories. In both panels the field parameters are ε = 3
and � = 8 and the dipole parameters at those of the HF
molecule. In Fig. 6(a) the trajectories are initially in the
ν = 9 torus distributed uniformly with initial angle variable
θ ∈ [−π/4, π/4] (blue dots). At t = 0 the field is turned
on, and at tp = 3.14 the field is turned off. In Fig. 6(b),
trajectories are initially in the ν = 4 torus distributed with
initial angle variable θ ∈ [π, 1.35π ] (blue dots). At t = 0 the
field is turned on and at tp = 0.39 the field is turned off. Each
panel shows the stroboscopic map for 10 periods of oscillation
of the external field (the trajectories are taken at the times
t = 2πk/�, with k = 0, . . . , 10). In case (a), the dissociation
of all trajectories occurs in about four periods of the external
field and in case (b) in about half of one period of the external
field. In both cases the dissociation is carried out in a very
regular fashion.
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FIG. 6. (a) Stroboscopic map for an external pulse with tp = 3.14
and for trajectories initially at the ν = 9 level of HF and with initial
angle variable θ ∈ [−π/4, π/4]. (b) Stroboscopic map for a external
pulse with tp = 0.39 and for trajectories initially at the ν = 4 level
of HF and with initial angle variable θ ∈ [π, 1.35π ]. In both panels,
the field parameters are ε = 3 and � = 8, the initial conditions are
given by the blue points, and the trajectories at t = 10 periods of
the external field are given by the red points (rightmost set of points
above the separatrix).

We have also considered another envelope function for the
external pulse in our calculations [31],

S′(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin2
(

πt
2tr

)
, 0 < t < tr

1 tr < t < tp − tr
cos2

[
π (t−tp+tr )

2tr

]
tp − tr < t < tp

0, otherwise

, (20)

which ensures a smooth switch-on and switch-off of the pulse,
with tr being the rise-fall time of the pulse. We have obtained
quite similar results with this envelope function, so these
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results are not shown here. For example, using the same
parameters of Fig. 6(a) of Fig. 6, the dynamics is essentially
indistinguishable for tr < 0.1. For increasing values of tr ,
some trajectories become trapped in less energetic tori located
in the bound region of the potential, leading to a decreasing
number of dissociated trajectories. For tr = 0.2, about 65% of
the trajectories are dissociated. However, this can be compen-
sated by increasing the field amplitude, e.g., setting ε = 4 and
tr = 0.2, we again obtain a dissociation dynamics very close
to that of the square pulse. Therefore, we have concluded that
the technique can also be applied with alternatives envelope
functions.

Finally, we discuss some practical aspects concerning
the parameters used in our calculations (see Ref. [28]
for the conversion factors). The field peak intensities con-
sidered here are of the order of 1015 W/cm2, while the fre-
quencies are in the range of few hundreds of nanometers (in
the near ultraviolet range). This intensity is comparable to the
ones considered in works which used monochromatic subpi-
cosecond pulses and can be achieved in the laboratory [15,40],
but it is two orders of magnitude larger than works that
consider dissociation by means of chirped pulses [18,41].
The pulse durations considered in Figs. 6(a) and 6(b) are
tp = 3.14 (≈7 fs) and tp = 0.39 (≈ 0.9 fs), respectively. Such
ultrashort pulse, especially the subfemtosecond pulse, may be
difficult to implement in practice [42]. However, this does not
present a difficulty to our method since, instead of turning the
field off at tp = 0.9 fs, we could have left the trajectories in
the deformed tori for longer times and still achieve nonchaotic
dissociation. For instance, as can be seen in Fig. 5(b), we
could have chosen tp = 12.17 (≈27 fs), instead of tp = 0.39,
and still obtain similar results to those of Fig. 6(b).

V. CONCLUSIONS

In this work, we have investigated the deformations of
surviving tori of the driven Morse oscillator as a function of
the parameters of a harmonic laser field and dipole function.
The main features of the dependence of the deformation on the
amplitude and frequency of the field were captured by a for-
mula obtained from perturbation theory and confirmed by nu-
merical calculations: The deformation is large for increasing

amplitude-frequency ratio. Additionally, surviving tori can
be found more easily in the high-frequency regime, where the
off-resonance condition is usually met and the chaotic regime
can be avoided.

Apart from the field parameters, the deformation of a
surviving torus depends also crucially on the initial energy
and on the dipole parameters. For a given initial energy, the
deformation presents a minimum at some given dipole range,
whereas it can present relatively large values either for short-
and long-range dipoles. The oscillatory character of the dipole
also have an enormous influence on the deformations, with
highly oscillatory dipoles presenting large deformations, even
when the amplitude of the dipole is relatively small. These
distinct behavior of the energy inclination with the range
parameter and dipole oscillation parameter can be attributed
to the coupling of the dipole with the unperturbed system
expressed through the Fourier series expansion of the dipole
in the angle variable of the system. Thus, changing a certain
dipole parameter will affect the Fourier components and con-
sequently the energy inclination.

From these results, we can conclude that, in the regime
of high frequency and large field amplitudes, there exist
deformed tori for a large set of dipole parameters which cross
the separatrix of motion, allowing for the coupling between
bound states with unbound states. In view of this fact, we
have proposed the use of an appropriately designed laser pulse
to perform the dissociation of trajectories on such surviving
tori. We have illustrated the mechanism using the parame-
ters of the HF molecule. We hope this work can stimulate
investigations of the applicability of the proposed mechanism
on related systems, such as the hydrogen atom and triatomic
molecules [43,44].
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