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Positive and negative couplings perform complementary roles in the signal amplification of globally
coupled bistable oscillators
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We investigate a system of globally coupled bistable oscillators subjected to a common weak signal, where the
couplings are oscillator dependent with random signs: positive or negative. We find that neither purely positive
nor purely negative couplings are optimal for signal amplification of the system; a mixture of both positive
and negative couplings is more beneficial for the signal amplification. Our numerical results further show that
different from the fully synchronous state caused by purely positive couplings or asynchronous state caused by
purely negative couplings, the mixed positive and negative couplings can generate a clustering synchronous state,
which allows the system to generate a resonancelike response to the weak signal, and thus, amplifies the signal.
We finally propose a reduced model to analyze the mechanism underlying this resonancelike behavior, and find
a complementary effect of these two types of couplings in signal amplification.
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I. INTRODUCTION

Understanding the collective response of nonlinear systems
consisting of large numbers of coupled oscillators to external
weak inputs is of great interest in science and technology
[1–6]. Since natural systems are undeniably subject to noisy
fluctuations, large efforts have been made to understand
the role of randomness in weak signal amplification [7,8].
Stochastic resonance (SR) is a classic example of nontrivial
effect of randomness on signal amplification, wherein the
response of a nonlinear system to a weak signal is significantly
increased by the presence of a particular level of noise [9,10].
Moreover, the SR effect can be optimized by an intermedi-
ate number of interacting units, i.e., system size resonance
[11–13].

Another typical example of the randomness-enhanced sig-
nal amplification is diversity-induced resonance [14–17]. Dif-
ferent from external noise, diversity denotes the statically
stochastic differences among the units of the systems, which
comes from the intrinsic different properties for each unit
[8,18]. Similar to noise, diversity can induce a resonant collec-
tive response in an ensemble of coupled bistable or excitable
units [14]. Besides the diversity of the units, systems’ random-
ness can be from the heterogeneity in their coupling strength
and interaction network topologies [19–23], and the random-
ness also affects the performance of signal amplification. For
instance, in contrast to regular arrays, complex topologies
such as small-world and scale-free networks may generate
a stronger SR effect [24–27]. Owing to weighted couplings,
ensembles of bistable oscillators can display a higher response
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to a weak external signal, compared to that of the unweighted
counterparts [28–31].

In the majority of studies on signal amplification, the
couplings among units are set to be positive (excitatory).
However, negative (inhibitory) couplings are very common
in biological systems [32–38]. For example, in small-scale
brain areas suffering from incurable epilepsy, the interac-
tion between neighboring astrocytes is phase repulsive and
is stronger than that of the normal astrocyte cultures [39].
In large-scale brain networks, there are two types of neu-
rons, excitatory and inhibitory, and an approximate ratio of
70% excitatory and 30% inhibitory neurons is crucial for
healthy brain activity [40]. Moreover, the competition be-
tween positive and negative couplings plays an important
role in cognitive function [40,41]. Thus, it is interesting to
investigate the role of randomness of coupling types on signal
amplification.

In the present work, motivated by neural networks with
excitatory and inhibitory neurons, we study a system of glob-
ally coupled bistable oscillators subjected to a common weak
signal, where the couplings are oscillator dependent with ran-
dom signs: positive or negative. The bistable oscillators with
positive couplings can be considered as “excitatory neurons”
as in neural networks, which tend to fall in line with other
units. While the bistable oscillators with negative couplings
are “inhibitory neurons,” which tend to repel the other units.
Compared with the conventionally purely positive or negative
coupled systems, we find that our system with mixed positive
and negative couplings can show a larger signal amplification.
Moreover, we find that the coupling strength as well as the
ratio between the two types of couplings jointly adjust the
enhancement of signal amplification. Further, we use a re-
duced model to reveal the cooperation between the two types
of couplings in signal amplification.
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II. MODEL

We consider a system of globally coupled bistable oscilla-
tors; the dynamics are governed by

ẋi = xi − x3
i + ki

N

N∑
j=1

(x j − xi ) + A sin(ωt ), i = 1, . . . , N,

(1)
where ki can be positive or negative representing the coupling
strength of the ith oscillator. ki > 0 means the ith oscilla-
tor tends to follow other oscillators which promotes global
synchrony, while oscillators with ki < 0 tend to repel the
others which suppress the global synchrony. Specifically, we
randomly assign the value of ki with

ki =
{−K, with probability p,

K, with probability 1 − p,

where K � 0. The couplings are purely positive when p =
0, while for p = 1 the couplings are purely negative. Thus,
the intermediate values of p correspond to the case of mixed
positive and negative couplings.

A sin(ωt ) denotes the external signal with amplitude A and
frequency ω. For an isolated bistable oscillator, i.e., ki = 0, the
threshold for the amplitude of the external signal to generate
an amplified output signal is Ac = 2/

√
27 ≈ 0.38 [9]. For a

weak external signal with A < Ac, the bistable oscillator will
jiggle around one of its two stable fixed points xs = ±1; while
for a strong external signal with A > Ac, the bistable oscillator
can jump between the two stable fixed points with a large
amplitude. In our simulation, we consider a weak external
signal by setting ω = π/50 and A = 0.2.

A convenient way to measure the system’s response to
the external signal is to use the signal amplification factor G
defined as [26]

G = maxt X (t ) − mint X (t )

2A
, (2)

where X (t ) = N−1 ∑N
i=1 xi(t ) stands for the average activity

of the system. When the oscillators behave disordered, X (t )
fluctuates with small amplitudes leading to a small G. Instead,
G is large when the oscillators behave coherently with large
amplitudes. In our numerical simulations, we consider N =
1000 bistable oscillators in system (1) and randomly choose
their initial conditions from the two fixed points xs = ±1.
Moreover, we calculate the averaged amplification 〈G〉 over
1000 realization with different initial conditions.

III. NUMERICAL RESULTS

We start from the case of purely positive coupling, i.e., p =
0. We find that the average amplification 〈G〉 keeps increasing
with K until a critical value of K1 = 0.24, and then drops
discontinuously to the value as at K = 0 forming a coupling-
induced resonance [see Fig. 1(a)]. Time series of oscillators
show that for K < K1 the system splits into two oscillation
clusters centered around xs = ±1 separately [see Fig. 1(b)],
while for K > K1 the system forms a fully synchronous
cluster behaving like a single oscillator as for K = 0 [see
Fig. 1(c)], and this transition from cluster synchronization to
full synchronization leads to the observed coupling-induced

FIG. 1. (a) Average amplification 〈G〉 of Eq. (1) versus K for p =
0 and 1. Solid lines denote the theoretical results of Eqs. (11), (19),
and (43). Time series of Eq. (1) with p = 0 and K = 0.2 in (b), p = 0
and K = 0.4 in (c), and p = 1 and K = 0.2 in (d).

resonance. In the case of purely negative couplings, i.e., p =
1, the average amplification 〈G〉 decreases monotonously with
increase of K , showing a damped response [see Fig. 1(a)].
Time series of oscillators show that two oscillation clusters
keep away from each other [see Fig. 1(d)], leading to the
decline in the response. These two distinct responses indi-
cate that intermediate degrees of synchronization with small
positive couplings may promote the signal amplification; in
contrast, neither full synchronization with large positive cou-
plings nor desynchronization with purely negative couplings
is beneficial for amplifying a weak external signal.

Next, we turn to the case of mixed positive and negative
couplings, i.e., 0 < p < 1. We find that for a small p, e.g., p =
0.3, the average amplification 〈G〉 exhibits a double resonance
with two peaks at K1 = 0.24 and K2 = 1.4 [see Fig. 2(a)].
As p increases to p = 0.5, the two resonance peaks decrease

FIG. 2. (a) Average amplification 〈G〉 of Eq. (1) versus K for p =
0.3, 0.5, and 0.8. Sold lines denote the theoretical results of Eq. (43).
Time series of Eq. (1) for p = 0.3 with (b) K = 0.2, (c) K = 0.4, and
(d) K = 1.4.
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FIG. 3. (a) Average amplification 〈G〉 of Eq. (1) versus p for K =
0.5, 1, and 2. Solid lines denote the theoretical results of Eq. (43).
(b) The dependence of 〈G〉 on both the K and p. Dashed lines denote
the theoretical results of Eqs. (31) and (36).

their heights, where K1 corresponding to the first peak stays
unchanged while K2 corresponding to the second peak shifts
towards K1. With further increase of p, e.g., p = 0.8, the first
peak at K1 disappears leaving only the second peak with a
small height at K2 = 0.5. Compared to the cases of purely
positive and purely negative couplings, a mixture of both types
of couplings shows an advantage in amplifying weak signals
with a much higher amplification factor 〈G〉, especially for
relatively smaller p. To understand the occurrence of observed
double resonance, we show the time series of Eq. (1) at p =
0.3 for three different K in Figs. 2(b)–2(d). For a small K =
0.2 below K1, the system exhibits four oscillation clusters
resembling the superposition of the states of p = 0 and p = 1
[see Fig. 2(b)]. For an intermediate K = 0.4 in between the
two resonance peaks, the two clusters in the middle merge into
one cluster similar to the case of p = 0 [see Fig. 2(c)]. While
for a large K = 1.4 above the second resonance peak, the
middle cluster oscillates with a large amplitude between the
other two clusters [see Fig. 2(d)]. These observations indicate
that three oscillation clusters induced by the mixed two types
of couplings is the origin of the secondary resonance at K2,
which leads to the enhancement of signal amplification.

In Fig. 3(a), we show the average amplification 〈G〉 varies
with the probability p for different K . Compared to the
cases of p = 0 and p = 1, a mixture of positive and nega-
tive couplings, i.e., 0 < p < 1, can significantly amplify the
weak signal exhibiting a resonant dependence on p. With
K increases the resonance effect becomes more and more
pronounced, while the optimal p for the resonance peak
decreases. Figure 3(b) further shows the average amplification
〈G〉 on the (K, p) plane. The amplified signal response can be
observed in two regions: region I and region II corresponding
to the two resonance phenomena in Fig. 2(a), respectively. In
contrast, region II has a larger space and higher response than
that of region I. Moreover, p and K for the boundary of region
II approximately follows p ∝ K−1 meaning that for a large

coupling strength K , only a small probability p is needed to
optimize the system’s ability for signal amplification.

IV. ANALYTICAL RESULTS

According to numerical results shown in Fig. 1, purely
repulsive couplings cannot amplify weak signals, and purely
positive couplings can enhance signal amplification only for
small coupling strength. Interestingly, a mixture of both posi-
tive and negative couplings can eliminate the disadvantageous
effects of these two pure couplings, and improve the system’s
ability to amplify the weak external signal [see Fig. 2]. One
hypothesis for the underlying mechanism of this observation
is the existence of the following process: (i) The oscillators
with negative couplings split into two clusters fluctuating
around two stable fixed points xs = ±1 separately due to their
repulsive interactions; (ii) oscillators with positive couplings
form the third cluster tending to merge with the other clusters
due to its attractive interaction; (iii) when the third cluster with
positive couplings approaches one of the repulsive clusters,
the attraction between them becomes weaker because of the
decrease in coupling effect ki(x j − xi ) [defined in Eq. (1)];
(iv) meanwhile the attraction between the attractive cluster
with the other repulsive cluster (which is far away) becomes
stronger and turns the attractive cluster back; (v) the repeated
cycle of (iii) and (iv) makes the attractive cluster oscillate
between the two repulsive clusters with a large amplitude.
This process describes the complementary roles of the positive
and negative couplings in signal amplification. To test this
hypothesis, we analyze the different coupling cases of our
simulation.

A. Case I: p = 0

For purely positive couplings, the oscillators spontaneously
split into two clusters according to their two different initial
conditions. For simplicity, we assume the two clusters to be of
the same size, i.e., half of the oscillators with positive initial
conditions (xi(0) = 1) belonging to cluster A, and the other
half with negative initial conditions (xi(0) = −1) belonging
to cluster B. Due to the same initial conditions, the oscillators
within each cluster behave identically. Defining y1 and y2 as
the collective dynamics of cluster A and cluster B, Eq. (1) can
be simplified into a two-oscillator system as

ẏ1 = y1 − y3
1 + K

2
(y2 − y1) + A sin(ωt ),

ẏ2 = y2 − y3
2 + K

2
(y1 − y2) + A sin(ωt ).

(3)

Introducing Y = (y1 + y2)/2 and Z = (y1 − y2)/2 as the av-
erage activity and synchronization error of the two clusters,
respectively, Eq. (3) can be further rewritten as

Ẏ = (1 − 3Z2)Y − Y 3 + A sin(ωt ), (4)

Ż = (1 − K − 3Y 2)Z − Z3. (5)

Assuming Z relaxes much more rapidly than Y , one can
perform an adiabatic elimination, i.e., Ż = 0. From Eq. (5),
we obtain Z2 = 1 − K − 3Y 2 and Z = 0, which correspond to

022205-3



XIAOMING LIANG, CONG LIU, AND XIYUN ZHANG PHYSICAL REVIEW E 101, 022205 (2020)

FIG. 4. (Upper panels) The potential of Eq. (7) for (a) K = 0 and
(b) K = 0.24. (Middle panels) The potential of Eq. (17) for (c) K = 0
and (d) K = 0.4. (Lower panels) The potential of Eq. (30) for (e)
K = 0.24 and of Eq. (35) for (f) K = 0.95. Solid and dashed lines
denote the potential at t = 0 and t = π/2ω, respectively.

desynchronization and full synchronization between cluster A
and cluster B, respectively.

Considering the two clusters are out of synchronization,
i.e., Z2 = 1 − K − 3Y 2, Eq. (4) becomes

Ẏ = (−2 + 3K )Y + 8Y 3 + A sin(ωt ), (6)

which describes the overdamped motion of a particle in a
coupling-dependent potential with a periodic force. Adding
the signal to the potential, we get

V = (2 − 3K )

2
Y 2 − 2Y 4 − YA sin(ωt ). (7)

Since the signal amplitude A is fixed, the modulation of
coupling strength K becomes important to the potential V .
Figure 4 illustrates the dependence of V on K . For K = 0, the
potential V is M shaped with a single well and two barriers
on the sides. As t evolves, the two barriers periodically rise
and fall but maintaining the well [see Fig. 4(a)]. In this case
the particle cannot pass over the barriers if it is initially
in the potential well. With K increases, e.g., K = 0.24, the
potential barriers vanish when the external signal arrives at
its maximum or minimum, and the particle can pass over the
barriers [see Fig. 4(b)]. For K > 0.24 the external signal is
suprathreshold which can force the particle out of the potential
well, and thus, K1 = 0.24 is the critical coupling strength.

Since the external signal is subthreshold when K < K1, one
can solve Eq. (6) by linearization. The approximate solution
is obtained as

Y (t ) ≈ A√
(2 − 3K )2 + ω2

sin(ωt + φ1), (8)

where φ1 is phase shift.
When K > K1, the external signal is suprathreshold, which

drives the two clusters into full synchronization, i.e., Z = 0.
Then Eq. (4) becomes

Ẏ = Y − Y 3 + A sin(ωt ), (9)

which is the isolated bistable oscillator subjected to a sub-
threshold signal, i.e., Eq. (1) at K = 0. Its solution is approx-
imately given by

Y (t ) ≈ ±1 + A√
4 + ω2

sin(ωt + φ2), (10)

where φ2 represents phase shift.
Inserting Eqs. (8) and (10) into Eq. (2), we obtain the

theoretical amplification as

G ≈
{ 1√

(2−3K )2+ω2
, if K < K1,

1√
4+ω2 , if K > K1.

(11)

Equation (11) suggests that the system generates a maximum
amplification near the boundary of full synchronization at
K = K1. The predicted amplification of Eq. (11) is in good
agreement with the numerical result of Eq. (1) at p = 0 [see
Fig. 1(a)].

We now analyze the critical coupling strength K1 for full
synchronization. As shown in Fig. 4(b), the potential V loses
its stability at K = K1. This corresponds to the condition
that the cubic function (−2 + 3K )Y + 8Y 3 + A = 0 has three
roots with two equal, which results in(

A

16

)2

=
(

2 − 3K

24

)3

. (12)

For A = 0.2, the critical coupling strength is given by

Kc = 2
3 − (2A2)

1
3 ≈ 0.24, (13)

which is in good agreement with the numerical result K1 =
0.24.

B. Case II: p = 1

When p = 1, the oscillators also split into two clusters
at t = 0 according to their initial conditions. Different from
p = 0, with t evolving, the two clusters cannot synchronize,
but repel each other due to the purely negative couplings. Nev-
ertheless, the oscillators within each cluster behave identically
due to the same initial conditions. Using the same assumption
and definition as used in p = 0, we arrive at the following
equations:

Ẏ = (1 − 3Z2)Y − Y 3 + A sin(ωt ), (14)

Ż = (1 + K − 3Y 2)Z − Z3. (15)

Similarly, we assume Z relaxes more rapidly than Y and thus
can be adiabatically eliminated, i.e., Ż = 0. This leads to
Z2 = 1 + K − 3Y 2 and Z = 0. Since the two clusters are out
of synchronization at p = 1, we substitute Z2 = 1 + K − 3Y 2

into Eq. (14) and get

Ẏ = −(2 + 3K )Y + 8Y 3 + A sin(ωt ). (16)

Analogously, the potential of Eq. (16) can be expressed as

V = (2 + 3K )

2
Y 2 − 2Y 4 − YA sin(ωt ). (17)

Figures 4(c) and 4(d) show that the potential V of Eq. (17) is
M shaped and its potential well gets deeper with the increase
of K . As a result, the external signal remains subthreshold
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and the dynamic range of the particle within the potential well
becomes narrower when K increases. Using linearization, we
can obtain the approximate solution of Eq. (16), which is
given by

Y (t ) ≈ A√
(2 + 3K )2 + ω2

sin(ωt + φ3), (18)

where φ3 denotes the phase shift. Putting Eq. (18) into Eq. (2),
we obtain the theoretical amplification as

G ≈ 1√
(2 + 3K )2 + ω2

. (19)

Equation (19) suggests a damped amplification at p = 1,
which coincides with the numerical result of Eq. (1) [see
Fig. 1(a)].

C. Case III: 0 < p < 1

When 0 < p < 1, the oscillators are initially divided into
four clusters according to both the signs of the couplings
and the initial conditions. For simplicity, we assume that
pN/2 oscillators are with xi(0) = 1 and ki > 0 belonging to
cluster A, (1 − p)N/2 oscillators are with xi(0) = 1 and ki <

0 belonging to cluster B, pN/2 oscillators are with xi(0) = −1
and ki > 0 belonging to cluster C, and (1 − p)N/2 oscillators
are with xi(0) = −1 and ki < 0 belonging to cluster D. Let
y1, y2, y3, and y4 denote the collective dynamics of the four
clusters; then Eq. (1) reduces to a four-oscillator system as

ẏ1 =
[

1 − K (1 + p)

2

]
y1 − y3

1

+ K

[
p

2
y2 + 1 − p

2
y3 + p

2
y4

]
+ A sin(ωt ),

ẏ2 =
[

1 − K (p − 2)

2

]
y2 − y3

2

− K

[
1 − p

2
y1 + 1 − p

2
y3 + p

2
y4

]
+ A sin(ωt ), (20)

ẏ3 =
[

1 − K (1 + p)

2

]
y3 − y3

3

+ K

[
1 − p

2
y1 + p

2
y2 + p

2
y4

]
+ A sin(ωt ),

ẏ4 =
[

1 − K (p − 2)

2

]
y4 − y3

4

− K

[
1 − p

2
y1 + p

2
y2 + 1 − p

2
y3

]
+ A sin(ωt ).

Considering cluster A and cluster C have purely positive
couplings, we define Y = (y1 + y3)/2 and Z = (y1 − y3)/2 as
their average activity and synchronization error. Similarly, we
define U = (y2 + y4)/2 and W = (y2 − y4)/2 as the average
dynamics and synchronization error of cluster B and cluster D
which are with purely negative couplings. Thus, Eq. (20) can
be rewritten as

Ẏ = (1 − K p − 3Z2)Y − Y 3 + K pU + A sin(ωt ), (21)

Ż = (1 − K − 3Y 2)Z − Z3, (22)

U̇ = (1 − K p + K − 3W 2)U − U 3 − K (1 − p)Y

+ A sin(ωt ), (23)

Ẇ = (1 + K − 3U 2)W − W 3. (24)

Accordingly, the average activity of Eq. (1) is given by

X = (1 − p)Y + pU . (25)

To obtain the analytical Y and U , we assume that the
synchronization errors Z and W relax rapidly to their steady
values, and hence may be adiabatically eliminated, i.e.,
Ż = Ẇ = 0. When Ẇ = 0, Eq. (24) gives W = 0 or W 2 =
1 + K − 3U 2. Since the two negatively coupled clusters with
different initial conditions cannot achieve full synchroniza-
tion, we substitute W 2 = 1 + K − 3U 2 into Eq. (23), which
yields

U̇ = −αU + 8U 3 − K (1 − p)Y + A sin(ωt ), (26)

where α ≡ 2 + K p + 2K > 0. As the two clusters with neg-
ative couplings only fluctuate around the fixed points [see
Fig. 1(d)], we assume U̇ = 0 and neglect the high-order term
U 3 in Eq. (26). Then the approximate solution of U is obtained
as

U ≈ K (p − 1)

α
Y + A

α
sin(ωt ). (27)

Substituting Eq. (27) into Eq. (25) gives

X ≈ (α − pK )(1 − p)

α
Y + pA

α
sin(ωt ). (28)

When Ż = 0, Eq. (22) implies that Z2 = 1 − K − 3Y 2

and Z = 0, which correspond to desynchronization and full
synchronization between cluster A and cluster C, respec-
tively. For the desynchronization case, substituting Z2 =
1 − K − 3Y 2 and Eq. (27) into Eq. (21), we obtain

Ẏ ≈ −2β

α
Y + 8Y 3 + 2γ A

α
sin(ωt ), (29)

where β ≡ 2 + 2K p − K − 3K2 and γ ≡ 1 + K p + K > 0.
Similarly, the potential of Eq. (29) can be expressed as

V = β

α
Y 2 − 2Y 4 − 2γ AY

α
sin(ωt ). (30)

Figure 4(e) shows the potential V at p = 0.3 and K = 0.24.
When t = 0, V is M shaped with a single-well potential, and
the potential barriers vanish when the signal 2γ AY /α sin(ωt )
is at the maximum or minimum, e.g., t = π/2ω. Therefore,
Kc = 0.24 is the critical coupling strength beyond which the
signal 2γ AY /α sin(ωt ) is suprathreshold and cluster A and
cluster C attain full synchronization. According to Eq. (12),
this critical coupling strength satisfies

27αγ 2A2 = β3. (31)

Figure 3(b) shows the relationship between Kc and p predicted
by Eq. (31), which fits well to the boundary of region I.

The signal 2γ A sin(ωt )/α is subthreshold for K < Kc, and
the approximate solution of Eq. (29) can be obtained by
linearization, which is given by

Y (t ) ≈ 4Aβγ

α2ω2 + 4β2
sin(ωt ) − 2Aαγω

α2ω2 + 4β2
cos(ωt ). (32)
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Substituting Eq. (32) into Eq. (28), we obtain the average
activity as

X (t ) ≈ AM
1
2

1

α(α2ω2 + 4β2)
sin(ωt + φ4), (33)

where φ4 is phase shift and M1 follows

M1 ≡ [4βγ (1 − p)(α − pK ) + p(α2ω2 + 4β2)]2

+ 4γ 2α2ω2(1 − p)2(α − pK )2.

When K > Kc, cluster A and cluster C attain full synchro-
nization. Using Z = 0 and Eq. (27), Eq. (21) becomes

Ẏ ≈ θ

α
Y − Y 3 + 2γ A

α
sin(ωt ), (34)

where θ ≡ 2 + 2K − K p − 3K2 p. Similarly, the potential of
Eq. (34) can be written as

V = − θ

α
Y 2 + 2Y 4 − 2γ AY

α
sin(ωt ), (35)

which is a W-shaped potential with double well. Correspond-
ingly, there also exists a critical coupling strength K∗, at which
the potential barrier periodically disappears [see Fig. 4(f)].
Combing Eq. (12) and Eq. (35), the critical coupling strength
K∗ is governed by

27αγ 2A2 = θ3. (36)

As shown in Fig. 3(b), the critical coupling strength K∗
predicted by Eq. (36) is in good agreement with the boundary
of region II.

The above analysis indicates that the signal 2γ A sin(ωt )/α
remains subthreshold for Eq. (34) when Kc < K < K∗. In this
coupling region, Eq. (34) can be solved by linearization, and
the approximated solution is given by

Y (t ) ≈ ±
√

θ

α
+ 4Aγ θ

ω2α2+4θ2
sin(ωt ) − 2Aαγω

ω2α2+4θ2
cos(ωt ).

(37)
Substituting Eq. (37) into Eq. (33) gives

X (t ) ≈ ±
√

θ

α

(α − pK )(1 − p)

α

+ AM
1
2

2

α(α2ω2 + 4β2)
sin(ωt + φ5), (38)

where φ5 is the phase shift and M2 is

M2 ≡ [4θγ (1 − p)(α − pK ) + p(α2ω2 + 4β2)]2

+ 4γ 2α2ω2(1 − p)2(α − pK )2.

Finally, when K > K∗, the signal 2γ A sin(ωt )/α is
suprathreshold for Eq. (34). Accordingly, the amplitude of Y
is determined by the cubic function,

Y 3 − θ

α
Y − 2γ A

α
= 0. (39)

For θ < 0, the amplitude of Y is given by

I1 ≡ 2

√
−θ

3α
sinh

[
1

3
arsinh

(
3γ A

θ

√−3α

θ

)]
. (40)

For θ > 0, the amplitude of Y is given by

I2 ≡ 2

√
θ

3α
cosh

[
1

3
arcosh

(
3γ A

θ

√
3α

θ

)]
. (41)

Assuming Y = I1,2 sin(ωt ), Eq. (28) becomes

X ≈ (1 − p)(α − pK )I1,2 + pA

α
sin(ωt ). (42)

Combining Eqs. (33), (38), and (42), we can obtain the
theoretical amplification for 0 < p < 1:

G ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
1
2

1
α(α2ω2+4β2 ) , if K < Kc,

M
1
2

2
α(α2ω2+4β2 ) , if Kc � K < K∗,

(1−p)(α−pK )I1+pA
Aα

, if K∗ � K, θ < 0,

(1−p)(α−pK )I2+pA
Aα

, if K∗ � K, θ > 0.

(43)

Figures 2(a) and 3(a) show the analytical amplifications of
Eq. (43), which agree well with those obtained numerically
from Eq. (1). Therefore, our reduced model (20) captures
the macroscopic behavior of the original system (1), and
confirms our hypothesis that three oscillation clusters support
the enhanced signal amplification in a system of both positive
and negative couplings.

V. SUMMARY

In summary, we have analyzed the effects of positive and
negative couplings in weak signal amplification, and found
that the two types of couplings are complementary in their
effects. The purely negative couplings prevent synchroniza-
tion and cause a small average activity of the system, lead-
ing to a damped response to the weak external signal. The
purely positive couplings act to pull the oscillators together
to produce an amplified signal response, but such effect is
limited in small coupling strength. However, when positive
couplings coexist with negative couplings, the system can
generate a significantly amplified signal response, showing
resonancelike dependencies on both the coupling strength and
the ratio between the two types of couplings. We further found
that when the resonance occurs, the system splits into three
oscillation clusters—two negatively coupled clusters fluctuate
around two fixed points and one positively coupled cluster
oscillates between the two fixed points. Using reduced models
based on oscillation clusters, we analyze the response of the
system for cases of purely positive couplings, purely nega-
tive couplings, and mixed positive and negative couplings,
which predict well the numerical observations. These findings
highlight the complementary effect of positive and negative
couplings on weak signal amplification. We note that the
phenomenon is obtained for the globally coupling scheme
(1). As mentioned earlier, the heterogeneous interaction

022205-6
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topologies are more commonly observed in neural networks; a
new study about the interplay of network structure and mixed
couplings on signal amplification is warranted for future
work.
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