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Dynamical complexity measure to distinguish organized from disorganized dynamics
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We propose a metric to characterize the complex behavior of a dynamical system and to distinguish between
organized and disorganized complexity. The approach combines two quantities that separately assess the
degree of unpredictability of the dynamics and the lack of describability of the structure in the Poincaré plane
constructed from a given time series. As for the former, we use the permutation entropy Sp, while for the latter,
we introduce an indicator, the structurality �, which accounts for the fraction of visited points in the Poincaré
plane. The complexity measure thus defined as the sum of those two components is validated by classifying in
the (Sp, �) space the complexity of several benchmark dissipative and conservative dynamical systems. As an
application, we show how the metric can be used as a powerful biomarker for different cardiac pathologies and
to distinguish the dynamical complexity of two electrochemical dissolutions.
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I. INTRODUCTION

Recent decades have witnessed a considerable growth
of the science of complexity, devoted to understanding the
collective behavior of systems, regardless of their physical,
biological, or social nature [1–7]. Much of the research has
focused on defining multiple metrics to classify and quan-
tify complex dynamics involving many variables [8]. First
attempts were made by extending information theory to dy-
namical systems [9,10] and adapting Shannon’s entropy [11]
to statistically estimate the apparent randomness present in
deterministic chaotic dynamics. As long as the Jaynes’ princi-
ple of maximum entropy [12] is properly applied [13–16], the
Shannon’s entropy informs about the rate at which informa-
tion is produced and, consequently, it is a measure of a sys-
tem’s predictability. However, as Weaver posited [17], there
are two classes of complexity: disorganized and organized.
We will refer here to organized (disorganized) dynamics when
its Poincaré section is describable (indescribable). While
the former can be tackled using the methods of statistical
mechanics and probability theory, the latter cannot be fully
understood using statistics alone as it involves considerable
large number of variables that are interrelated.

Entropic metrics work well as indicators of the level of
unpredictability and randomness, but fail to correctly capture
the existence of interdependencies or structure among the
system’s components [18]. This drawback is mostly due to
the commonly accepted standard that both maximally random
and perfectly ordered systems do not exhibit any degree of
structural organization [18] and, therefore, a measure quan-
tifying their degree of complexity should be minimal [19]
without any distinction between the two cases. Among several
approaches proposed for detecting an underlying structure, are
those called statistical complexity measures, which account

for the graph complexity of the representation of symbolic
sequences as trees [18,20], or in terms of disturbance from the
equiprobable distribution of the accessible states of the system
[21,22]. However, these strategies, although using combina-
tions of different indicators, rely on the same background
information: the probability of different symbolic sequences.
Thus, for instance, they are not able to distinguish a fully
developed chaos from a stochastic dynamics as in both cases
the probabilities are uniformly distributed.

Here we provide a dynamical complexity measure CD

which is able to rank both the degree of unpredictability and
indescribability of a structure present in a process. It combines
the Shannon entropy as indicator of the unpredictability with
the density of points in the Poincaré plane as an alternative
metric of organization. Our measure is designed to be zero for
a fully predictable and perfectly ordered dynamics, one for a
nonpredictable but organized dynamics and a value of two for
a nonpredictable disorganized one. We illustrate the capabili-
ties of our measure introduced in Sec. II in several dissipative
and conservative dynamical systems whose complex behavior
can be accessed by tuning a system’s parameter (Sec. III).
Finally, in Sec. IV, we show how it can be used to compare the
complex dynamics of two electrochemical dissolutions and as
a biomarker for different cardiac diseases directly obtained
from electrocardiograms (ECGs).

II. DYNAMICAL COMPLEXITY

Let us start by showing how the family of the extensively
used entropy-based statistical complexity measures CS, first
introduced by López-Ruiz et al. [21] and later on improved by
Martin et al. [22], fails to detect the organized complexity un-
derlying the paradigmatic logistic map. CS is usually defined
as CS = QH , where Q stands for the so-called disequilibrium,
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FIG. 1. (Upper row) First-return maps for (a) logistic map with
μ = 4 and (b) uniform white noise with the same amplitude. (Bottom
row) Characteristic time series for the same both examples. For the
logistic map, the first return map shows the generating partition xc =
1
2 and the corresponding symbolic dynamics.

which quantifies how far is the probability distribution of a
given process from the uniform one, and H is the correspond-
ing normalized Shannon entropy. Such a factorization ensures
that CS vanishes for perfect order (H = 0) and maximal
randomness (Q = 0), and it is expected to capture a wide
range of complex behaviors in between. However, when we
compare a uniform white noise ζn ∈ [0; 1] with the logistic
map

xn+1 = μxn(1 − xn) (1)

whose behavior xn ∈ [0; 1] depends on the parameter μ, we
find a clear example where the statistical complexity measure
CS is not performing properly, in particular, when the logistic
map exhibits fully developed chaotic behavior for μ = 4.
Figure 1 shows an illustrative characterization of the two
dynamics by means of first-return maps (top panels) and time
series (bottom panels). The time series of both dynamics look
quite alike, actually characterized by an almost flat histogram
for the symbolic sequences [23], which yields to null values of
CS. However, their respective first-return maps reveal a well-
defined underlying structure for the chaotic dynamics [top
panel in Fig. 1(a)], while the noise fills the whole available
state space [top panel in Fig. 1(b)], with no signs of dynamical
organization.

Therefore, we need a marker capable of discriminating the
presence of a structured dynamics, easily describable. The
Shannon entropy already quantifies how the structure—when
it exists—is visited in the state space. It must be comple-
mented by a second marker capable of measuring how the
structure fills the state space, based on the principle that
the more structured the attractor is, the smaller the volume
it occupies. If we choose the Poincaré section as a more
reliable source to compute the entropy than the time series
itself [24], then the argument can be reformulated by stating
that the smaller the fraction of boxes visited by the Poincaré

section, the more constrained and organized the dynamics. In
general, we will be working in a two-dimensional projection
of the Poincaré section independently of the system’s dimen-
sion. For the strongly dissipative systems we investigate, the
Poincaré section can be safely reconstructed from a single
variable by using delay coordinates and we will therefore use
the first-return map to obtain it.

To assess how a dynamics is structured in the state space,
we introduce the structurality � index, which accounts for
the fraction of visited boxes from a pixelation of the Poincaré
section into Nb × Nb boxes, that is,

� =
Nb∑

i, j=1

vi j

N2
b

∈ [0; 1] , (2)

where vi j = 1 if the box (i, j) contains at least one crossing
point and vi j = 0 otherwise. To implement this definition we
need first to determine the frame in which the Poincaré section
is investigated. The easiest way is to construct a domain from
the visited range, that is, the minimum and maximum values
along the two axis of the Poincaré plane. We will refer to this
frame as the renormalized frame. In some cases, as when a
bifurcation diagram is investigated, it is more efficient to use
a fixed frame corresponding to the most developed Poincaré
section: we will designate it as a relative frame. Let [mi; Mi]
be the range of the i axis of the chosen frame. Then we need
to specify the pixelation, that is, the number N2

b of boxes, and
their length lb. The former can be estimated as a function of
the number Np of points in the Poincaré section as

Nb � 10 log10 Np. (3)

However, as long as Np is large enough for properly sam-
pling the dynamics, the dependence of � on the pixelation
settings is not critical, as we show in the Appendix. The length
of each box is determined according to

lb = ‖Mi − mi‖
Nb

, (4)

A lack of describability of the structure of the dynamics will
be manifested by a large value of �, while a well-ordered
dynamics like a period-one behavior will have � = 1/N2

b ∼
0. See the Appendix for a more elaborated discussion on this
issue.

At this point, we combine into a single dynamical com-
plexity measure CD the two components characterizing the
lack of predictability, the Shannon entropy Sp, and the lack
of describability, the structurality �, as

CD = Sp + �, (5)

where Sp is by default the permutation entropy [25], unless
stated otherwise.

We evaluate now how CD performs by first discussing its
application to the logistic map xn dynamically coupled to a
white uniform noise ζn as

sn = (1 − α)xn + αζn, (6)

where xn, ζn ∈ [0; 1] and α is a parameter ranging between
0 (sn = xn, logistic map) and 1 (sn = ζn, white noise). Here
the Shannon entropy SSD is based on the symbolic dynamics
produced by the generating topological partition [24] σi = 0
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FIG. 2. (a) Bifurcation diagram of the logistic map vs. μ for α =
0 (left half) and vs. α for μ = 4 as it is progressively replaced with
noise (right half) according to Eq. (6). (b) Shannon entropy based on
the symbolic dynamics SSD (black thick line), relative structurality
� (black thin line), and disequilibrium Q (red dash-dotted line).
(c) Dynamical complexity CD = SSD + � and statistical complexity
Cs = SSDQ. Np = 180 000.

if sn < 1
2 and σi = 1 otherwise, which satisfies the maximum-

entropy principle for the logistic map [12]. The dynamics is
thus reduced to sequences of 0’s and 1’s of length 6 whose
frequencies of occurrence are calculated over Np = 180 000.

The left half of Fig. 2(a) shows the bifurcation diagram of
the noise-free (α = 0) logistic map for 3 � μ � 4, while in
the right half μ is kept constant to 3.99 and 0 � α � 1, giving
rise to a fully developed chaos increasingly contaminated by
uniform noise of growing amplitude. In Fig. 2(b) we plot the
Shannon entropy SSD, the structurality �, and the generalized
Jensen-Shannon disequilibrium Q (red dash-dotted line) as
proposed in Ref. [22]. SSD initially increases in a stepwise
form as the logistic map undergoes the period-doubling bi-
furcation up to a point where a much richer structure arises
characterized by chaotic behavior intermingled with periodic
windows in which the entropy drops accordingly to the pe-
riodicity. For μ = 4, the logistic map is fully chaotic, all its
symbolic states are equally likely and, therefore, SSD = 1,
reaching the maximum lack of predictability of the system,
which keeps bounded independently of the added noise in-
tensity. However, the structurality � informs us about how
organized is the state space: the Poincaré section of the
noise-free logistic map changes from an isolated point for the
period-1 cycle (μ = 3) to a smooth unimodal map in the unit
square for the fully developed chaos [μ = 4, see Fig. 1(a)],
yielding in every case to a very well structured dynamics with
� � 1, but still capturing the different degrees of chaotic
behavior. When noise is added to the μ = 4 case [right half
in Fig. 2(b)], � increases monotonously until it saturates
when the lack of structure fills up completely the unit square
and � ∼ 1. Note that, while the entropy barely changes, the
relative structurality is clearly differentiating the increasing

degree of disorganization of the dynamics. Regarding the dis-
equilibrium, it behaves as expected as it is again a function of
the probability of the different symbolic sequences: it is max-
imum for period-1 oscillations and vanishes indistinguishably
for fully chaotic and stochastic dynamics. Finally, in Fig. 2(c)
dynamical and statistical complexities are depicted together.
While CS exhibits the well-known behavior exclusively driven
by the information contained in the entropy, CD is able to
discriminate between the different dynamical behaviors in
increasing order of complexity, assigning the maximum value
CD = 2 to the fully unpredictable and indescribable dynamics
featured by a white noise, the minimum value CD = 0 to a
fully predictable and describable periodic motion, and a value
close to 1 for a yet unpredictable but structured (describable)
chaotic behavior.

III. BENCHMARK SYSTEMS

So far, we have illustrated the definition of our dynamical
complexity measure CD using a simple nonlinear map. To
test it in a more general context of flows, we have chosen
three dynamical systems whose state space range from finite
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FIG. 3. Evolution of the permutation entropy Sp, relative struc-
turality �, and dynamical complexity CD versus a bifurcation pa-
rameter for (a) the symmetrized double-gyre system, (b) a dyad
of Rössler systems and (c) the delay-differential Mackey-Glass
equation. Legend in (a) applies to all panels. Vertical dashed lines
mark some parameter values whose dynamical regimes will be later
analyzed more in detail.
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to infinite dimensional and whose dynamical behavior can be
varied with a parameter: (i) a 4D double-gyre conservative
system [26], (ii) two coupled Rössler oscillators [27], and
(iii) the time delay-differential Mackey-Glass model [28].
Let us show the results before introducing each system and
discuss the connection between the complexity measure and
the dynamical interpretation. Figure 3 shows the evolution of
the dynamical complexity and its two components, Sp and �

versus the corresponding bifurcation parameter.
The results of Figs. 2 and 3 are further explored in Fig. 4

plotting the evolution of � versus Sp of each system along
their respective parameters. Remarkably, in this last repre-
sentation the different dynamical regimes are almost exclu-
sively distributed in three regions according to our complex-
ity descriptor: lower-left region (Sp,� < 0.5), correspond-
ing to a very structured and predictable behavior; lower-
right region (Sp > 0.5, � < 0.5), structured but unpredictable
behavior; and upper-right region (Sp, � > 0.5) comprising
unpredictable and indescribable dynamics.

A. Symmetrized double-gyre system

Conservative systems can produce chaotic as well as reg-
ular (periodic or quasiperiodic) behavior. According to the
KAM theorem, only a finite fraction of the state space is
visited by regular solutions which can be viewed as “islands”
in a chaotic sea [29,30]. Typically, this chaotic sea is very
difficult to describe and we expect to have a complexity
measure CD close to 2 [31]. As an example of this class of
systems, we used a recently introduced simplified model for
the driven double-gyre, a typical phenomenon observed in the
large-scale ocean circulation [26,31,32]:

ẋ = Aπ sin[π (ux2 + x − u)] sin(πy),

ẏ = Aπ cos[π (ux2 + x − u)] cos(πy),

u̇ = v,

v̇ = −ω2u.

(7)
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FIG. 5. Poincaré section of the symmetrized driven double-gyre
system Eq. (7) for various initial conditions. The corresponding A
values are marked with vertical dashed lines in Fig. 3(a). Other
parameter values: ω = π

5 .

This is a four-dimensional conservative system where x and
y are the variables spanning the physical space, u and v are
variables related to the velocity field, and A is the amplitude
of a periodic forcing applied to the velocity field. The cor-
responding complexity markers are shown in Fig. 3(a) as a
function of the driving amplitude A.

The solutions produced by this system are investigated
using the Poincaré section

Pdg ≡ {(xn, yn) ∈ R2 | un = 0, vn > 0}. (8)

The main difference between a strongly dissipative system
and a conservative one is that, in the former case, the Poincaré
section is a unidimensional curve, while in the latter case it
is at least a two-dimensional structure: As a consequence, the
symmetrized driven double-gyre system must be investigated
in a two-dimensional Poincaré section to correctly understand
the organization of the chaotic sea around the regular islands.
This is exhibited by the Poincaré section {xn, yn} in Fig. 5(a)
where four large islands are observed. Since we are here
concerned by the dynamical complexity computed for the
chaotic sea, we selected initial conditions in the middle of the
Poincaré section, a neighborhood which belongs to the chaotic
sea (when it exists) for most of the parameter values used in
this work.

Computations are performed with Np = 80 000 and a rel-
ative frame [−1; +1] × [−0.5; +0.5]. Notice that all chaotic
sea would induce a renormalized frame equal to this relative
frame. As shown in Fig. 3(a), this system presents high values
of the Shannon entropy (Sp > 0.7) and structurality (� �
0.4), revealing that the map is not 1D. The size of the regular
islands strongly depends on the A value: for instance, when
A increases beyond 0.1488, the size of these islands grows
with a consistent decay in the complexity, therefore reducing
the visited region which results in a reduction of �. This is
well exemplified in Fig. 5(b), where the Poincaré section for
A = 0.25 shows two very large regular islands. In fact, the
structurality quantifies the mixing properties of this flow: the
larger �, the greater the mixing.

B. A dyad of Rössler systems

The next example in Fig. 3(b) is a 6D system of two
slightly mismatched chaotic Rössler oscillators—in a non
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FIG. 6. First-return maps to the Poincaré section Eq. (10) pro-
duced by a dyad of Rössler systems when they are uncoupled (a, b)
and for the two coupling values (c, d) marked with vertical dashed
lines in Fig. 3(b).

phase-coherent regime—diffusively coupled through the z
variable. The equations are

ẋ1 = −y1 − z1,

ẏ1 = x1 + a1y1,

ż1 = b + z1(x1 − c) + ρz(z2 − z1),

ẋ2 = −y2 − z2,

ẏ2 = x2 + a2y2,

ż2 = b + z2(x2 − c) + ρz(z1 − z2),

(9)

with a1 = 0.492, a2 = 0.480, b = 2, c = 4 and initial condi-
tions x1 = y1 = z1 = y2 = z2 = 0.2, and x2 = 0.4. The cou-
pling through variable z makes this system a class III system
[33], and therefore full synchronization can never be obtained
[33,34]. Therefore, Sp keeps almost constant [Fig. 3(b)] and
high within the entire coupling interval, except for a window
of banded chaos where it drops.

The first-return map to the Poincaré section,

PRd ≡ {(yk,i, zk,i ) ∈ R2 | xk,i = xk,p, ẋk,i > 0}, (10)

where

xk,p = c −
√

c2 − 4aib

2
,

is shown in Fig. 6 for the two oscillators when uncoupled
[Figs. 6(a) and 6(b)] and for two values of the coupling
ρz [Figs. 6(c) and 6(d)], using Np = 105 in all cases. The
relative frame [−8; 0]2 was used. As expected, the relative
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FIG. 7. Dynamical regimes produced by the Mackey-Glass
Eq. (11) for two delay values. The corresponding τ values are marked
with vertical dashed lines in Fig. 3(c). Other parameter values: μ = 2
and n = 10.

structurality for the uncoupled maps is the same and very
low. When coupled, the lack of synchronization affects �,
which slowly increases within the chosen coupling range. In
other words, the dynamics does not become less predictable
but more difficult to describe, as in the example in Fig. 6(c).
For 0.225 < ρz < 0.308, the two Rössler systems produce
very limited banded chaos (or intermittency) but they are
not synchronized. This can be appreciated in Fig. 6(d) for a
coupling within this region: � still remains well above the
value for the single uncoupled units, signaling that the dyad is
not synchronized.

C. Delay-differential Mackey-Glass equation

Finally, let us now consider the Mackey-Glass model
whose attractor has an embedding dimension which scales
with the delay [28]. The Mackey-Glass equation is a nonlinear
delay differential equation [35] which can be written in the
form

ẋ = μ
xτ

1 + xn
τ

− x. (11)

Simulations were performed with τ ∈ [1.5; 8] and the corre-
sponding complexity markers are shown in Fig. 3(c).

The Poincaré section was defined as

PMG ≡ {xn | ẋn = 0, ẍn > 0}. (12)

The relative frame was defined as [0.06; 1.44]2 and in all
cases Np = 20, 000. Two typical first-return maps are shown
in Fig. 7, for a low-dimensional case [Fig. 7(a)] and a very
high dimensionality [Fig. 7(b)].

It can be observed [Fig. 3(c)] that, after an initial period-
doubling cascade (not shown), Sp goes up to 0.5 while � is
very low, in agreement with the creation of a chaotic attractor
with a nearly 1D first-return map [Fig. 7(a)]. Beyond τ = 2,
the dynamics becomes more difficult to describe as shown in
Fig. 7(b) for τ = 6, with a much faster growth of the relative
structurality which converges to one.
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FIG. 8. First-return maps built with the experimental data col-
lected from two electrochemical dissolutions of (a) copper (Np =
1 708) and (b) iron (Np = 3 180) electrodes.

IV. DATA FROM THE REAL WORLD

A. Electrochemical dissolutions

We use our method to characterize the complex dynamics
of experimental data coming from electrochemical dissolu-
tions of copper and iron rods as described in Refs. [36,37].
The experimental setup consisted of a rotating disc electrode
in acid solution which had a copper or an iron rod embedded
in a Teflon cylinder. A cylindrical platinum net band (much
larger than the disk) was put around the disk as a counter
electrode to get uniform potential and current distributions.

The dynamics is investigated from the measurements of
the current X = I flowing in the anode. A state space is
reconstructed using the successive derivatives Y = İ and Z =
Ï . In Fig. 8 are shown the first-return maps to the Poincaré
section of the two experiments, defined as

PED ≡ {(Xn, Zn) ∈ R2 | Yn = 0, Ẏn > 0}. (13)

For the copper electrodissolution [Fig. 8(a)], the first-return
map is a smooth unimodal map corresponding to a chaotic
regime compatible with a period-doubling cascade as a route
to chaos. The copper attractor was shown to be topologically
equivalent to the Rössler attractor [36] by extracting the un-
stable periodic orbits from the experimental data and finding
that this chaotic regime was characterized by the kneading
sequence (100110) as observed in the Rössler attractor for
a = 0.424, b = 2, and c = 4 [38]. Typically, the permutation
entropy should be the same in these two cases, and the renor-
malized structurality only slightly greater for the experimental
data due to the noise contamination. Complexity values for the
copper electrodissolution and the equivalent Rössler system
are reported in Table I for Np = 1, 708, which is the sample
size of the available experimental data. In the case of the
Rössler system, we also computed the markers for Np = 105,
to check the possible effect of the reduced number of experi-
mental points, and there are no significant differences between
the complexity markers of the two deterministic time series.
Therefore, we conclude that the reduced number of points
in the experimental data is not having a strong influence.
However, as expected, the renormalized structurality is clearly
larger for the experimental data than for the Rössler attractor,
mainly coming from noise contamination. Noise thus rends

TABLE I. Permutation entropy Sp, renormalized structurality �,
and dynamical complexity CD for the eletrochemical dissolutions of
copper and iron and for the equivalent Rössler system to the copper
electrochemical dissolution.

Np Sp � CD

Copper 1,708 0.57 0.11 0.69
Rössler 1,708 0.58 0.04 0.62

105 0.57 0.03 0.60
Iron 3,180 0.62 0.30 0.93

less describable the dynamics, and the structurality allows to
quantify this difference that was undetectable by Sp.

The dynamics of the iron electrochemical dissolution
[Fig. 8(b)] is known to be more complex than the copper one
[37] with a correlation dimension about 2.4 [39], while it is
about 2.0 for the copper. The difficulty in this dynamics results
from the thickness of the first-return map and the shape of its
rightmost part where, most likely, different branches should
have been distinguished since, as suggested in Ref. [37], a
five-strip template could be underlying the iron dynamics.
The larger complexity, as revealed by the higher value of
CD, cannot be explained by an increase of Sp, whose value
is equivalent to the one obtained in the copper experiment.
However, the renormalized structurality �iron is twice �copper,
which correctly returns that the iron dynamics is less describ-
able than the copper one (Table I), in agreement with other
analyses [37,39].

B. Cardiac variability

The applicability of our measure is demonstrated here by
using it as a discriminating biomarker for different cardiac
dynamics and associated pathologies recorded through elec-
trocardiograms (ECG). Most of the data are freely available at
the PHYSIONET website [40], a research resource for complex
physiologic signals. In an ECG, each beat is associated with
a QRS complex corresponding to the ventricular systole. The
letter “R” designates the associated large positive oscillation.
The duration between two successive oscillations R are des-
ignated by the RR interval, and roughly corresponds to the
duration of a cardiac beat. In the present case, heart rate
variability is here investigated from the

�RRn = RRn − RRn−1

computed from two consecutive RR intervals.
According to a previous study [16], a first-return map

based on the �RRn allows an efficient discrimination between
different cardiac dynamics, using as markers the permutation
entropy and an asymmetry coefficient measuring the occur-
rences of null, positive and negative �RRn. Here we replace
the asymmetry coefficient by our relative structurality �,
which is a more general marker by definition. As a control
group, we analyzed 18 long-term ECGs recorded in healthy
subjects [40]. In Fig. 9(a) we plot a typical first-return map
recorded from one individual in this group.

To better discriminate the often subtle differences between
patients with various cardiac dynamics, we have to define
a common reference frame to compute the structurality. We
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(a) NSR: C
D

 = 0.64 (b) CHF: C
D

 = 0.42

(d) AF: C
D

 = 1.26(c) CHF: C
D

 = 0.87

(e) AF-CHF: C
D
 = 0.52 (f) AF-CHF: C

D
 = 0.34

(h) CHF-AF: C
D

 = 0.52(g) AF: C
D

 = 0.20

(i) AF: C
D

 = 0.71 (j) AF-CHF: C
D

 = 0.94

FIG. 9. Examples of first-return maps built from the �RRn of
patients diagnosed with normal sinus rhythm (a), congestive heart
failure (b, c), atrial fibrillation (d–f), and preterm infants (g–j). While
conditions reflected in (a–f) are diagnosed cases, preterm infants
were classified as AF and CHF-AF following our expertise.
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FIG. 10. Permutation entropy Sp vs. relative structurality � com-
puted for cardiac dynamics data from various groups of patients.
Each symbol corresponds to a given patient. See the legend to
read the type of diagnosed cardiac dynamics. The equations of the
continuous and dashed lines are also given in the legend. Symbols
corresponding to the patients reported in Fig. 9 are here highlighted.

choose it to keep at least 85% of the data points for every pa-
tient, that is, | �RRn | < 120 ms. This bound for the heart rate
variability is large enough to take into account cardiac pathol-
ogy as severe as atrial fibrillation [41], a disorganized activity
within the atria which causes the contraction of the ventricles
at seemingly random intervals and which is associated with
a strong stochastic component [42–44]. Thus, the retained
relative frame, marked with a dotted red line in Figs. 9, bounds
a typical atrial fibrillation (AF) as the one shown in Fig. 9(d).
Permutation are allowed when | �RRn+1 − �RRn |> 5 ms.

Figure 9 shows the first-return maps of the heart rate vari-
ability of subjects suffering from different cardiac pathologies
and ages. A group of 15 patients with congestive heart failure
(CHF) was investigated in Ref. [45]. Two typical examples
are shown in Figs. 9(b) and 9(c). Patient 9 has only isolated
extrasystoles [Fig. 9(b)] and patient 2 [Fig. 9(c)] has bursts of
extrasystoles as evidenced by the additional (thick) segments.
Another group of 15 long-term ECGs was recorded with
subjects suffering from paroxysmal or persistent AF. Four
different examples are shown in Figs. 9(d)–9(f). Patient 15
presents fully developed AF with a typical triangular shape
[Fig. 9(d)]. AF and CHF can promote each other and can also
be found combined in the same patient [46,47], as in patient
number 5 [(Fig. 9(e)] whose first-return map displays a central
triangular cloud like in AF around which there are some
segments typically associated with CHF. We also investigated
ECGs recorded from ten preterm infants [48] [Figs. 9(g)–9(j)],
and from infants with sudden-death risk (not shown) [49].
This data set was also analyzed in a previous study where the
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TABLE II. T test to assess the significance in the difference of
the permutation entropy Sp and the relative structurality � for the
various groups of patients.

NSR CHF AF Preterm SDR

NSR — * *** *** *** �

CHF NS — *** ** ***
AF *** *** — NS *

Preterm ** * *** — **
Sp SDR *** *** NS *** —

NSR ≡ normal sinus rhythm, CHF ≡ congestive heart failure, AF
≡ atrial fibrillation, SDR ≡ infant with sudden death risk, NS
≡ Nonsignificant, ∗ ≡ p < 0.05, ∗∗ ≡ p < 5 × 10−3, ∗ ∗ ∗ ≡ p <

5 × 10−4.

first-return maps of �RRn were introduced [16]. AF can occur
with intermittencies [50].

In Fig. 10 we present a general view of the analysis
in the Sp-� plane, where it can be observed how the dif-
ferent populations typically organize around specific areas.
Healthy subjects are characterized by small structurality val-
ues bounded by � < 0.375Sp − 0.075 and 0.2 < Sp < 0.7,
which is reflecting that a normal sinus rhythm is irregular
due to the variability in the breathing rate and activity of
the autonomic nervous system. However, abnormal rhythms
like CHF and AF have also features clearly distinguishable
with our dynamical complexity measure. Patients with CHF
exhibit well marked segments in the RR sequence associated
with ectopic beats characterized by (Sp,�) pairs above the
straight line � > 0.375Sp − 0.075 and Sp < 0.7. AF induces
relative structurality � > 0.3 and in most cases has an en-
tropy Sp > 0.6 depending on how sustained is the AF. Some
intermediate cases occur when patients present AF combined
with ectopic beats. Finally, preterm infants distribute above
the CHF patients but with slightly higher � values, while
infants diagnosed with sudden death risk have, almost all of
them, Sp > 0.6 and � > 0.3, compatible with an AF case,
the exceptions corresponding to cases developing a mixture
of CHF and AF or paroxysmal atrial fibrillation.

To assess the significance in the differences between the
various groups of patients, we applied a T test on the permuta-
tion entropy Sp, the relative structurality �, and the dynamical
complexity CD, respectively. Results are reported in Tables II
and III. We retained five different groups of subjects for
our statistical analysis: subjects with normal sinus rhythm
(NSR), congestive heart failure (CHF), atrial fibrillation (AF),
preterm newborns, and infants with sudden death risk (SDR).
Permutation entropy Sp is significantly different among the

TABLE III. T test to assess the significance in the difference
of the dynamical complexity CD for the various groups of patients.
Same terminology as described in the caption of Table II.

NSR CHF AF Preterm SDR

NSR —
CHF NS —
AF *** *** —
Preterm NS NS *** —
SDR *** *** NS *** —

five groups, but is not significantly different between NSR and
CHF, as well as between SDR and AF (lower half of Table II).
The relative structurality � by itself allows to discriminate
the five groups except preterm newborns from AF (upper half
of Table II). As a result of combining both markers, all the
groups can be discriminated. Nevertheless, if the dynamical
complexity is computed, it is not possible to distinguish NSF
from CHF and preterm infants, CHF from preterm infants, and
AF from SDR. These features result from some balance which
can occur between the entropy Sp and the structurality �. An
accurate analysis is required in the Sp-� plane to correctly
characterize all the different groups.

These results are partly recovered by using the sole dy-
namical complexity CD as reported in Table III. It clearly
distinguishes NSR, CHF, and preterm from SDR and AF.
These markers, whose computation cost is very reduced, allow
therefore to correctly assess the complexity underlying the
heart variability.

V. CONCLUSIONS

We have shown that to distinguish between organized and
disorganized complexity, a marker capable of detecting a
structured dynamics is needed independently of its degree of
predictability. We propose a complexity measure combining
these two notions of unpredictability, assessed with a permu-
tation entropy, and that of structurality which quantifies, in
a Poincaré section, how the structure underlying a dynamics
can be described. The boundary conditions of our complexity
measure are such that it vanishes for regular motion and
whose upper limit reflects the disorganized dynamics of a
stochastic signal, neither predictable nor easily describable in
the Poincaré map. It thus provides a powerful measure for
characterizing any stationary dynamics produced by either a
map or a flow (as long as the time series can be investigated
in a Poincaré plane), dissipative or conservative. It should
be noted that our measure is not extensive and as such the
upper limit can correspond to dynamics that can greatly differ
in dimension. This problem can be addressed by using a
Poincaré section whose dimension is greater than two but
is out of the scope of the present work. As an illustration
of its classifying power, we evidenced that this complexity
measure can discriminate among various groups of common
cardiac diseases from the sole measure of an ECG and we are
confident that it will be useful for a reliable characterization
of a large variety of real-world dynamics.
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APPENDIX: ROBUSTNESS OF THE
DYNAMICAL COMPLEXITY

In the following, we will provide an extensive analysis of
the factors involved in the definition of the structurality � and
how it behaves under the presence of different noise sources.
The logistic map xn in Eq. (1) for μ = 3.99 was studied for
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FIG. 11. (a) Dependence of the renormalized structurality � on
Nb (square root of the total number of boxes of the pixelation) for the
deterministic logistic map for μ = 3.99 (red curve) and for the logis-
tic map with Gaussian observational noise of standard deviation (std)
0.05 (B = 0.2) (blue curve), and with additive Gaussian dynamical
noise of std 0.025 (B = 0.1) (green curve). As a reference, uniform
noise (magenta) and Gaussian noise of std 0.25 (black) are shown. In
all cases, Np = 105 are used. Dependence of the permutation entropy
Sp (b) and structurality � (c) on the number of points Np for the
same cases indicated in the legend in the left panel. In all cases,
Nb ∼ 10 log10 Np.

different pixelation settings and lengths of the time series. In
Fig. 11 (left panel) we varied the number of boxes N2

b in which
is divided the renormalized frame of the first-return map for
a time series of length Np = 105. We observe (red curve) how
the structurality converges to a very low value, as it should
be for a well structured dynamics, when the number of boxes
Nb > 50 (along one dimension). This points out to a possible
parametrization of the number of boxes as a function of the
number of points as Nb ∼ 10 log10 Np, as specified in the main
text. This choice allows us to reduce the dependency of the
results on the number of points Np as it ensures that boxes are
visited with a significant mean probability even when a small
number of points (Np < 104) is available. At the same time,
the logarithmic dependence avoids the redundancy that could
yield to underestimate �. This is shown in the right column of
the same Fig. 11, where both the permutation entropy Sp and
the renormalized structurality � of the deterministic logistic
map are almost independent of Np when considering time
series of lengths ranging from Np = 103 up to 105. Notice
that the permutation entropy keeps a constant value when
Np > 104.

Regarding the effect of fluctuations present in the time
series, we added a Gaussian noise ξn (of zero mean and
variance 0.0625) to the deterministic time series simulat-
ing both observational (qn = xn + Bξn, blue curves) and dy-
namical (xn+1 = μxn(1 − xn) + Bξn, green curves) stochastic
sources, with B controlling the noise intensity. Again, Fig. 11
shows that the structurality obviously increases with respect
to the pure deterministic case (red curve) but it is almost
independent on the number of boxes as long Nb > 50. For
comparison purposes, we also added the structurality of two
pure stochastic processes, exhibiting intermediate values for
the case of a Gaussian noise (black curve) and saturating at
one for uniform noise (magenta curve) as it should be since
the uniform noise is uniformly distributed in the renormalized
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FIG. 12. Dynamics of the Rössler system with added Gaussian
dynamical noise of std 0.005 (B = 0.02) for varying bifurcation
parameter a. (a) Bifurcation diagram, (b) permutation entropy Sp,
(c) structurality �, and (d) dynamical complexity CD. From (b) to
(c), each curve denotes the corresponding marker computed using
relative (Np = 2 000 in black and Np = 20 000 in red) and renormal-
ized frames (Np = 2 000 in blue). Other parameter values: b = 2 and
c = 4.

frame. Looking at the right column of Fig. 11, it is worth
noting how the structurality is able to distinguish the logistic
map with added observational and dynamical noises (blue and
green curves) while the permutation entropy is not. Another
remark is that while the permutation entropy is maximum
for both uniform and Gaussian noise (they have the same
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FIG. 13. Dependence of the complexity markers on the chosen
reference frame. (a) State portrait of a noisy period-one limit cycle
produced by one of the Rössler systems Eq. (9) with a Gaussian dy-
namical noise of standard deviation 0.00375. The center of the limit
cycle is at (0.25,−0.25) and the red line extending from x = −3.46
to x = 0.25 is the projection of a Poincaré plane. (b) First-return map
of the Poincaré section of (a) framed by the renormalized frame (blue
square), and the relative frames of the largest chaotic attractor in
the bifurcation diagram shown in Fig. 12(a) (black square) and of
the period-one limit cycle (red square). (c) First-return map of the
Gaussian noise injected in (a) and plotted in the renormalized frame.
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TABLE IV. Values of the complexity markers Sp, �, and CD for
the the noisy period-one limit cycle shown using the three different
frames marked in Fig. 13(b).

Frame Sp � CD

Relative (largest attractor) 0.06 0.04 0.10
Relative (limit cycle radius) 0.16 0.07 0.23
Renormalized 0.70 0.44 1.14

degree of unpredictability), the structurality (right column-
bottom panel) only saturates for the uniform noise and linearly
increases with the number of points in the case of the Gaussian
noise. A final observation in this study, it is that it is safe to
consider for both Sp and �, Np > 104, in agreement with what
was already obtained with a Shannon entropy computed from
recurrence plots [24].

Another factor affecting our structurality measure is the
framing of the Poincaré section. To show how the choice of
a renormalized or relative frame is actually contributing to �,
we computed the bifurcation diagram of the Rössler system
with the parameter a [Eq. (9) with ρz = 0 and a1 = a] and
influenced by a Gaussian dynamical noise of zero mean and
standard deviation 0.005. Since the noise contamination is
quite limited, the dynamical complexity is mainly driven by
the permutation entropy while the relative structurality (red
traces in both panels) slightly increases with the parameter
a: the more the chaos develops, the thicker the first-return
map and the larger the relative structurality. However, when
considering a renormalized frame, huge discrepancies are
clear between the two frames in the period-one windows.
A renormalized frame is no longer able to correctly detect
the deterministic part of the dynamics and over estimates
the noise contribution. For instance, the entropy as well as

the structurality are arbitrarily large for a < 0.33 and there
is a large instability in the period-1 window at 0.502 < a <

0.508. In these period-1 windows, a relative frame provides
more stable results with the three markers, Sp, � and CD

exhibiting low values despite the noise contamination.
The overestimation of the noise contribution to a period-

one limit cycle is further illustrated in Fig. 13. The Poincaré
plane is plotted as a red line in the state portrait of Fig. 13(a).
The size of the corresponding Poincaré section (the crossings
of the limit cycle with the Poincaré plane) defines the renor-
malized frame (−3.4 < xn < −2.15) shown as a blue square
in Fig. 13(b). It is clear that the period-one limit cycle no
longer appears as a structured dynamics with respect to the
renormalized frame due to the noise contamination. However,
when observing the Poincaré section using a relative frame
as the one defined by the size of the largest chaotic attractor
of the bifurcation diagram (black square) or by the period-
one limit cycle (red square), the noise contribution to the
structurality is damped and the dynamics reveals to be more
structured. Just to compare, the first-return map of the Gaus-
sian noise injected in the limit cycle is shown in Fig. 13(c)
in a renormalized frame. The values of the three complexity
markers for each one of the three frames shown in Fig. 13(b)
are reported in Table IV. There it is clear the relevance of
the frame definition, showing a significant difference between
choosing a relative or a renormalized frame.

Finally, note that to avoid overestimating the entropy, per-
mutations are performed only when |xi − xi+1| > ε with ε =
5lb. This kind of noise filter is in fact related to uncertainties
inherent to measurements and allows to reduce the typical
peaks appearing at the bifurcations in a period doubling
cascade when observational noise is affecting the dynamical
system (see Fig. 2(e) in Ref. [25]) or avoids to have large
entropy in the case of a noisy period-one limit cycle (Fig. 12).
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