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Recent experimental findings on anomalous diffusion have demanded novel models that combine annealed
(temporal) and quenched (spatial or static) disorder mechanisms. The comb model is a simplified description
of diffusion on percolation clusters, where the comblike structure mimics quenched disorder mechanisms and
yields a subdiffusive regime. Here we extend the comb model to simultaneously account for quenched and
annealed disorder mechanisms. To do so, we replace usual derivatives in the comb diffusion equation by different
fractional time-derivative operators and the conventional comblike structure by a generalized fractal structure.
Our hybrid comb models thus represent a diffusion where different comblike structures describe different
quenched disorder mechanisms, and the fractional operators account for various annealed disorder mechanisms.
We find exact solutions for the diffusion propagator and mean square displacement in terms of different memory
kernels used for defining the fractional operators. Among other findings, we show that these models describe
crossovers from subdiffusion to Brownian or confined diffusions, situations emerging in empirical results. These
results reveal the critical role of interactions between geometrical restrictions and memory effects on modeling
anomalous diffusion.
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I. INTRODUCTION

The development of the diffusion concept has always relied
on the mutually beneficial relationship between theory and
experiments. Since Perrin’s experiments proving Einstein’s
diffusion theory [1], Brownian (usual) diffusion is well known
to display a Gaussian distribution and a linear time depen-
dence of the mean square displacement (MSD). However,
as deviations from these usual behaviors started to appear
in experimental studies of disordered media and biologi-
cal systems, the need to understand underlying microscopic
mechanisms of these unusual dynamics has given rise to
breakthrough theories in statistical physics.

The anomalous diffusion era started with the concept of
waiting-time distribution in random walks, proposed indepen-
dently by Lévy [2], Smith [3], and Montroll and Weiss [4];
but the continuous-time random walk (CTRW) emerged as
the foundation of anomalous transport only after the works of
Scher and Lax [5,6] on unusual results for charge transport
in amorphous semiconductors. These works use CTRW to
describe heterogeneities of a medium in an annealed way,
where the waiting-time distribution represents the environ-
ment randomness. The “second youth” of the CTRW [7] is
usually marked by its relationship with fractional diffusion
equations [8–11], a formalism that becomes known as an
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efficient phenomenological description of anomalous diffu-
sion in complex systems [7,12,13].

Percolation theory [14] represents another significant
breakthrough for the description of anomalous diffusion. As
emphasized by Havlin and Ben-Avraham [15], the percola-
tion model is a simple and purely geometrical approach to
describe disordered media. While random walk processes are
generalized in the CTRW model, in percolation processes,
usual random walks take place in a disordered environment.
In contrast to the CTRW framework, percolation theory thus
describes a quenched disorder, where the randomness associ-
ated with geometrical constraints are constant in time. Under
this context, de Gennes [16] coined the term “the ant in a
labyrinth” to describe random walks in percolation lattices
and established a paradigm of anomalous diffusion caused
by geometrical structures [17,18]. This paradigm becomes
well established mainly due to fractal geometry [19], and it
is essential in the study of porous media [15].

Diffusion also becomes an essential noninvasive tool to
probe and characterize systems ranging from materials to
living organisms [20–27]. These recent empirical results re-
vealed a myriad of complex patterns that are usually not
well described by analytical tools developed for amorphous
solids and porous media. As argued by Metzler [28], these
novel experimental findings require researchers to come up
with novel models. In this context, hybrid or mixed models
of anomalous diffusion emerged as a significant modeling
possibility [29–35]. Examples include CTRW on fractals
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FIG. 1. Comb model as simplified description of diffusion on percolation cluster. (a) Illustration of a percolation cluster where the
continuous lines indicate the large bond and dashed lines are the dangling ends. The comb model shown in (b) and modeled by Eq. (1) is
a simplified description of the geometry in percolation clusters. Panels (c) and (d) compare the usual two-dimensional diffusive process with
the diffusion on comb structure. The two-dimensional diffusion imposes no geometrical restriction on random walkers, while horizontal shifts
occur only when y = 0 in the comb model; to access different branches, walkers must return to the backbone. Subdiffusive behavior in the
backbone is a direct consequence of branches acting like traps.

[29,30,34], CTRW combined with fractal Brownian motion
[31,32], quenched-trap model and fractal lattices [33], and
CTRW combined with percolation theory [35]. In general,
these models share the idea of combining annealed (temporal)
and quenched (spatial or static) disorder mechanisms.

Another model of anomalous diffusion of particular impor-
tance to the present work is the comb model, a model that
emerged from studies of percolation threshold and anomalous
diffusion on fractal structures [36–39]. This model describes
a diffusive process on a comblike structure consisting of a
“backbone” (a single infinite line in the x direction) and
“branches” (parallel lines in the y direction that intersect the x
axis). The comb model is a simplified description of the fractal
geometry of percolation clusters, where the backbone repre-
sents the large bond and branches are the remaining bonds or
“dangling ends” of percolation clusters [Figs. 1(a) and 1(b)].
The comb model retains essential properties of diffusion on
fractals, with the advantage of providing exact results on such
complicated systems. Moreover, random walks on comblike
structures established the sojourn times of walkers in the teeth
as the underlying mechanism of anomalous diffusion in the
backbone.

Given the previously mentioned experimental findings and
because the quenched disorder is intrinsic to the comb struc-
ture, it is essential to account for annealed disorder in the
comb model. Here we propose such hybrid comb models by
generalizing the usual comb diffusion equation [40] via dif-
ferent fractional time-derivative operators. In our hybrid comb
models, different comblike structures describe quenched dis-
order, and fractional operators account for annealed disorder.
By exploring different configurations where fractional oper-
ators act on the branches, backbone, or simultaneously on
both, and also by replacing the usual comb structure by a
generalized fractal structure, we find a series of nontrivial
results that are useful for describing some recent empirical
results reported for anomalous diffusion. Among other find-
ings, we observe that these generalized comb models describe
restricted diffusion, Brownian diffusion, and crossovers from
subdiffusion to restricted or Brownian diffusions.

The rest of this manuscript is organized as follows. In
Sec. II, we define our generalized version of the comb model
and investigate its solutions under different situations. In
Sec. III, we consider a fractal grid in place of the single
backbone structure and explore the effects of this modification
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on the diffusive behavior. Finally, we conclude this work in
Sec. IV with a discussion and summary of our findings.

II. GENERALIZED COMB MODELS
WITH FRACTIONAL OPERATORS

The diffusion equation for a comb structure was pro-
posed by Arkhincheev and Baskin [40] and represents a two-
dimensional Einstein’s diffusion equation where the diffusive
term in the x direction is multiplied by a Dirac delta function
δ(y), that is,

∂

∂t
ρ(x, y; t ) = Dy

∂2

∂y2
ρ(x, y; t ) + δ(y)Dx

∂2

∂x2
ρ(x, y; t ). (1)

Because of the delta function, diffusion in the x direction
only occurs over the backbone structure (when y = 0). The
diffusion in the y direction creates the branch structures; a
walker can only leave a branch or access other branches by
returning to the backbone structure [Figs. 1(c) and 1(d)]. The
geometrical restrictions in Eq. (1) mimic all features of early
comb models, including subdiffusive behavior in the back-
bone. The trapping times over the branches are also equivalent
to a power-law behavior in the waiting-time distributions of a
CTRW. The solutions of Eq. (1) are related to a time-fractional
diffusion equation (with an anomalous exponent αx = 1/2)
describing the spreading behavior in the backbone [40–43].
The diffusion over the backbone is also described by a time-
fractional diffusion equation with exponent αx = 1/4 in a
three-dimensional comb structure and αx = 1/2N for an N-
dimensional case [41]. Extensions of Eq. (1) have been used
to obtain a fractional diffusion equation with an absorbent
term and a linear external force [44], as well as to deal with
generalized fractal structures in the backbone and branches
(namely the fractal comb model) [45–48].

In this context, we propose to generalize the comb model
by including different fractional time-derivative operators on
the diffusion terms, that is,

∂

∂t
ρ(x, y; t ) = Ft,y

(
Dy

∂2

∂y2
ρ(x, y; t )

)

+ δ(y)Ft,x

(
Dx

∂2

∂x2
ρ(x, y; t )

)
, (2)

where Ft,i{· · · } is an operator defined by the time derivative
of a convolution integral between a function f (x, y, t ) and a
memory kernel Ki(t ) (i ∈ {x, y}), that is,

Ft,i{ f (x, y; t )} = ∂

∂t

∫ t

0
f (x, y; t ′)Ki(t − t ′)dt ′. (3)

The use of fractional derivatives in front of spatial operators
is motivated by a possible connection with the linear-response
theory [49]. The memory kernel can also be connected
with the waiting-time distribution of CTRW and represents
a coarse-grained description of the environment’s random-
ness. Specifically, the kernel of the time-convoluted operator
represents a density memory (a property of a collection of
trajectories) and not a trajectory memory [50]. A derivation
of this integro-differential operator and the physical meaning
of the memory kernel are given by Sokolov and Klafter [51].
It is worth mentioning that different operators [52–54] have

been used to extend diffusion equations. For instance, the op-
erator

∫ t
0 f (x, y; t ′)Ki(t − t ′) dt ′ was considered by Sokolov

[52] for identifying memory kernels that lead to non-negative
solutions (safe ones) and those for which this condition is not
guaranteed (dangerous ones).

The memory kernels Ki(t ) define the integro-differential
operators in Eq. (2) and establish a connection with fractional
time-derivative operators. Thus Eq. (3) represents a unified
description for a broad class of situations where either singular
or nonsingular kernels describe different relaxation processes.
Moreover, distinct kernels for the x and y directions yield
anisotropic diffusion. Equations (2) and (3) recover the usual
comb model [Eq. (1)] when Kx(t ) = Ky(t ) = 1. In the usual
case, there are no memory effects, and geometrical restrictions
of the comblike structure are the only mechanism tied to the
anomalous diffusion [46,55].

Different choices for Kx(t ) and Ky(t ) imply in extending
the comb model to different contexts that combine quenched
and annealed disorders. One possibility is to consider power-
law functions such as

Ki(t ) = tαi−1

�(αi )
, (4)

which are directly related to the Riemann-Liouville fractional
operator [56] for 0 < αi < 1. This fractional operator has
been used to investigate several physical contexts, in particular
the ones related to anomalous diffusion [12,57,58].

Another possibility is to assume an exponential behavior
for the kernels

Ki(t ) = R(α′
i ) exp(−α′

i t ), (5)

where R(α′
i ) is a normalization constant. This choice corre-

sponds to the Caputo-Fabrizio operator with α′
i = αi/(1 − αi )

[59–61]. A remarkable feature of this exponential kernel is
its connection with resetting processes [61]. In particular, by
combining Eqs. (2), (3), and (5), we find

∂

∂t
ρ(x, y; t ) = Dy

∂2

∂y2
ρ(x, y; t ) + δ(y)Dx

∂2

∂x2
ρ(x, y; t )

− α̃[ρ(x, y, t ) − ϕ(x, y)], (6)

where αx = αy = α̃ and ϕ(x, y) is the initial condition. Equa-
tion (6) extends the standard expressions used to analyze re-
setting processes by including a geometric constraint between
the x and y directions. It is worth noticing that an exponential
kernel leads to the Cattaneo equation in the approach of
Sokolov [52], that is, a diffusion-wave equation different from
Eq. (6). The kernel Kαi (t ) ∝ Eα (−αtα ), where

Eα (z) =
∞∑

k=0

zk

�(αk + 1)
(7)

is the Mittag-Leffler function [56] with parameter α and
α a constant, somehow interpolates between the power-law
and exponential cases and has been recently associated with
fractional-time derivatives of distributed order [61]. It is
worth mentioning that these nonsingular kernels have been
used to investigate different contexts such as diffusion [61],
heat processes [62], groundwater flow [63], and electrical
circuits [64].
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We now focus on the solutions of Eq. (2) in the Fourier-
Laplace domain by using the Green function approach. Af-
ter, we analyze particular cases related to the previous ker-
nels. We consider Eq. (2) subjected to the initial condi-
tion ρ(x, y, 0) = ϕ(x, y), where ϕ(x, y) is a normalized func-
tion, that is,

∫∞
−∞ dx

∫∞
−∞ dy ϕ(x, y) = 1. We further assume

ρ(±∞, y; t ) = 0 and ρ(x,±∞; t ) = 0 as boundary condi-
tions. These unlimited boundary conditions avoid possible
effects of confinement in a limited domain, making more
explicit the impact of geometrical restrictions and fractional
operators on the spreading behavior.

To obtain the solutions of Eq. (2), we first apply the Laplace
transform [L{ρ(x, y; t )} = ∫∞

0 e−stρ(x, y; t ) dt = ρ̄(x, y; s)],
yielding

sρ̄(x, y; s) − ϕ(x, y)

= sD̄y(s)
∂2

∂y2
ρ̄(x, y; s) + δ(y)sD̄x(s)

∂2

∂x2
ρ̄(x, y; s), (8)

where D̄y(s) = DyK̄y(s) and D̄x(s) = DxK̄x(s). We next
apply the Fourier transform [F{ρ(x, y; t )} = ρ̃(kx, y; s) =∫∞
−∞ e−ikxxρ(x, y; t ) dx] on the x variable of Eq. (8), yielding

sD̄y(s)
d2

dy2
ρ̄(kx, y; s) − s

[
1 − δ(y)D̄x(s)k2

x

]
× ρ̄(kx, y; s) = −ϕ(kx, y). (9)

By using the Green function approach, the solution for Eq. (9)
is written as

ρ̄(kx, y; s) = −
∫ ∞

−∞
dy′ ϕ(kx, y′)Ḡ(kx, y, y′; s), (10)

where the Green function G(kx, y, y′; s) is the solution of

sD̄y(s)
d2

dy2
Ḡ(kx, y, y′; s) − [s + δ(y)sD̄x(s)k2

x

]
× Ḡ(kx, y, y′; s) = δ(y − y′) (11)

subjected to the condition Ḡ(kx,±∞, ȳ; s) = 0.
After some calculations, we can show that the solution for

Eq. (11) is

˜̄G(kx, y, y′; s) = − 1

2s
√
D̄y(s)

e
− 1√

D̄y (s)
|y−y′|

− D̄x(s)k2
x

2
√
D̄y(s)

e
− 1√

D̄y (s)
|y|Ḡ(kx, 0, y′; s), (12)

where

˜̄G(kx, 0, y′; s) = e
− 1√

Dy (s)
|y′|

s
[
Dx(s)k2

x + 2
√
Dy(s)

] (13)

represents the propagator for the backbone structure (at y =
0). The term Dy(s) in Eq. (13) indicates that the backbone
diffusion explicitly depends on the diffusion occurring along
the branches; in other words, memory effects on branches
directly affect the diffusion on the backbone.

The Green function related to Eq. (11) subjected to previ-
ous boundary condition is thus given by

Ḡ(kx, y, y′; s) = − 1

2s
√
D̄y(s)

e
− 1√

D̄y (s)
|y−y′ | + D̄x(s)k2

x

D̄x(s)k2
x + 2

√
D̄y(s)

1

2s
√
D̄y(s)

e
− 1√

D̄y (s)
(|y|+|y′|)

= − 1

2s
√
D̄y(s)

(
e
− 1√

D̄y (s)
|y−y′ | − e

− 1√
D̄y (s)

(|y|+|y′|))

− 1

s
[
2
√
D̄y(s) + D̄x(s)k2

x

]e
− 1√

D̄y (s)
(|y|+|y′|)

. (14)

After performing the inverse Fourier transform on x direction [F−1{ρ̃(kx, y; t )} = ρ(x, y; t ) = ∫∞
−∞ eikxxρ̃(kx, y; t ) dkx], we

obtain

G(x, y, y′; s) = − δ(x)

2s
√
D̄y(s)

(
e
− |y−y′ |√

D̄y (s) − e
− 1√

D̄y (s)
(|y|+|y′|))− 1

2s

√
2D̄x(s)

√
D̄y(s)

e
−
√

2
√

D̄y (s)

D̄x (s)
|x|

e
− 1√

Dy (s)
(|y|+y′|)

. (15)

The result in Eq. (15) is completely general and can be used to describe different diffusive processes depending on the
kernel of the integro-differential operator. For example, for K̄x(s) = 1/sαx and K̄y(s) = 1/sαy , the inverse Laplace transform
of Eq. (15) is

G(x, y, y′; t ) = − δ(x)

2
√
Dytαy

{
H1,0

1,1

[
|y − y′|√
Dytαy

∣∣∣(1− αy
2 ,

αy
2 )

(0,1)

]
− H1,0

1,1

[
|y| + |y′|√

Dytαy

∣∣∣(1− αy
2 ,

αy
2 )

(0,1)

]}

− 1

2
√

2Dx
√
Dy

∫ t

0

dt ′

(t − t ′)t ′α+
H1,0

1,1

⎡
⎣
√

2
√
Dytαy

Dxtαx
|x|
∣∣∣(1−α+,α− )
(0,1)

⎤
⎦H1,0

1,1

[
|y| + |y′|√

Dytγy

∣∣∣(0,
αy
2 )

(0,1)

]
, (16)
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where α+ = αx/2 + αy/4, α− = αx/2 − αy/4, and Hm,n
p,q [z|(ap,Ap)

(bq,Bq ) ] is the Fox H function [65]. The cases Kx(s) = 1/(s + α) and
Ky(s) = 1/(s + α) (where α′

x = α′
y = α) lead us to

G(x, y, y′; t ) = −δ(x)
∫ t

0
dt ′ k(t, t ′)

e−αt ′√
4πDyt

{
e
− |y−y′ |2

4Dyt ′ − e
− (|y|+|y′ |)2

4Dyt ′
}

−
∫ t

0
dt ′ k(t, t ′)

∫ t ′

0
dt ′′ |y| + |y′|√

8Dxt ′′√Dyt ′′
H1,0

1,1

[(
4Dy

D2
xt ′′

) 1
4

|x|
∣∣∣∣
(

1
4 , 1

4

)(
3
4 , 1

4

) ] e
− (|y|+|y′ |)2

4Dy (t ′−t ′′ )√
4π [Dy(t ′ − t ′′)]3

, (17)

with k(t, t ′) = α + δ(t − t ′) and Dx(y) = Dx(y)R(αx(y) ). Differently from Eq. (16), Eq. (17) has a stationary solution [a time-
independent solution Gst (x, y, y′) = limt→∞ G(x, y, y′; t )] given by

Gst (x, y, y′) = −
√

α

4Dy
δ(x)

(
e−√

α
Dy

|y−y′ | − e−√
α

Dy (|y|+|y′|))

−
√

α
√

α

8Dx
√

Dy
e
−
√

2α
Dx

√
Dy
α

|x|
e−√

α
Dy (|y|+|y′|)

. (18)

This result is obtained from an arbitrary condition, where

lim
s→0

K̄x(s) = const, lim
s→0

K̄y(s) = const,

which implies in lims→0 [sḠ(x, y, y′; s)] = Gst (x, y, y′).
Figure 2 illustrates the behavior of Eq. (10) when considering
the Green function of Eq. (18). In this stationary limit, the
solution in Eq. (10) is

ρst (x, y) =
∫ ∞

−∞
dx′
∫ ∞

−∞
dy′ ϕ(x′, y′)Gst (x − x′, y, y′). (19)

The MSD also carries information about the medium struc-
ture. We thus use the previous results to investigate how
the MSD in each direction changes under those different
scenarios. To do so and avoid transient behaviors related to the
initial position of the walkers, we consider the initial condition
ϕ(x, y) = δ(x)δ(y). Under these assumptions, the MSD in the
Laplace domain for each direction is

σ̄ 2
y (s) = 〈(y − 〈y〉)2〉 = 2D̄y(s)/s, (20)

σ̄ 2
x (s) = 〈(x − 〈x〉)2〉 = D̄x(s)

/
(s
√
D̄y(s)). (21)

FIG. 2. Behavior of the stationary distribution obtained from
Eq. (19) with Green function given by Eq. (18). For simplicity, we
consider the initial condition ϕ(x, y) ∝ e−x2/σ 2

x −y2/σ 2
y /(σxσy ), where

σx = σy = 1/5,
√

α/Dy = 1, and
√

α/Dx = 1 (in arbitrary units).

Equations (20) and (21) show that the MSD in the y direction
depends only on its memory kernel, while the MSD in the
x direction depends on both memory kernels. These features
naturally emerge in the time domain; indeed, by performing
the inverse Laplace transform, we find

σ 2
y (t ) = 2

∫ t

0
dt ′ Dy(t ′), σ 2

x (t ) = Dx√
Dy

∫ t

0
dt ′ ζx,y(t ′),

where

ζx,y(t ) = L−1

⎧⎨
⎩ K̄x(s)√

K̄y(s)

⎫⎬
⎭. (22)

These dependencies are a direct consequence of the comb
structure and are somehow related to the results of Ref. [66].
The authors of that work have simulated fractional Brownian
walks on a comblike structure and reported that memory
effects (associated with Hurst exponents) in x direction do
not affect the diffusive behavior in the y direction; but, in
the backbone, they found a nontrivial interplay between long-
range memories in x and y directions.

We now consider the behavior of the system in each direc-
tion. To do so, we note that the Green function for the prob-
ability distribution function along the backbone G1(x, t ) =∫∞
−∞ dy ρ(x, y, t ) satisfies the following generalized diffusion

equation:

∂

∂t
G1(x, t ) = Dx

2
√
Dy

∂

∂t

∫ t

0
dt ′ ζx,y(t − t ′)

∂2

∂x2
G1(x, t ′). (23)

Similarly, the corresponding generalized diffusion equa-
tion for the Green function along the branches G2(y, t ) =∫∞
−∞ dx ρ(x, y, t ) is

∂

∂t
G2(y, t ) = Dy

∂

∂t

∫ t

0
dt ′ Ky(t − t ′)

∂2

∂y2
G2(y, t ′). (24)

These two forms suggest that both Eqs. (23) and (24) have
similar mathematical properties. By following Refs. [67,68],
we can verify that the probability distribution functions
G1(x, t ) and G2(y, t ) are non-negative if 1/[sζ̄x,y(s)] and
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1/[sK̄y(s)] are completely monotone functions and 1/ζ̄x,y(s)
and 1/K̄y(s) are Bernstein functions. Moreover, by following
the results of Ref. [49], we can further verify that Eqs. (23)
and (24) fulfill the Nyquist theorem and, consequently, their
solutions are thermodynamically sound.

To investigate the interplay between mechanisms of an-
nealed (memory kernels) and quenched (comblike structure)
disorders, we start considering several definitions for the frac-
tional time operators. For the sake of comparison, it is worth
remembering that ordinary derivatives (usual comb model)
imply Kx(t ) = Ky(t ) = δ(t ), that in turn lead to σ 2

y (t ) ∝ t and
σ 2

x (t ) ∝ t1/2 [40].
We first consider the Riemann-Liouville operator, yielding

the kernels K̄αx (s) ∝ 1/sαx (0 < αx < 1) and K̄αy (s) ∝ 1/sαy

(0 < αy < 1). These memory kernels are related to the Green
function given by Eq. (16), and their corresponding MSDs are

σ 2
y (t ) = 2Dy L−1{s−αy−1} = 2Dy

tαy

�(1 + αy)
, (25)

σ 2
x (t ) = Dx√

Dy
L−1{s−αx+αy/2−1}

= Dx√
Dy

tαx−αy/2

�(1 + αx − αy/2)
. (26)

Equation (25) shows that the diffusion in branches is inde-
pendent of the backbone dynamics; it only depends on its
memory effects. However, the MSD in the backbone depends
on memory effects in both directions, as shown in Eq. (26).

By imposing the conditions of non-negativity to the cor-
responding solution, we find that αx > αy/2. To better under-
stand this condition, let us examine some limiting cases. When
αx = 1 (ordinary derivative in the backbone) and 0 < αy < 1
(memory effects in the branches), the backbone diffusion
is enhanced if 1/2 < 1 − αy/2 < 1. This result is intriguing
and counterintuitive because, as the branches act like traps,
we could initially presume that the slower the diffusion in
the branches, the more subdiffusive is the diffusion on the
backbone; but quite the opposite happens. When the spread
over the branches is subdiffusive, the walkers stay closer to the
backbone and their probability of returning to the backbone
increases, enhancing the diffusion in the x direction. This
phenomenon is related to the so-called “subdiffusion paradox”
reported in cell environments [69–71]. Although subdiffusion
reduces the exploration area, it increases the likelihood of
walkers to stay close to specific targets [72,73]. In contrast,
for 1/2 < αx < 1 (memory effects in the backbone) and αy =
1 (ordinary derivative in the branches), the spread in the
backbone is even more subdiffusive if 0 < αx − 1/2 < 1/2.
Thus the backbone subdiffusion is governed by the interplay
of two mechanisms: the trapping in the branches and the
memory effects in the backbone. Furthermore, an essential
feature of Eqs. (25) and (26) is scale invariance; that is, the
effects of geometrical restrictions and memory effects are the
same in all timescales. This last behavior is illustrated in Fig. 3
for αx = 1 and αy = 1 (solid black line).

As a second example, we investigate an anisotropic case
characterized by different memory kernels for x and y di-
rections. We maintain the same power-law kernel for the
backbone, that is, Kαx (s) ∝ 1/sαx (with 1/2 � αx < 1 to
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FIG. 3. Behavior of the MSD σ 2
x versus t for different kernels.

The solid black line refers to subdiffusion when K̄x (s) ∝ 1/sαx and
K̄y(s) ∝ 1/sαy , where we have chosen Dx/

√
Dy = 1, αx = 1, and

αy = 1. The dot-dashed blue line corresponds to the usual diffusion
obtained as the asymptotic behavior for K̄x (s) ∝ 1/sαx and K̄y(s) ∝
1/(s + α′

y ), where, for simplicity, we have chosen Dx/
√
DyR(αy ) =

1, αx = 1, and αy = 1. The dashed red line corresponds to
K̄x (s) ∝ 1/(s + αx ) with K̄y(s) ∝ 1/(s + αy ) (the case with station-
ary state), where we have chosen R(αx )Dx/

√
DyR(αy ) = 1, αx = 1,

and αy = 1.

ensure non-negative solutions), and consider an exponential
memory kernel Kαy (s) ∝ 1/(s + α′

y) for the branches, with
α′

y = αy/(1 − αy) and 0 < αy < 1. These choices correspond
to the Riemann-Liouville fractional operator in the x direction
and the Caputo-Fabrizio operator in the y direction. Under
these conditions, we find the MSDs

σ 2
y (t ) = 2Dy L−1

{
s−1

s + α′
y

}
= 2

Dy

α′
y

(1 − e−α′
yt ), (27)

σ 2
x (t ) = Dx√

Dy
L−1

{
s−αx−1

(s + α′
y)−1/2

}

= Dx√
Dy

tαx−1/2E−1/2
1,αx+1/2(−αyt ), (28)

where

E δ
α,β (z) =

∞∑
k=0

(δ)k

�(αk + β )

zk

k!
(29)

is the three-parameter Mittag-Leffler function [74] and (δ)k =
�(γ + k)/�(γ ) represents the Pochhammer symbol [74]. For
the calculations of Eqs. (27) and (28) we have used that [74]

L
{
tβ−1E δ

α,β (−νtα )
}
(s) = sαδ−β

(sα + ν)δ
, (30)

where Re(s) > |ν|1/α .
Equation (27) shows the isolated effects of the exponen-

tial memory kernel. We notice that the exponential term
approaches zero for long times, and the MSD thus reaches
a plateau of saturation. This behavior describes a confined
(localized, restricted, or corralled) diffusion, where α′

y can be
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associated with a saturation rate, and the asymptotic value of
the MSD represents the magnitude of the confinement region.
MSDs having the general form of Eq. (27), that is,

σ 2(t ) = A∞(1 − e−ξ t ), (31)

are well known to emerge in Ornstein-Uhlenbeck processes
[75] and restricted diffusion confined within reflecting bound-
aries [76]. However, the restricted diffusion observed here
occurs without external forces or finite boundary conditions,
a remarkable feature of the Caputo-Fabrizio operator that has
also been reported in Ref. [61].

The confined diffusion observed in Eq. (31) suggests a
relationship between the exponential kernels and stationary
states (stochastic localization phenomena). Indeed, the same
equation emerges in the work of Méndez and Campos [77],
where a CTRW model for diffusion with resetting (walkers re-
turn to the origin with a resetting probability r) was proposed.
A connection between fractional diffusion equations with
the Caputo-Fabrizio operator and diffusion with stochastic
resetting was also established in Ref. [61]. Méndez et al.
[78] also studied a CTRW on a comb structure subjected to
a bias parameter on the branches, where Eq. (31) appears as
an asymptotic behavior for the backbone diffusion when the
walker is biased to stay along the branches. The authors of
Ref. [66] verified that normal diffusion emerges on the back-
bone when a fractional Brownian motion with long-range an-
tipersistent correlations occurs on the branches. By studying a
minimal random walk model with infinite memory (walkers
preferentially return to previously visited sites), Boyer and
Solis-Salas [79] established a connection between long-range
memory and stationary states of MSD and demonstrated how
to infer memory strength use in animals (monkeys).

In this context, we can verify whether the relation between
the Caputo-Fabrizio operator and confined diffusion is valid
for the comb model from the evolution of Eq. (28). To do so,
we calculate the asymptotic limits of Eqs. (27) and (28) for
short and long times, that is,

σ 2
y (t ) ∼ 2Dy

{
α′

yt, t → 0,

1, t → ∞,
(32)

σ 2
x (t ) ∼ Dx√

Dy

{
tαx−1/2

�(αx+1/2) , t → 0,

tαx

�(αx+1) , t → ∞.
(33)

In previous calculations, we use the formula [80,81]

E δ
α,β (−z) = z−δ

�(δ)

∞∑
k=0

�(δ + k)

�[β − α(δ + n)]

(−z)−n

n!
, (34)

for 0 < α < 2 and z → ∞, from which we find the asymp-
totic behavior

E δ
α,β (−tα ) � t−αδ

�(β − αδ)
, t → ∞. (35)

Equations (32) and (33) show that Brownian motion governs
the branches’ dynamics at short times, promoting enhanced
subdiffusion in the backbone with 0 < α′

x − 1/2 < 1/2 and
α′

y = 1 (as discussed earlier). In the long-time limit, a station-
ary state emerges in the branches, and the backbone dynamics
only depends on its power-law memory kernel. In particular,

there is a crossover from subdiffusion [σ 2
x (t ) ∝ t1/2] to Brow-

nian diffusion [σ 2
x (t ) ∝ t] when αx = 1 (dot-dashed blue line

in Fig. 3). We thus find an intriguing result where the interplay
between geometrical restriction and memory effects (mecha-
nisms associated with subdiffusion) produces usual Brownian
motion. Similar behavior also emerges for power-law memory
kernels when αx → 1 and αy → 0, for suitable combinations
of Hurst exponents in fractional Brownian motions over a
comb structure (Fig. 5 of Ref. [66]), and without memory
effects when the branches of the comb are finite [15,82,83].
However, the results of Eqs. (32) and (33) are obtained with
no memory effects in the x direction and the stationary state
is a consequence of the exponential memory kernel valid for
0 < α′

y < 1.
The crossover is an essential feature of our model and

provides insights into the time scale that each mechanism
of subdiffusion is most relevant. As we already discussed,
the dynamics in short times is the same as the usual comb
model; therefore, subdiffusion is caused by geometrical re-
strictions. On the other hand, the exponential memory kernel
produces a dynamics similar to a random walk with a high
probability of returning to the origin. Since the backbone is at
the origin, walkers along the branches tend to stay confined
near the backbone because of memory effects, which in turn
produces Brownian diffusion on the backbone. The memory
effects along the branches thus dominate longer time scales.
This interpretation is somehow in agreement with the results
on anisotropic diffusion of entangled biofilaments reported
in Ref. [84], where the authors have written the following:
“The physical reason is that linear macromolecules become
transiently localized in directions transverse to their backbone
but diffuse with relative ease parallel to it.” In particular,
they obtained an empirical MSD ∼t0.2 for the transversal
direction and a MSD ∼t0.9 for the parallel direction of such
macromolecules. Tan et al. also reported a gradual crossover
from subdiffusion to Brownian diffusion on the mobility
of water molecules on protein surfaces [85]. They further
argued that a broad distribution of trapping times causes the
subdiffusion; however, water molecules start jumping to the
empty sites as the trappings become occupied, resulting in the
Brownian diffusion.

We can further investigate the effects of exponential
memory kernels simultaneously acting on the backbone and
branches, that is, K̄αx (s) ∝ 1/(s + α′

x ) and K̄αy (s) ∝ 1/(s +
α′

y). These memory kernels are related to the Green functions
given by Eqs. (17) and (18), where α′

x = α′
y = α is also a

condition ensuring the non-negativity of the corresponding
solution. If our interpretation of the exponential memory
kernel is valid, we expected stationary states to emerge even
in the backbone dynamics. This hypothesis is corroborated by
Fig. 2 and the results for MSD

σ 2
y (t ) = 2Dy L−1

{
s−1

s + α

}
= 2

Dy

α
(1 − e−αt ), (36)

σ 2
x (t ) = Dx√

Dy
L−1

{ √
s + α

s(s + α)

}
= Dx√

Dy

1√
α

erf (
√

αt ), (37)

where erf (x) is the error function. These results show that the
behavior on both directions reaches a stationary state for long
times, that is, σ 2

y (t ) and σ 2
x (t ) approach a constant plateau

022135-7



A. A. TATEISHI et al. PHYSICAL REVIEW E 101, 022135 (2020)

Fractal comb model

FIG. 4. Example of a fractal comb structure. The one-third Can-
tor set (at the third step of construction) provides the rule to locate the
backbones perpendicular to the y axis. The location of the branches is
distributed continuously along the backbones, that is, walkers access
the branches through any position on the backbones. This spatial
configuration characterizes a fractal grid.

when t → ∞. Figure 3 shows the behavior of σ 2
x (t ) for

different time scales (dashed red line). Once again, a crossover
characterizes the backbone dynamics and the system evolves
from subdiffusion to confined diffusion (stationary state).
The quenched mechanism dominates at short-time scales and
the annealed mechanism predominates in the long run. It is
noteworthy that confined diffusion on both x and y directions
has been experimentally observed in the crowded environment
of living cells such as in lateral diffusion of membrane recep-
tors [76] and diffusion of protein aggregates in live E. coli
cells [86].

III. GENERALIZED FRACTAL STRUCTURE
OF BACKBONES

We now focus on generalizing the quenched disorder
mechanism of the comb model [Eq. (2)] by changing its
geometrical restrictions. Instead of multiplying the diffusion
term in the x direction by a single delta function δ(y), we
consider a multiplication by

∑
l j∈Sν

δ(y − l j ) to obtain an
infinite number of backbones, where the position of the
backbones l j ( j = 1, 2, . . . ) belongs to a fractal set Sν with
fractal dimension 0 < ν < 1. These geometrical restrictions
characterize a fractal grid [46–48], as illustrated in Fig. 4 for
the one-third Cantor set (ν � 0.631) at the third step of the
iteration. Under these conditions, the diffusion equation for
the fractal comb model is

∂

∂t
ρ(x, y; t ) = Ft,y

(
Dy

∂2

∂y2
ρ(x, y; t )

)

+
∑
l j∈Sν

δ(y − l j )Ft,x

(
Dx

∂2

∂x2
ρ(x, y; t )

)
. (38)

We proceed by defining the generalized diffusion equation
governing the dynamics on the backbones. By applying the
Laplace transform in Eq. (38), we have

sρ̄(x, y; s) − ϕ(x, y)

= sDyK̄y(s)
∂2

∂y2
ρ̄(x, y; s)

+
∑
l j∈Sν

δ(y − l j )sDxK̄x(s)
∂2

∂x2
ρ̄(x, y; s). (39)

By following the procedures of Ref. [47] and considering
a suitable initial condition, we can represent the probability
distribution function as

ρ̄(x, y; s) = f̄ (x, s) exp

⎛
⎝− |y|√

DyK̄y(s)

⎞
⎠. (40)

Note that the exponential term carries information about the
diffusion in the branches. From Eq. (40), we find a relation
for the probability distribution of the x direction in the Laplace
domain, that is,

Ḡ1(x; s) = 2
√
DyK̄y(s) f̄ (x, s). (41)

On the other hand, we also have that Ḡ1(x, t ) =∫∞
−∞ dy ρ̄(x, y, t ) and by integrating Eq. (39), we find

sḠ1(x; s) − �(x) = sDxK̄x(s)
∂2

∂x2

∑
l j∈Sν

ρ̄(x, y = l j ; s), (42)

where �(x) = ∫∞
−∞ dy ϕ(x, y), and ρ̄(x, y = l j ; s) represents

the probability distribution function for the backbone in the
position l j .

The summation
∑

l j∈Sν
ρ̄(x, y = l j ; s) can be formally re-

placed by integration to fractal measure μν ∼ lν , where∑
l j∈Sν

δ(l − l j ) → 1
�(ν) l

ν−1 is the fractal density, that is,

dμν = 1
�(ν) l

ν−1 dl [87]. Therefore, from Eqs. (40) and (41),
we obtain

∑
l j∈Sν

ρ̄(x, y = l j ; s) =
∑
l j∈Sν

f̄ (x, s) exp

⎛
⎝− |l j |√

DyK̄y(s)

⎞
⎠

= f̄ (x, s)
1

�(ν)

∫ ∞

0
dl lν−1e

− l√
DyK̄y (s)

= f̄ (x, s)[DyK̄y(s)]ν/2

= 1

2D
1−ν

2
y

[K̄y(s)]−
1−ν

2 Ḡ1(x; s). (43)

We observe in Eq. (43) that the power-law exponents of the
diffusion coefficient and memory kernel of y direction con-
tain all information about the fractal structure of backbones.
Hence, by using the result of Eq. (43) in Eq. (42), we find

sḠ1(x; s) − �(x) = Dx

2D
1−ν

2
y

s
K̄x(s)

[K̄y(s)]
1−ν

2

∂2

∂x2
Ḡ1(x; s). (44)
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The inverse Laplace transform of Eq. (44) yields the gen-
eralized diffusion equation

∂

∂t
G1(x; t )=

(
Dx

2D
1−ν

2
y

)
∂

∂t

∫ t

0
dt ′ η(t − t ′)

∂2

∂x2
G1(x; t ′), (45)

where the memory kernel η(t ) depends on both annealed and
quenched disorder mechanisms, as given by

η(t ) = L−1

{
K̄x(s)

[K̄y(s)]
1−ν

2

}
. (46)

By using Eq. (45), we obtain the general expression for the
MSD of a comb structure related to the fractal dimension 0 <

ν < 1 in the Laplace domain, that is,

σ 2
x (t ) = 2

(
Dx

2D
1−ν

2
y

)
L−1

{
K̄x(s)

s[K̄y(s)]
1−ν

2

}
. (47)

We note again that probability distributions along the
backbones’ structure should be non-negative; therefore,

1/[sη̄(s)] = [K̄y(s)]
1−ν

2 /[sK̄x(s)] should be a completely

monotone function and 1/η̄(s) = [K̄y(s)]
1−ν

2 /K̄x(s) should be
a Bernstein function.

To investigate the isolated effects of geometrical restric-
tions of the fractal grid, we consider the case K̄x(t ) = K̄y(t ) =
1 [that is, K̄x(s) = K̄y(s) = 1/s], where the MSD recovers the
result of Ref. [46], that is,

σ 2
x (t ) = 2

(
Dx

2D
1−ν

2
y

)
L−1

{
s−1

s1− 1−ν
2

}
= 2

Dx

2D
1−ν

2
y

t
1+ν

2

�
(
1 + 1+ν

2

) .
(48)

The power-law behavior [σ 2
x (t ) � t

1+ν
2 ] indicates a scale in-

variance, and because the exponent depends on ν, we infer
that the fractal grid affects the spreading dynamics in all time
scales. The overall effect is a subdiffusive dynamics with 1

2 <
1+ν

2 < 1; however, the subdiffusion in a fractal grid is faster
than the usual comb model [σ 2

x (t ) � t1/2 [40], corresponding
to ν = 0 in our case]. This behavior occurs because the set
of backbones increases the possibilities of diffusion in the x
direction. For example, a fractal grid with ν � 0.631 (the one-
third Cantor set) implies σ 2

x (t ) � t0.816. Moreover, Eq. (48)
connects the anomalous diffusion exponent with the fractal
dimension of the backbone structure, a result that was ex-
perimentally observed in diffusion in porous and structurally
inhomogeneous media [88].

One example of the interplay between this generalized
geometrical restriction and the effect of memory kernels is
given by K̄x(s) = K̄y(s) = 1/sα . This choice yields a frac-
tional diffusion equation for a fractal grid given by

∂

∂t
ρ(x, y; t ) = RLD1−α

t

[
Dy

∂2

∂y2
ρ(x, y; t )

+Dx

∑
l j∈Sν

δ(y − l j )
∂2

∂x2
ρ(x, y; t )

]
, (49)

and whose MSD is

σ 2
x (t ) = 2

(
Dx

2D
1−ν

2
y

)
L−1

{
s− α+ν

2 −1
} = 2

(
Dx

2D
1−ν

2
y

)
t

α+ν
2

�
(

α+ν
2

) .
(50)

The power-law exponent α+ν
2 is associated with the two

anomalous diffusion mechanisms: memory effects (related
to α) and the fractal structure restriction (given by ν). The
interplay between these mechanisms produces subdiffusive
regimes between the limit cases of restricted and Brownian
diffusion, that is, 0 < α+ν

2 < 1. The case of a single backbone
(ν = 0) yields σ 2

x (t ) � tα/2, as reported in Ref. [89]. From
the general formula of Eq. (47), we further conclude that the
MSD along the x- direction is stationary (case of localization)

if K̄x(s) ∝ [K̄y(s)]
1−ν

2 , and that normal diffusion along the

x direction occurs for K̄x(s) ∝ s−1[K̄y(s)]
1−ν

2 . A remarkable
feature of these conditions is that both memory kernels must
have the same effects of geometrical restrictions.

IV. DISCUSSION AND CONCLUSIONS

Over this work, we showed that our generalized comb
models account for annealed and quenched disorder mecha-
nisms. We believe these comb models with fractional time-
derivative operators are a reasonable abstraction for systems
where the interplay between temporal and spatial disorders
is present. For these hybrid models, we considered different
memory kernels for the backbone and branch structures, and
a fractal generalization of the geometrical restrictions. We
obtained general solutions for the diffusion propagator and
the MSD in terms of these memory kernels. With these
solutions, we discussed particular cases based on the temporal
evolution of the MSD and inferred time scales associated
with each disorder mechanism. These results thus provide
theoretical knowledge about the importance of interactions
between geometrical restrictions and memory effects on
anomalous diffusion.

We argued that the behaviors obtained from our models
are consistent with other theoretical and experimental results.
In its usual form, the comb model is a subdiffusive model
with σ 2

x ∝ t1/2. However, depending on the memory kernels
and number of backbones (single or fractal set), our gener-
alized comb models also describe restricted diffusion, Brow-
nian diffusion, and display a crossover from subdiffusion to
these situations.

For power-law memory kernels, the MSD is scale invariant
and the diffusive regime depends on the values of memory
exponents 0 < αx < 1 and 0 < αy < 1 with αx > αy/2. Scale
invariance is also a feature of the fractal grid structure of
backbones. In this case, there is an enhancement of the
diffusion (when compared with the usual comb model) and
the anomalous exponent depends on the fractal dimension
( 1

2 < 1+ν
2 < 1). By including power-law memory effects on

the fractal grid, we obtained an anomalous exponent 0 <
α+ν

2 < 1 with α = αx = αy. Overall, these results from our
generalized comb models are consistent with simulations of
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fractal Brownian motion [66] and a biased CTRW [78] on
comblike structures.

When the memory kernel acting on the branches is expo-
nential, we showed that the behavior of the MSD in the y
direction is similar to those reported in diffusion with explicit
confinement (external forces or limited boundaries) or having
a bias to return to the origin. The spread in the branches thus
follows Brownian diffusion for short-time scales and becomes
confined near to the backbone for long times. Because of this
high probability of returning to the backbone, the long-time
behavior in x direction only depends on its memory kernel.
The overall effect of an exponential kernel is a crossover
between diffusive regimes. This crossover occurs from subd-
iffusion to Brownian diffusion when walkers have no memory
in the backbone. Thus we observed that the interplay between
two subdiffusion mechanisms (geometrical restrictions and
memory effects) may lead to the usual Brownian motion. This
crossover and its physical explanation also appear consistent
with experimental results of anisotropic diffusion of entangled
biofilaments [84] and the mobility of water molecules on
protein surfaces [85]. On the other hand, when an expo-
nential memory kernel acts on the backbone, we obtained a
crossover from subdiffusion to confined diffusion. This result
also appears consistent with the MSD observed in lateral
diffusion of membrane receptors [76] and diffusion of protein
aggregates in live E. coli cells [86]. Moreover, we found that

the confinement effects of exponential memory kernels are
independent of the parameters α′

y and α′
x.

In spite of its simplicity, our generalized comb model may
have an important role in the statistical mechanics of disor-
dered media. This model can be used as a simple explanation
for unusual transport properties caused by quenched disorder
or to annealed disorder. It also has the advantage of providing
exact solutions related to sub- and superdiffusive behaviors.
Our comb models are also relevant for investigating the in-
terplay between temporal and spatial disorder mechanisms
and for describing crossovers from subdiffusion to confined
or Brownian diffusion.
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