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Random point patterns are ubiquitous in nature, and statistical models such as point processes, i.e., algorithms
that generate stochastic collections of points, are commonly used to simulate and interpret them. We propose an
application of quantum computing to statistical modeling by establishing a connection between point processes
and Gaussian boson sampling, an algorithm for photonic quantum computers. We show that Gaussian boson
sampling can be used to implement a class of point processes based on hard-to-compute matrix functions which,
in general, are intractable to simulate classically. We also discuss situations where polynomial-time classical
methods exist. This leads to a family of efficient quantum-inspired point processes, including a fast classical
algorithm for permanental point processes. We investigate the statistical properties of point processes based
on Gaussian boson sampling and reveal their defining property: like bosons that bunch together, they generate
collections of points that form clusters. Finally, we analyze properties of these point processes for homogeneous
and inhomogeneous state spaces, describe methods to control cluster location, and illustrate how to encode
correlation matrices.
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I. INTRODUCTION

Despite their stochastic nature, quantum algorithms have
often been studied in contexts where their intrinsic ran-
domness is an obstacle rather than a benefit. For instance,
consider Shor’s factoring algorithm: it constructs states such
that, with high probability, their measurement outcomes can
be postprocessed to reveal the prime factors of an input
composite number [1]. The quantum computer is acting as a
sampler whose probability distribution is highly concentrated
on outcomes that reveal the solution to the factoring prob-
lem. However, it would be preferable to obtain the desired
answers with certainty rather than with high probability. Other
quantum algorithms can also be viewed in this light: Grover’s
search algorithm samples outputs that are likely to contain
a marked item in an unstructured database [2], the quantum
algorithm for linear systems of equations randomly outputs
large elements of the solution vector [3], and the quantum ap-
proximate optimization algorithm reveals bit strings that have
a high chance of being good approximations to the solution
of optimization problems [4]. Nevertheless, randomness in
quantum algorithms can be harnessed and turned into a feature
when applied to the right problems.

Stochastic processes occur in abundance, and understand-
ing them requires building models that can reproduce their
unique random properties. This is, in essence, the goal of
statistical modeling: to build accurate mathematical represen-
tations of random processes [5]. Point processes are statistical
models that generate random collections of data points ac-
cording to a given probability distribution [6–9]. Similarly,
point process analysis is a quantitative statistical method
that can be used for prediction and planning purposes [10].
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This finds applications in a variety of fields such as finance
[11–14], seismology [15–17], biology [18–20], medicine
[21–23], ecology [24–28], physics [29–32], and chemistry
[33–37].

Several point processes are based on probability distri-
butions that select points according to matrix functions. An
example is the determinantal point process (DPP) [38–40],
which, as the name suggests, is based on the determinant
as the underlying matrix function. The determinantal point
process was initially introduced in Ref. [38] to describe the
statistics of fermionic systems in which the probability distri-
bution of the particle positions depends on the absolute value
squared of a Slater determinant wave function [41]. DPPs also
appear in random matrix theory, where it has been shown that
the distribution of the eigenvalues of certain types of random
matrices is a DPP [42]. Point processes based on other matrix
functions such as permanents [43,44], α determinants [45,46],
and Pfaffians [47] have also been investigated.

Determinantal point processes have been studied in depth
by the mathematics community [48–57] and have found a
large number of applications, notably in machine learning
[58–62] and optimization [63–67]. The wide adoption of
DPPs is partially due to the fact that determinants can be ef-
ficiently calculated, leading to fast implementations of DPPs.
The same is not true for matrix point processes such as the
permanental point process: even if they are of great potential
interest, they find limited usage due to the hardness of their
numerical deployment. From a physical perspective, DPPs
have also been studied due to their connection to the math-
ematical properties of free fermions [38,68–72].

In this work, we introduce two classes of point processes—
the Hafnian and Torontonian point processes (HPPs and
TPPs)—and show that they can be natively implemented
using a photonic quantum algorithm known as Gaussian
boson sampling (GBS). The Hafnian is a generalization of
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FIG. 1. Illustration of a random point pattern in a honeycomb.
The sealed yellow cells contain developing bees and the dark holes
are empty cells that have been randomly vacated. The appearance of
empty cells can be modeled as a point process generating clusters of
points in the hexagonal lattice.

the permanent, and indeed HPPs contain permanental point
processes [43,44] as a special case. While DPPs generate
points that are scattered—like fermions obeying the Pauli
exclusion principle—HPPs and TPPs sample points that are
clustered—like bosons that cluster together. In the most gen-
eral case, implementing these point processes using classical
methods cannot be done in polynomial time. However, for
specific instances, efficient classical simulation algorithms
exist, which give rise to a another class of quantum-inspired
point processes. We study several properties of these point
processes through qualitative and quantitative analyses.

II. BACKGROUND

For completeness, we provide a brief background of both
point processes and GBS.

A. Point processes

Random point patterns occur ubiquitously in nature and
human affairs. An example is illustrated in Fig. 1, where we
show a random pattern of empty cells in a honeycomb. Point
processes provide a method to model and analyze these ran-
dom patterns. Informally, a point process is a mechanism that
randomly generates points among a set of possible outcomes.
More precisely, a point process P is a probability distribution
over subsets of a given state space M. We focus on discrete
point processes, in which case the state space is a finite set
M = {1, . . . , m} containing m members, and the distribution
P is defined over the power set 2M, the set of all 2m possible
subsets of M. Each subset of M is denoted by S ⊆ M.
A point process is thus uniquely specified by the choice of
distribution P and state space M.

In a uniformly random point process, P is a uniform
distribution over all subsets of M. When the number of points
in such a random point process is restricted to follow a Poisson
distribution with a constant intensity rate, the resulting point

process is a homogeneous Poisson point process (PPP). In
a PPP, the probability P is uniform over all subsets with an
equal number of points. A natural way to generate other types
of point processes is to introduce some level of interaction
between the points, which may favor clustering or repulsion.
An important class of such point processes is formed by
relating the probability of observing a particular output pattern
to matrix functions such as determinants and permanents.

We define a matrix point process as a point process where
the probability P (S) of observing an outcome S takes the form

P (S) = �(KS )

N , (1)

where K is an m × m symmetric kernel matrix, KS :=
[Ki, j]i, j∈S is the submatrix of K obtained by keeping rows
and columns corresponding to the outcome S, � is a matrix
function, with both � and K chosen to ensure that �(KS ) � 0
for all S ∈ 2M, and N is a normalization constant. Specific
classes of matrix point processes are determined by the choice
of matrix function and, among each class, the properties of the
resulting point process are uniquely determined by the choice
of kernel matrix. For instance, a determinantal point process
(DPP) is defined by the distribution [61]

P (S) = det(KS )

det(K + 1)
, (2)

where 1 is the identity matrix. Instead of the full probability
distribution, it is often more convenient to work with the
n-point correlation function of matrix point processes. For a
given subset r = (r1, . . . , rn) ⊆ M with n � m, it is defined
as [45]

ρn(r1, . . . , rn) = �(Kri,r j )i, j=1,...,n. (3)

The correlation function is the unnormalized probability of
observing the points (r1, . . . , rn) appearing among the ele-
ments of a sample S drawn from P . Therefore, it quantifies the
likelihood that these points appear together when generating
samples from the matrix point process. For example, the
correlation function of a DPP for two points in the state space,
referred to as the two-point correlation function, is given by

ρ2(r1, r2) = Kr1,r1 Kr2,r2 − ∣∣Kr1,r2

∣∣2
, (4)

where we have used the fact that the kernel matrix is sym-
metric. If K measures similarity between points, namely if
Kri,r j takes large values when ri and r j are similar to each
other, Eq. (4) shows that similar points are unlikely to occur
together, i.e., DPPs lead to diversification. The kernel matrix
in Eq. (1) can be complex Hermitian but we consider real
symmetric kernels as they are more relevant in practice.

B. Gaussian boson sampling

In a quantum-optical setting, the state of a system of m op-
tical modes can be uniquely specified by its Wigner function
W (q, p) [73,74], where q ∈ Rm are the so-called canonical
positions and p ∈ Rm are the canonical momenta of the state.
Gaussian states are quantum states with Gaussian Wigner
functions. Just like multidimensional Gaussian distributions,
Gaussian states are specified by a covariance matrix V and
a vector of means q̄, p̄. Besides being a positive definite
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covariance matrix, a valid quantum covariance matrix must
satisfy the uncertainty principle

V + i
h̄

2
� � 0, (5)

where � = ( 0 Im

−Im 0 ) is the symplectic matrix and h̄ is a
positive constant. It will be convenient to write the covariance
matrix in terms of the complex amplitudes α = 1√

2h̄
(q + ip) ∈

Cm. The variables α are said to be complex normal distributed
with mean ᾱ = 1√

2h̄
(q̄ + i p̄) ∈ Cm and covariance matrix �

[75], which furthermore also needs to satisfy the uncertainty
relation [76]

� + Z/2 � 0, (6)

where Z = (Im 0
0 −Im

). The covariance matrix � is customar-
ily parametrized as [75]

� =
[

� C
C∗ �∗

]
, (7)

where C is symmetric and � is Hermitian and positive definite.
Gaussian boson sampling (GBS) is a model of photonic

quantum computing where a Gaussian state is measured using
photon-number-resolving detectors. A general Gaussian state
can be prepared by using single-mode squeezing and displace-
ment operations together with linear-optical interferometry. It
was shown in Refs. [77,78] that when the modes of a Gaussian
state with zero mean (α = 0) are measured, the probability of
obtaining a pattern of photons S = (s1, . . . , sm), where si is
the number of photons in mode i, is given by

P (S) = 1√
det(σQ)

Haf(KS )

s1! . . . sm!
, (8)

where

σQ := � + I2m/2, (9)

K := X
(
I2m − σ−1

Q

)
, (10)

X :=
[

0 1|S|
1|S| 0

]
, (11)

and KS is the matrix obtained by repeating columns and rows
i and i + m of the kernel matrix K a number of times equal
to si. If si = 0, the rows and columns i and i + m are deleted
from K in order to form KS . The matrix function Haf(·) is the
Hafnian [79] which, for a 2m × 2m matrix K , is defined as

Haf(K ) =
∑

μ∈PMP

∏
(i, j)∈μ

Ki, j, (12)

where PMP is the set of perfect matching permutations,
namely the possible ways of partitioning the set {1, . . . , 2m}
into subsets of size 2. The Hafnian is #P-hard to approx-
imate for worst-case instances [80] and the runtime of the
best known algorithms for computing Hafnians scales expo-
nentially with the dimension of the input matrix [81]. The
difficulty of computing the Hafnian has been used to show
that sampling from general GBS distributions cannot be done
in classical polynomial time unless the polynomial hierarchy
collapses [77,82]. Finally, as shown in Ref. [77], it holds
that Haf(KS ) � 0 for all patterns S whenever K satisfies the
properties of Eqs. (9)–(11) and � is a valid covariance matrix.

In GBS, it is possible that more than one photon can be
observed in a given output mode, i.e., it is possible that si > 1.
In certain cases, only the location of the detected photons is
relevant, so it becomes convenient to set si = 1 for any si > 1.
Physically, this is precisely the effect of threshold detectors:
they “click” whenever one or more photons are observed. It
was shown in Ref. [83] that the resulting GBS distribution
when employing threshold detectors is given by

P (S) = 1√
det(σQ)

Tor(XKS ), (13)

where Tor(·) is the Torontonian, which for a 2m × 2m matrix
K is defined as

Tor(K ) =
∑

Z∈2M

(−1)|Z| 1√
det(1−KZ )

, (14)

where M = {1, 2, . . . , m} and 2M denotes its power set.

III. POINT PROCESSES WITH GAUSSIAN
BOSON SAMPLING

Once the mathematical concepts of point processes and
GBS have been placed alongside each other, their connection
is evident: a GBS device is a physical realization of a matrix
point process. A schematic illustration of this connection is
shown in Fig. 2. In this section, we make that connection
explicit and analyze the properties of the resulting point
process.

For any positive integer m, consider a state space consisting
of vectors (s1, s2, . . . , sm) such that each entry si is a non-
negative integer and the sum of all entries is an even number,
i.e.,

∑n
i=1 si mod 2 = 0. We define a Hafnian point process

(HPP) by the probability distribution

P (S) = 1√
det(σQ)

Haf(KS )

s1! . . . sm!
, (15)

where K is a 2m × 2m symmetric kernel matrix. An HPP is
therefore simply a matrix point process with the Hafnian as
the matrix function. The positivity of Haf(KS ) for K defined
according to Eq. (10) follows from writing Born’s rule in
phase space [77].

The Hafnian is a generalization of the permanent, in the
sense that the permanent of an arbitrary matrix K can be
expressed in terms of the Hafnian of a related matrix using
the identity

per(K ) = Haf

([
0 K

KT 0

])
. (16)

Consequently, HPPs generalize permanental point processes:
they contain them as a special case. Similarly, for a state space
M = {1, 2, . . . , m}, we define a Torontonian point process
(TPP) by the distribution

P (S) = Tor(XKS )√
det(σQ)

, (17)

with X as in Eq. (11). It has been shown that the quantity
given in the right-hand side of Eq. (17) is also non-negative
[83] and defines a probability distribution over the set S. We
refer to both HPPs and TPPs as GBS point processes. We now
study sufficient conditions to embed specific types of kernel
matrices into a GBS device.
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FIG. 2. Schematic illustration of a point process implemented with GBS. A symmetric kernel matrix K can be encoded by appropriately
selecting the squeezing levels r1, r2, . . . , rm and the interferometer unitary U . Each point in the state space is associated with an output mode
such that the modes where photons are observed determine the specific point pattern that has been sampled.

A. Kernel matrices

Williamson’s theorem [84] combined with the Bloch-
Messiah reduction [85] provide a recipe to prepare an arbitrary
Gaussian quantum state by using combinations of single-
mode squeezing, single-mode displacements, and linear optics
interferometers [74]. In general, to encode a given matrix into
a GBS device, the conditions are that the covariance matrix �

satisfies the uncertainty relation of Eq. (6) and that the kernel
matrix K is defined in terms of � according to Eq. (10).

Following Ref. [86], we consider circuits that take as inputs
single-mode Gaussian states characterized by a diagonal co-
variance matrix Vi = diag(V (i)

q ,V (i)
p ) in the qi, pi variables. In

order to satisfy the uncertainty relation in Eq. (5) the variances
must satisfy

V (i)
q V (i)

p � (h̄/2)2. (18)

A state that has both V (i)
q � h̄/2 and V (i)

p � h̄/2 is termed
“classical” since both of its variances have fluctuations above
the noise of the vacuum state.

Having prepared the inputs, single-mode Gaussian states
are sent through a linear-optical interferometer, which phys-
ically corresponds to an array of half-silvered mirrors and
waveplates and enables generation of entanglement between
the different modes. Mathematically, an interferometer can
be uniquely described by a unitary matrix U with dimen-
sion equal to the number of modes. With this description, we
can explicitly construct the covariance matrix of the output or,
more interestingly, we can directly construct the kernel matrix
K appearing in Eq. (10), which is given by

K =
[

B C
C∗ B∗

]
= KT , (19)

where
C = U diag(μ1, μ2, . . . , μm)U † = C†, (20)

B = U diag(λ1, λ2, . . . , λm)U T = BT , (21)

μi = 1−
(

1

1 + 2V (i)
q /h̄

+ 1

1 + 2V (i)
p /h̄

)
, (22)

λi = 1

1 + 2V (i)
p /h̄

− 1

1 + 2V (i)
q /h̄

. (23)

Now we consider in detail certain choices of input states and
the resulting kernel matrices.

1. Squeezed states

For squeezed states with squeezing level r, one of the
quadratures, say V (i)

p = h̄
2 e−2ri , is squeezed below the vacuum

level while the other quadrature is antisqueezed by exactly
the opposite amount V (i)

q = h̄
2 e2ri . Under these circumstances

it holds that μi = 0, λi = tanh(ri ), and

Ksq =
[

B 0
0 B∗

]
. (24)

The matrix B can be an arbitrary symmetric matrix except
for the restriction that its singular values must satisfy λi =
tanh(ri) ∈ [0, 1). To see this, consider the Takagi-Autonne
decomposition [87–89] of any complex symmetric matrix,
given by

B = U diag(λ1, λ2, . . . , λm)U T . (25)

The values λi � 0 are the singular values of V and the Takagi-
Autonne decomposition is therefore just a fine-tuned version
of the singular value decomposition for symmetric matrices.
Assuming λi < 1 we can always write tanh(ri ) = λi.

In the case of squeezed input states, the GBS probability
distribution satisfies

P (S) = 1√
det(σQ)

|Haf(BS )|2
s1! . . . sm!

. (26)

This formula states that Hafnian point processes can be de-
signed for any complex symmetric kernel matrix B. If instead
of bosons in a pure squeezed state one considered paired
fermions, like in BCS theory, the probability amplitude of
finding certain modes occupied would be given by a Pfaffian
[90].

The average number of points generated by a GBS point
process can be controlled by suitably rescaling the kernel
matrix: K → cK , where c > 0 is a constant. Letting N denote
the number of points generated, the average number of points
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E(N ) is

E(N ) =
m∑

i=1

ni, (27)

where ni = sinh2(ri ) is the mean number of points in each
mode and ri is the squeezing parameter for mode i. Thus E(N )
can be written as

E(N ) =
m∑

i=1

sinh2(ri ) =
m∑

i=1

tanh2(ri )

1 − tanh2(ri )
. (28)

Rescaling the kernel matrix of Eq. (24) with c gives

cλi = tanh(ri ) (29)

and the average number of points for the squeezed state
satisfies

E(N ) =
m∑

i=1

(c λi )2

1 − (c λi )2
, (30)

which can be solved for c to set any desired average number
of points.

2. Thermal states

Single-mode thermal states are characterized by a covari-
ance matrix satisfying V (i)

p = V (i)
q = h̄(n̄i + 1

2 ), where n̄i is the
mean photon number of mode i. For these states we also have
μi = n̄i

1+n̄i
, n̄i � 0, λi = 0, and

Kth =
[

0 C
CT 0

]
, (31)

C = U diag(μ1, μ2, . . . , μm)U T . (32)

Except for proportionality constants, the matrix C can be
made proportional to an arbitrary positive semidefinite com-
plex matrix since μi � 0 in Eq. (20). Finally, using Eq. (16),
we conclude that a GBS device with thermal states as input
can be used to sample from a permanental point process
characterized by the distribution

P (S) = 1√
det(σQ)

per(CS )

s1! . . . sm!
, (33)

where C is an arbitrary positive semidefinite kernel matrix.
Note that per(CS ) � 0 if C is positive semidefinite (cf. p. 51 of
Ref. [80]). The average number of points in this case satisfies

E(N ) =
m∑

i=1

cμi

1 − cμi
, (34)

where c is the rescaling constant of the kernel matrix.

3. Squashed states

Squashed states are single-mode states with the prop-
erty that the variance in both position and momentum are
above vacuum fluctuations, i.e., V (i)

q ,V (i)
p � h̄/2 and V (i)

p �=
V (i)

q . They differ from squeezed states, where one quadra-
ture has below-vacuum fluctuations, and from thermal states,
where V (i)

p = V (i)
q . We consider the specific situation where

V (i)
q = h̄/2 for all i, in which case

μi = λi = 1

2
− 1

1 + 2V (i)
p /h̄

. (35)

We parametrize V (i)
p = h̄

2 exp(2ri) with ri � 0 and restrict the
interferometer such that it is characterized by a real orthogonal
matrix O. We then have

C = B = 1
2 O diag(λ1, λ2, . . . , λm)OT , (36)

Ksqsh =
[

C C
C C

]
. (37)

Except for proportionality constants, the matrix C can be
chosen to be an arbitrary positive semidefinite real matrix.
This gives rise to an HPP with probability distribution

P (S) = 1√
det(σQ)

Haf(Ksqsh,S )

s1! . . . sm!
. (38)

When C is a symmetric positive semidefinite matrix, as it is
here, Haf(Ksqsh,S) � 0 (cf. p. 96 of Ref. [80]). The average
number of points satisfies

E(N ) =
m∑

i=1

(2cλi )

1 − (2cλi )
, (39)

where, as before, c is the rescaling constant of the kernel
matrix.

B. Quantum-inspired point processes

In general, the probability distribution of Eq. (15) cannot
be sampled from in classical polynomial time, in which case
photonic quantum devices are needed to implement GBS
point processes. Nevertheless, as we now show, for kernel
matrices satisfying specific properties, the resulting point pro-
cesses can be implemented in polynomial time using classical
computers. The resulting algorithms are efficient quantum-
inspired point processes. The main idea is that classical
Gaussian states, i.e., states whose variances are above vacuum
level for both quadratures, can be represented in terms of
probability distributions over states whose interaction through
linear-optical interferometers can be straightforwardly com-
puted.

Similar to the Wigner function, any single-mode quantum
state τ can be uniquely represented in terms of the so-called P
representation

τ =
∫
C

d2α P(α)|α〉〈α|, (40)

where |α〉〈α| represents a coherent state with parameter α.
Coherent states are Gaussian states with variances V (i)

q =
V (i)

p = h̄/2 and complex amplitude α. The function P(α) is
a quasiprobability distribution in the sense that it can take
negative values, but there exist states for which it is positive
over its entire domain. In such cases, the right-hand side
of Eq. (40) can be interpreted as a probability distribution
over coherent states. Following a result of Ref. [86], if a
single-mode Gaussian state τ is classical, i.e., with vari-
ances V (i)

p ,V (i)
q � h̄/2, then it has a positive P function. This
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FIG. 3. Samples generated with (a) determinantal, (b) Poisson,
and (c) Torontonian spatial point processes in a one-dimensional
space containing 20 points. DPP samples have points that are scat-
tered and spread out in space. PPPs treat all patterns uniformly, so
both clustering and repulsion are typically present. For TPPs, sample
points are likely to occur in clusters.

includes thermal states and squashed states, whose P func-
tions are respectively given by

Pth(α) = 1

π n̄
exp

(
−α2

R + α2
I

n̄

)
, (41)

Psqsh(α) = δ(αR)√
π (e2r − 1)/2

exp

(
− α2

I

(e2r − 1)/2

)
, r � 0,

(42)

where αR and αI are respectively the real and imaginary
parts of α and δ(α) is the Dirac delta function. States with
a positive P representation can be prepared by sampling the
random variable α with probability density function P(α)
and then preparing the resulting state |α〉 〈α|. If the inputs of
an m-mode interferometer characterized by a unitary U are
independent coherent states with parameters α1, α2, . . . , αm,
the output states are also independent coherent states with
parameters β1, β2, . . . , βm, where

βi =
m∑

j=1

Ujiα j . (43)

Finally, the photon number distribution of a coherent state
with parameter β is a Poisson distribution with mean |β|2,
so a sample photon pattern can be obtained by sampling each
mode independently according to its Poisson distribution.

The classical sampling algorithm for Gaussian states with
positive P representation works as follows.

(1) For each mode i = 1, 2, . . . , m with input state τi =∫
C d2α Pi(αi )|αi〉〈αi|, sample αi according to the distribution

Pi(αi).
(2) For each mode, compute the output parameter βi =∑m
j=1 Ujiα j and sample the photon number si from a Poisson

distribution with mean |βi|2.
(3) Return the sample S = (s1, s2, . . . , sm).
For thermal and squashed states, the distributions P(α) of

Eqs. (41) and (42) are Gaussian in the parameters αR and αI ,
so this sampling can be done in O(1) time for each mode.
Similarly, sampling from Poisson distributions can be done
in O(1) for each mode. The overhead of the algorithm arises
from the complexity of computing the parameters β, which
in total takes only O(m2) time. The asymptotic overhead
therefore arises from the requirement to diagonalize the kernel
matrix, which requires O(m3) time—the same asymptotic
complexity as known algorithms for determinantal point pro-
cesses.

As shown in Eq. (33), GBS with thermal states gives rise to
a permanental point process for positive semidefinite and real
kernel matrices. Our method is thus an efficient algorithm for
implementing these permanental point processes, running in
O(m3) time.

IV. PROPERTIES OF GBS POINT PROCESSES

We now investigate the general properties of GBS point
processes. Following the discussion in Sec. II A, the correla-
tion function of an HPP is defined as

ρn(r1, . . . , r2n) = Haf
(
Kri,r j

)
, (44)

where 2n refers to the number of points generated by the HPP.
Similarly, the two-point correlation function is

ρ2(r1, r2) = Haf

([
Kr1,r1 Kr1,r2

Kr2,r1 Kr2,r2

])
= Kr1,r2 . (45)

According to Eq. (45), when the kernel matrix is constructed
to quantify the similarity between the points, HPPs select pairs
of similar points with higher probability. Note that Kr1,r2 � 0

FIG. 4. Samples generated with (a) determinantal, (b) Poisson, and (c) Torontonian spatial point processes in a two-dimensional space
containing 100 points. DPP samples have points that are scattered and spread out in space. PPPs treat all patterns uniformly, so both clustering
and repulsion are typically present. For TPPs, sample points are likely to occur in clusters.
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FIG. 5. Normalized distributions of the nearest-neighbor dis-
tance for (a) determinantal, (b) Poisson, and (c) Torontonian spatial
point processes in a two-dimensional space containing 100 points.
We set a value of σ = 1 for the kernel matrix parameter in Eq. (46).
The statistics were taken over ten independent samples and the bars
correspond to one standard deviation. For DPPs, the most common
nearest-neighbor distance is noticeably larger than those for PPPs
and TPPs, showcasing the scattering property of DPPs. Conversely,
the significant majority of TPP points have their nearest neighbor at
the closest possible distances, a signal of the clustering property of
this point process.

for all valid kernel matrices. This indicates that, as expected,
HPPs sample points that are clustered together, i.e., are more
similar, with higher probability. The same clustering property
also holds for TPPs, since the coarse graining that maps HPPs
to TPPs leaves the interaction between neighboring points
unaffected. Implementing point processes with this form of
collective clustering can be done natively with GBS and, in
special cases, with quantum-inspired methods. In this section,
we explore the properties of the GBS point processes for
several choices of state spaces and kernel matrices.

A. Homogeneous state spaces

We study spatial point processes where the state space is a
set of points distributed uniformly in a two-dimensional space
and the kernel matrix has elements given by [91]

Ki, j = e−‖ri−r j‖2/σ 2
, (46)

FIG. 7. Normalized distributions of the Voronoi cell areas for
(a) determinantal, (b) Poisson, and (c) Torontonian point processes
in a two-dimensional space containing 100 points. We set a value
of σ = 1 for the kernel matrix parameter in Eq. (46). The statistics
were taken over ten independent samples and the bars correspond
to one standard deviation. DPPs have a high peak in the distribution,
indicating that the Voronoi cells have roughly the same area since the
points are scattered evenly. For TPPs, there is a significantly large
probability of small cell areas, which is to be expected when the
patterns form several clusters of nearby points. The PPP distribution
reflects the intermediate level of inhomogeneity in the PPP cell sizes,
compared to the DPP and TPP samples.

where ri = (xi, yi ) is the coordinate vector of the ith point and
σ is a parameter of the model. In this scenario, similarity
is determined in terms of spatial proximity: points that are
close to each other are assigned large entries in the kernel
matrix, with similarity decaying exponentially with distance.
Now, we compare and analyze the statistical properties of the
patterns that appear when employing determinantal, Poisson,
and Torontonian point processes. Here and throughout the
rest of the paper, DPPs are implemented using the algorithm
of Ref. [61] and TPPs are implemented by employing the
GBS simulation algorithm of Refs. [83,92,93]. As discussed
previously, because the points generated with the PPP are
distributed uniformly, both clustered and dispersed groups of
points are equally likely to be observed. Conversely, the DPP
point patterns are scattered over the whole state space, while
the TPP points form well-defined clusters. Figures 3 and 4
illustrate typical samples from each of these point processes,

FIG. 6. Examples of Voronoi cell diagrams for points obtained from (a) determinantal, (b) Poisson, and (c) Torontonian point processes in
a two-dimensional space containing 100 points. We set a value of σ = 1 for the kernel matrix parameter in Eq. (46). DPPs lead to Voronoi cells
that have comparable areas, whereas TPPs lead to cells that have either small areas (around clusters) or very large areas (in between clusters).
The PPP cells are also inhomogeneous but the level of size variation is smaller than that in the TPP sample.
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FIG. 8. Samples generated with (a) determinantal, (b) Poisson, and (c) GBS-inspired permanental point processes in a two-dimensional
space containing 2500 points. DPP samples have points that are scattered and spread out in space. PPPs treat all patterns uniformly, so both
clustering and repulsion are typically present. For the GBS-inspired PerPP, sample points are likely to occur in clusters of nearby points.

which reflect their expected behavior. More examples of such
point patterns are provided in the Appendix.

Numerical evidence of the clustering properties of TPPs
can be obtained by analyzing the distributions of the nearest-
neighbor distances, N (r), which characterize the probability
of finding the closest neighbor of a point at a distance r. In
Fig. 5, we report the empirical frequencies of nearest-neighbor
distances for the determinantal, Poisson, and Torontonian
point processes over 10 samples. The N (r) for the TPP has
a peak at the smallest possible distances between neighbors,
showing that a large fraction of the points generated by the
TPP have at least one neighbor in the closest possible position
on the discrete state space. The N (r) curve drops significantly
for larger distances due to the small probability of observing
scattered points in the TPP samples. The N (r) obtained for the
DPP has a peak at a relatively large distance because the points
generated by a DPP repel each other. The PPP N (r) is more
uniform, compared to the TPP one, due to the comparable
probability of finding points at small and large distances from
each other.

These features are also reflected in the Voronoi diagrams
of the samples, which are shown in Fig. 6. The majority of
the cells in the DPP diagram have similar sizes due to the
spread-out distribution of the points in the state space. In
the PPP diagram, the homogeneity of the cell sizes decreases
compared to the DPP and, in the TPP diagram, both very small
and very large cell sizes are observed due to the appearance
of point clusters. The normalized distributions of the areas
of the Voronoi cells computed for 10 samples obtained from
these point processes are shown in Fig. 7. These distributions
provide further numerical evidence for the lower homogeneity
of the TPP Voronoi cell sizes compared to DPP and PPP
results, again due to the clustering of the points in TPPs.

Classical simulation of TPPs is generally intractable due
to the computational hardness of calculating Torontonians of
arbitrary kernel matrices. However, since the kernel matrix of
spatial point processes is positive semidefinite, the methods
explained in Sec. III B for sampling thermal states allow
the application of a quantum-inspired spatial point process
for large state spaces. A typical sample generated with the

FIG. 9. Samples generated with (a) determinantal, (b) Poisson, and (c) Torontonian point processes in a two-dimensional inhomogeneous
space containing two dense clusters and a sparse random background. The parameter σ in the kernel matrix in Eq. (46) was set to 1. The DPP
points are spread out in space and the PPP points are located in both dense and sparse regions, while the TPP points are all located in the dense
regions.
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FIG. 10. TPP point pattern sampled with a kernel matrix that
has been rescaled according to a Gaussian density background. The
darker regions correspond to higher density.

quantum-inspired algorithm for permanental point processes
(PerPPs) is presented in Fig. 8 for a larger state space con-
taining 2500 points, along with the corresponding DPP and
PPP samples. The PerPP indeed generates clustered point
patterns analogous to the TPP ones. This makes quantum-
inspired point processes the preferable method for efficient
modeling of clustered point patterns for positive-semidefinite
kernel matrices. An implementation of the PerPP algorithm is
discussed in Ref. [94].

B. Inhomogeneous state spaces

In the case of an inhomogeneous state space, i.e., a state
space where points are not evenly separated, TPPs with
a kernel matrix defined in Eq. (46) sample from regions
containing many nearby points with high probability. This
is in contrast with previous examples where clusters were
equally likely to appear in any regions of the state space. In
Fig. 9, samples generated from the three point processes for
an inhomogeneous state space formed based on two dense

clusters and a sparse random background are presented. The
state space contains two clusters with 50 points each gener-
ated from Gaussian distributions centered at (x = 2, y = 2)
and (x = 6, y = 6), respectively, and 50 randomly generated
points with coordinates 0 � x, y � 10. The standard deviation
of the cluster points is set to 0.5. The TPP sample assigns a
high probability to the dense clustered points. The PPP sample
also contains small clusters due to the random nature of the
process. However, the points generated by DPP are fairly
scattered.

C. Cluster location

Kernel matrices have a central effect on the properties
of matrix point processes. In the examples considered so
far, the elements of the kernel matrices were functions of
the Euclidean distance between the points of a spatial state
space. However, the components of the kernel matrix can
be designed to represent additional features. For instance,
in a homogeneous state space where the points are evenly
distributed, TPP outputs contain local clusters in regions of
the state space without any preference for where these clusters
are located. To introduce control over the location of clusters,
the kernel matrix can be rescaled to favor the appearance of
points in hotspot regions.

One method of adding control over the location of point
clusters is to assign a density to each point in state space,
resulting in a density vector λ = (λ1, λ2, . . . , λm), with λi �
0. In this case, the kernel matrix of Eq. (46) can be adapted to

Ki, j = λiλ je
−‖ri−r j‖2/σ 2

. (47)

We apply a TPP with this kernel matrix to generate samples
in a homogeneous state space defined with discrete points
distributed evenly in a 10 × 10 uniform grid. Each point in
this space was assigned a density that was obtained from a
Gaussian distribution with a standard deviation of 3.0 and
centered at (x = 5, y = 5). We included the kernel matrix of
Eq. (47). The TPP samples generated with the resulting kernel
matrix produce points that are clustered in the high-density
areas of the state space. An example of this statistical model

FIG. 11. Typical samples of correlation matrices of stocks selected by applying (a) determinantal, (b) Poisson, and (c) Torontonian point
processes. The kernel matrix used to implement the point processes is the correlation matrix constructed from the market data of the stocks of
the S&P 500 index [95]. The point process samples are subsets of stocks, shown here by their stock symbols. For each subset, we display the
corresponding correlation matrix. Lighter points correspond to large entries of the correlation matrix. The TPP sample contains stocks that are
highly correlated, while the DPP and PPP samples contain stocks with lower levels of correlation.
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DPP

PPP

TPP

(a)

(b)

(c)

FIG. 12. Samples generated with determinantal, Poisson, and Torontonian spatial point processes in a two-dimensional space containing
100 points. DPP was set to generate 10 points for each sample. The patterns generated with PPP and TPP usually contain different numbers of
points but only those samples that contained 10 points are shown here for consistency.
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is shown in Fig. 10, where we illustrate a typical TPP sample
of points.

D. Correlation between points

The state space of a matrix point process can be designed
to represent objects that are not necessarily actual points in
a physical space. In fact, the state space can correspond to
any collection of items. Additionally, kernel matrices may
represent more general forms of correlations between points,
not just those due to spatial proximity. As an example,
here we apply TPP to a correlation matrix constructed from
publicly available pricing data for stocks [95]. To construct
the correlation matrix, we take a vector of returns R j =
(R1, j, R2, j, . . . , Rn, j )T , where Ri, j is the return of stock i on
the jth day. The correlation matrix � is given by

� = 1

n

n∑
j=1

R jRT
j . (48)

We use this correlation matrix directly as the point process
kernel matrix. In this setting, point patterns correspond to sub-
sets of stocks, which we illustrate in terms of their respective
covariance matrix. The point patterns generated by TPPs ap-
plied with such kernel matrices are expected to contain stocks
with higher levels of correlations, i.e., the clusters correspond
to collections of correlated stocks. Typical samples from DPP,
PPP, and TPP are shown in Fig. 11. A sample in this context is
a subset of stocks, illustrated by the corresponding correlation
matrix. Comparison of the TPP result with those containing
the same number of stocks selected by DPP and PPP indicates
the appearance of more correlated stocks in the TPP sample.

V. CONCLUSIONS

We have proposed an application of quantum computing
to statistical modeling by introducing a class of point pro-
cesses that can be implemented with special-purpose pho-
tonic quantum computers. These point processes are gen-
erally intractable to implement with conventional methods
but, as we have shown, they can be efficiently implemented
with GBS devices. For models with positive semidefinite
kernel matrices, we have developed fast quantum-inspired
algorithms whose runtime is cubic in the size of the state
space. This includes an efficient algorithm for permanental
point process which did not exist previously in the literature.
Our results open up the possibility of a wider application
of point processes that generate clustered data points, which
were previously less explored due to the challenges in their
implementation.

Point processes can be employed to provide insights into
stochastic phenomena of interest, represent patterns with de-
sired properties, or help with the identification of specific

structures. Besides these general applications, the GBS point
processes developed here can be implemented in many other
different scenarios. Further work is required to fully under-
stand and quantify the advantages of using GBS in these
contexts, but our results already give an insight of the scope
of this photonic quantum technology. For example, kernel
matrices play a key role in determining the properties of the
generated point patterns. We focused our attention on kernel
matrices that represent the similarity between the points, a
specific choice that was adopted because clustering of the
resulting point patterns was important for the applications
we considered. However, many other options are possible:
kernel matrices can reflect differences between points, they
can represent graphs in the form of adjacency matrices as in
Refs. [96–100], or they can be trained from data to produce
desired patterns.

The fundamental connection between point processes and
GBS can also be harnessed from another perspective. The
statistical features of the point processes that have been
analyzed analytically and numerically here can be used as
indicators for validating the correctness of physical GBS
machines. For instance, a GBS point process implemented
with the kernel matrices used here will result in point patterns
with enhanced aggregation of points. Accordingly, any GBS
device programed according to such matrices should output
clustered point patterns, a feature that if verified in an actual
implementation can be used as an initial signal of the proper
functioning of the device.

From a fundamental perspective, our work brings the con-
nection between statistical modeling and physical systems
full circle: not only can mathematical models be used to
simulate natural processes, physical systems themselves can
be engineered and programed to implement abstract models.
Remarkably, this is ultimately possible by controlling the
behavior of fundamental particles—photons—and mediating
their interactions via macroscopic matter.
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APPENDIX

Matrix point process samples are provided in Fig. 12 to
visually illustrate the typical features of the point patterns and
complement the results presented in Sec. IV. The samples
were generated by using the kernel matrix in Eq. (46) with
σ = 1. Inspection of the patterns demonstrates that the points
generated by DPP are typically scattered and spread out in
space, the PPP patterns contain both clustering and repulsion,
and clustering of the points is more probable in TPP samples.
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