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Fluctuations and self-averaging in random trapping transport: The diffusion coefficient
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On the basis of a self-consistent cluster effective-medium approximation for random trapping transport, we
study the problem of self-averaging of the diffusion coefficient in a nonstationary formulation. In the long-time
domain, we investigate different cases that correspond to the increasing degree of disorder. In the regular and
subregular cases the diffusion coefficient is found to be a self-averaging quantity—its relative fluctuations
(relative standard deviation) decay in time in a power-law fashion. In the subdispersive case the diffusion
coefficient is self-averaging in three dimensions (3D) and weakly self-averaging in two dimensions (2D) and
one dimension (1D), when its relative fluctuations decay anomalously slowly logarithmically. In the dispersive
case, the diffusion coefficient is self-averaging in 3D, weakly self-averaging in 2D, and non-self-averaging in
1D. When non-self-averaging, its fluctuations remain of the same order as, or larger than, its average value. In the
irreversible case, the diffusion coefficient is non-self-averaging in any dimension. In general, with the decreasing
dimension and/or increasing disorder, the self-averaging worsens and eventually disappears. In the cases of
weak self-averaging and, especially, non-self-averaging, the reliable reproducible experimental measurements
are highly problematic. In all the cases under consideration, asymptotics with prefactors are obtained beyond the
scaling laws. Transition between all cases is analyzed as the disorder increases.

DOI: 10.1103/PhysRevE.101.022132

I. INTRODUCTION

The problem of hopping transport or diffusion of particles
in a system with random traps is quite common in the kinetics
of condensed media. Some examples are the exciton migration
in molecular crystals, in amorphous solids, and in biological
systems, and sensitized luminescence and photochemistry,
conductivity of extrinsic semiconductors, spin diffusion, and
kinetics of diffusion-controlled reactions [1–6].

Such processes are studied in the frameworks of chemical
kinetics (both classical and fluctuational) [1,7–10], and of the
stochastic transport theory of disordered systems [2–6,11–46].
In the latter case the rigorous description of the incoherent
(Markov) hopping can be constructed on the basis of the
master equation [2–6]. The analogy with the quantum theory
of disordered systems makes possible the use of the Green’s
function technique [11–17,19–26,31–33].

Most complete is the study of symmetric transition rates
that correspond to the structural disorder [2–5,11,13]. Less
studied is the case of the nonzero spread of energy levels,
when the hopping rate is asymmetric in site indices between
which the transfer takes place [6,12,14–16].

An important particular case of asymmetric transition rates
is the transport with random trapping. Diffusion with a chem-
ical reaction (equivalent to trapping by mobile sinks) has been
considered by Smoluchowski [7] within an approximation
of mean-field type. The exact decay of the concentration of
the surviving particles in the fluctuation regime at long time
≈ exp[−const t d/(d+2)] has been found in Refs. [8,9]. The
approach to equilibrium in a reversible chemical reaction [10]
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at long time (trapping corresponds to one of the components
being frozen) has been demonstrated to be of a slow power-
law type ≈(Dt )−d/2.

A diagram technique has been developed for exciton mi-
gration in a solution with sinks [11,12], and two- and three-
site self-consistent approximations have been built. In one
dimension, the hopping on a chain with traps has been studied
rigorously in Refs. [15,16]. A diverse evolution in a system
with diffusion, annihilation, and reproduction of particles has
been investigated [17,18]. The spatial evolution of particles
diffusing in the presence of traps has been studied [19]. The
effect of the applied electric field on the trapping kinetics has
been analyzed [20].

For the problem of particle migration on a lattice with
random traps (random positions, random depths), we have
built a self-consistent cluster effective-medium approximation
[21–26]. We demonstrated that the method is accurate in most
limiting cases. On this basis, we analyzed the evolution of
the diffusion coefficient and the kinetics of relaxation of the
spectral population to equilibrium. We also considered the
question of self-averaging of the diffusion coefficient and of
the partial (spectral) populations in some cases, primarily for
the regular regime of reversible trapping and for the dispersive
and subdispersive regimes. The term self-averaging is used to
characterize the evolution of the relative fluctuations, whether
they vanish with time or not.

An alternative method termed CTRW (continuous time
random walk) [27–30] has been justified for the calculation
of averaged quantities like conductivity [29]. However, the
classic CTRW [27,28] chaotizes the trajectories or, in other
words, neglects their self-intersections. Every hop is consid-
ered to be independent of all the preceding ones. All hops are
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characterized by the same averaged waiting-time distribution.
Thus, the spatial fluctuations that originate from the static
disorder within the classic CTRW are averaged out at the start.
It makes impossible the correct calculation of correlations of
fluctuating quantities. Clearly, this inconsistency is crucial for
the variances formed by disorder, though it is tolerable for the
average quantities.

A generalization of the classic CTRW [27,28] method has
been used to retain spatial inhomogeneities in [42,46]. How-
ever, it contains some approximations (like “coarse graining”)
and leads back to a kind of random trapping–type model.
Our approach to random trapping, constructed previously
in [21–24], is transparent, rigorous, controllable, and it is
suitable for the construction of approximation schemes for
any correlators.

In the stochastic formulation, the problem of self-averaging
has been addressed in a number of studies [15,23–26,31–46].
Within the master-equation approach to disordered systems,
self-averaging has been considered in Refs. [15,23–26]. Since
then, numerous processes have been studied from the point of
view of self-averaging properties. Processes of spin relaxation
in the course of random walks on disordered lattices are
self-averaging [31]. Directed percolation leads to non-self-
averaging [32]. With the help of the renormalization group
method it has been shown that near the critical point self-
averaging depends crucially on the interrelation of the system
size and the correlation length [33]. Occupation-time distri-
bution for the diffusion on a disordered chain demonstrates
loss of self-averaging and big sample-to-sample fluctuations
[34]. The fractal dimension in diffusion-limited aggregation
is a weakly self-averaging quantity [35]. Record statistics for
random walks and Levy flights are non-self-averaging [36].
Particle concentration for a continuous time random walk is
not self-averaging either [37]. The ratio between diffusivity
and admittance in a disordered non-self-averaging system
may be viewed as a stochastic effective temperature [38].
Certain classes of percolation models are not self-averaging
in the thermodynamic limit [39]. The lack of self-averaging
has been demonstrated for transient subdiffusion in corrugated
potentials with spatial correlations [40]. The first-passage-
time distribution in the presence of quenched traps is non-self-
averaging [41]. Self-averaging and ergodicity of subdiffusion
in quenched random media have been studied [42,46]. The
fluctuations of the single-particle diffusivity far exceed the
results of the annealed theory [43]. The distribution function
for the diffusion coefficient in quenched disorder is that of
Mittag-Leffler in three dimensions (3D), and of modified
Mittag-Leffler in one dimension (1D) and two dimensions
(2D) [44]. The previous calculation of the distribution func-
tion has been extended to fractal lattices as well [45].

The goal of this paper is to present a unified rigorous
systematic theoretical study of the self-averaging properties of
the nonstationary diffusion coefficient in all possible regimes
within the random trapping model. At present, a complete
analysis of all the possible cases beyond scaling laws is still
lacking. Under what circumstances will the measurements
in the ensemble of samples with disorder produce close and
reproducible results? If the fluctuations are large, will they
decay in time and, if so, which way? To answer these ques-
tions we calculate and analyze the variance of the diffusion

coefficient as a function of time, of the disorder magnitude,
and of the dimensionality of the system. We also compare our
results to the other approaches.

II. MODEL

Let us consider a particle that performs incoherent Markov
hops between neighboring sites on a d-dimensional lattice.
Each site can be a trap with some random escape rate w,
characterized by a specified distribution function ρ(w). For a
given site, the hopping rates w to any of its z nearest neighbors
are equal. The traps are distributed in space at random in an
uncorrelated macroscopically uniform manner. The concen-
tration of traps and the dispersion of the hopping rates do not
have to be small. In fact, all the sites can be called traps.

The incoherent migration of a particle on a lattice is
governed by the master equation for the populations of sites:

dPj,i/dt =
∑
k( j)

w j,kPk,i −
∑
l ( j)

wl, jPj,i. (1)

Here Pj,i(t ) is the probability for finding the particle at
site j at time t , if initially it was at site i. Thus Pj,i(t ) is the
Green’s function of the problem with the initial conditions
Pj,i(t = 0) = δ j,i. The normalization of Pj,i(t ) or, in other
words, the number of particles, is preserved in time. The
summation over k( j) in Eq. (1) runs over the nearest neighbors
of j. The hopping rate w j,k from site k to site j in this model
is determined by the level the particle is leaving, but does
not depend upon the level at which it arrives. Therefore, the
hopping rate in fact is the function of the second index solely;
w j,k = wk .

There is no explicit Langevin-type noise in the model. The
noise is averaged out in the master-equation approach from
the start.

In experimentation, this situation may correspond, for ex-
ample, to the migration of particles on a set of impurities
of low concentration. The qualitative picture is that of a
particle activated thermally to the conduction band—with a
subsequent relaxation to the other impurity site. The activation
energy to the bottom of the conduction band depends on
the trap depth only—in contrast to the situation of quantum
tunneling between closely positioned impurities, when the
transition rate depends upon both levels.

Besides the picture of random hopping rates w, another
equivalent representation of the disorder distribution is pos-
sible. The idea of it is the following. The particle exits the trap
activationally at rate wk ≈ const exp(−�k/T ) [2–5]. Here �k

is the depth of trap k with T being the temperature in energy
units. Let the trap levels be positioned on the energy scale
at random with some average “concentration” T0

−1. Then
the distribution ρ� of trap depths is of an exponential type,
ρ�(�k ) = T −1

0 exp(−�k/T0). Going over from the distribu-
tion of trap depths �k (as the independent parameter) to the
distribution of hopping rates wk , one finds the distribution
function of a power-law type ρ(wk ) ≈ constwβ

k [2], where

β = (T/T0) − 1. (2)

The first interpretation of the problem in terms of escape
rates ρ(w) is more general. The second picture of “trap
levels �k , randomly distributed on the energy scale” is more
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FIG. 1. Examples of rate distribution functions ρ(w), cases (a)–
(f). The classification is governed by the deep-trap tail of the dis-
tribution of the hopping rates w, i.e., by the w → 0 asymptotics of
ρ(w).

transparent. In the second formulation the different regimes,
considered below, may be qualitatively interpreted as a kind
of “phase diagram,” a function of temperature. The definitions
of different regimes are provided below in both formulations.

Several different classes of distributions ρ(w) that lead
to qualitatively different long-time behaviors of the kinetic
characteristics can be defined. The classification is governed
by the limiting behavior of the distribution ρ�(�k ) for deep
traps �k → ∞ or, equivalently, by the distribution of the low
escape rates ρ(w) for w → 0. In the present consideration of
the fluctuations of the kinetic characteristics the classification
should be somewhat enlarged in comparison to its counterpart
for the average kinetic characteristics [21–26]. The sequence
of cases corresponds to the increasing disorder or to the
lowering temperature T , Fig. 1.

(a) If the deep-trap tail of the distribution ρ�(�k ) is
identically zero in the vicinity of zero escape rates w = 0, we
call it the regular case, Fig. 1, curve (a). The hopping rate
distribution below some value wγ obeys

ρ(w < wγ ) = 0. (3a)

(b) If the deep-trap tail of the distribution ρ�(�k ) decays
faster than exponential const exp(−�k/T0), or if T > 2T0,
then we call this case the subregular 1, Fig. 1, curve (b).
The hopping rate distribution ρ(w) vanishes for w → 0 in a
power-law fashion with the exponent β > 1 or faster:

ρ(w)=Awβ, A = (1 + β )w−1−β

0 , β > 1, 0 < w < w0.

(3b)

Here w0 is the upper cutoff for the escape rate w. The
definition of β (2) is equal to −α in Refs. [21–26].

(c) The case T = 2T0 in Eq. (3b) or, equivalently,

β = 1, (3c)

we call the subregular 2 case, Fig. 1, curve (c).
(d) The case T0 < T < 2T0 or, equivalently,

0 < β < 1 (3d)

we call subregular 3 case, Fig. 1, curve (d).
In the regular (3a) and all the subregular (3b)–(3d) cases

the average evolutions at long time in the main terms are
qualitatively similar to one another and satisfy diffusion-

type scaling. Therefore, we united them all in the single
regular case in Refs. [21–26]. The fluctuations considered
here, however, in these cases are qualitatively different, as we
demonstrate below.

(e) The intermediate subdispersive case corresponds to
T = T0 or to β = 0, so that the limiting probability density
at w → 0 is a nonzero constant ρ(0) = const, Fig. 1, curve
(e). For definiteness, we consider the particular distribution:

ρ(w) = w−1
0 , 0 < w < w0. (3e)

The long-time leading terms have similar time dependen-
cies for any particular distribution within each case. In this
particular case (3e) the leading long-time asymptotics will be
determined by the limiting value ρ(0) = w−1

0 solely.
(f) In the dispersive case 0 < T < T0 the distribution of

the hopping rates ρ(w) diverges in an integrable way in
the vicinity of w = 0. We consider the distribution [Fig. 1,
curve (f)]:

ρ(w) = Aw−α, A = (1 − α)w−1+α
0 ,

0 < α < 1, 0 < w < w0. (3f)

Instead of the variable β in Eqs. (3b)–(3e) it is more conve-
nient to use here α = −β, as in Refs. [21–26].

(g) The irreversible case of trapping by infinitely deep traps
or sinks of finite concentration c contains a δ function in the
distribution:

ρ(w) = cδ(w) + ρ1(w), ρ1(w = 0) = 0. (3g)

To study all these regimes (3a)–(3g) in the random trapping
model we constructed a self-consistent cluster effective-
medium approximation based on the multiple-scattering
formalism from the quantum theory of disordered systems
[21–26]. We studied a number of kinetic characteristics
that include the generalized diffusion coefficient, the
frequency-dependent conductivity, and the spectral relaxation
of partial populations. We also considered the problem of
self-averaging of the diffusion coefficient and of the spectral
populations in some cases. The term self-averaging is used
to characterize the reliable measurability of the diffusion
coefficient in the experiments on (or computer simulations
of) stochastic transport in disordered systems. In the present
paper, we consider to the end the problem of self-averaging
of the diffusion coefficient in the other cases, which were not
addressed in Refs. [15,23–26].

III. BASIC RELATIONS

Below we provide some basic relations [21–25] that our
consideration relies upon.

The master equation (1) for the Green’s function P̃ in
matrix form, Laplace transformed, is

(εI − W)P̃ = I, (4)

where Ii, j = δi, j is the unit matrix in site representation. The
Laplace parameter is denoted by ε. All the functions of ε are
marked by a tilde. The transition rate matrix W in Eq. (4) is

Wj,k = (1 − δ j,k )wk − δ j,kzw j . (5)

The initial disordered system in zero-order approximation
is modeled by a uniform effective medium. The corresponding
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effective transition rate w̃eff is assumed to be a function
of ε. Later w̃eff is chosen in an optimized self-consistent
way. It can also be noted that in real space the modeling
system corresponds to partly coherent transfer with memory,
described by a generalized master equation.

The difference between the initial disordered system W
and the effective one W̃eff ,

W̃ eff
j,k = (1 − δ j,k )w̃eff − δ j,kzw̃eff , (6)

constitutes the perturbation �W̃. The particle propagates in
the effective medium and gets “scattered” on that perturba-
tion:

�W̃ = W − W̃eff . (7)

The perturbation matrix can be represented as a sum of
contributions from local perturbing clusters:

�W̃ =
∑

m

�W̃m. (8)

Important is the choice of the perturbing cluster. We have
chosen it in the following way [21–25]: One cluster pertur-
bation comprises all the hops from one site (from within
one trap) to all of its nearest neighbors. All the other hops
(including the ones from the nearest neighbors into the trap
under consideration) do not enter that perturbation, but be-
long to the other (neighboring) clusters. Thus the following
essential conditions are met: (a) One perturbation comprises
the correlated hopping rates (in our case all of them are equal
within the cluster), (b) different clusters are not correlated
with one another, (c) the clusters do not overlap in space,
and (d) being put together in space, the clusters reproduce the
initial disordered system like a mosaic.

Then the corresponding local perturbation matrix for site
m is

�W̃m = �w̃mMm, (9)

�w̃m = wm − w̃eff . (10)

(Mm)n,l =
∑
m′(m)

δn,m′δl,m − zδn,mδl,m. (11)

Summation over m′ in m′(m) runs over the nearest neighbors
of m.

The Dyson equation follows from (4) and (7):

P̃ = P̃eff + P̃eff�W̃P̃, (12)

where P̃eff = (εI − W̃eff )−1 is the Green’s function of the
effective medium.

Iterations of Eq. (12) provide the perturbation series in
scattering on local clusters:

P̃ = P̃eff +
∑

m

P̃eff�W̃mP̃eff

+
∑
m,n

P̃eff�W̃mP̃eff�W̃nP̃eff + · · · . (13)

Next in Eq. (13) all the terms that correspond to successive
scattering on one cluster are combined in a t matrix:

t̃m = �W̃m + �W̃mP̃eff�W̃m

+ �W̃mP̃eff�W̃mP̃eff�W̃m + · · · . (14)

The result for t̃m is

t̃m = F̃mMm, (15)

F̃m = w̃eff wm − w̃eff

wm − εP̃eff
1,1(wm − w̃eff )

. (16)

The matrix M in (15) is specified in Eq. (11), and P̃eff
1,1 is the

diagonal element of the Green’s function. The superscript eff
always refers to the effective medium. In the t matrix (14) all
the one-loop diagrams that take account of all the consecutive
scattering on one site are summed up.

The renormalized series (13) in t matrices takes the follow-
ing form:

P̃ = P̃eff +
∑

m

P̃eff t̃mP̃eff +
∑
m,n
m �=n

P̃eff t̃mP̃eff t̃nP̃eff

+
∑
m,n,k

m �=n,n �=k

P̃eff t̃mP̃eff t̃nP̃eff t̃kP̃eff + · · · . (17)

Next we determine the effective hopping rate w̃eff by the
self-consistency condition [21–26]:

〈F̃m〉 = 0. (18)

The expression for F̃m is specified in Eq. (16). The angular
brackets denote averaging over the random hopping rates wm.
The ensemble for averaging is constituted by the realizations
of the disorder.

The self-consistency condition (18) is an equation to be
solved for w̃eff .

Let us analyze the renormalized perturbation series (17)
under the condition (18).

The first term P̃eff in Eq. (17) is the zero-order propaga-
tion in the self-consistent effective medium. The next terms
correspond to “scattering” on one, two, etc., clusters. As all
the consecutive scattering on one site is summed up in the t
matrix, the summation in Eq. (17) runs over all the sites of
the lattice with the following limitation: The indices of the
neighboring t matrices cannot coincide.

The perturbing clusters have been selected in such a way
that the scattering events on different clusters are independent
and do factorize. So do the F̃m factors in the t matrices in
Eq. (17).

The analysis [21–23] of the series for the Green’s function
(17) with the self-consistency condition (18) demonstrates
that nearly all the trajectories are accounted for. The exception
is the rather exotic class of the “all-self-intersecting” trajecto-
ries, such that every site visited is visited at least twice.

To see that, let us consider an arbitrary term in the averaged
series (17). The scalar factors F̃m in the corresponding matrix
product factorize. If among the t matrices (or, equivalently,
among the sites in that trajectory) there is at least one t
matrix (site) that enters the product (trajectory) a single
time, the corresponding factor F̃m factorizes out from the
product 〈F̃m〉〈F̃i · · · F̃j〉 and vanishes according to the self-
consistency condition (18). It means that all such “non-all-
self-intersecting” trajectories are accounted for by the self-
consistent effective-medium approximation correctly.
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In particular, in Eq. (17) for the averaged Green’s function
the second, third, and fourth terms are zero. The first correc-
tion term, non-accounted-for, appears in the fourth order.

Let N be the total number of sites in the lattice. Then the
non-accounted-for term of the fourth order is just one versus
(N − 2)(N − 3) terms in that order that become zero due to
(18) and, consequently, that are taken into account correctly.
Thus, in the limit N → ∞ the following ratio: “the number of
neglected terms in any order divided by the number of terms,
correctly accounted for in that order” tends to zero. Obviously,
such an approximation should be typically very accurate, apart
from some special exotic cases, which select precisely these
rare untypical all-self-intersecting trajectories.

We note, however, that such all-self-intersecting trajecto-
ries play an important role at long time in percolation-type
problems, when the particle gets “trapped” on an isolated clus-
ter and its trajectory winds up densely in a low-dimensional
space. However, there are no such topological limitations in
the present problem.

Nevertheless, in the problem of traps there is one regime
which selects indirectly these all-self-intersecting trajectories.
This is the case of irreversible trapping by sinks of finite con-
centration, Eq. (3g). In the long-time limit the particles survive
in random trap-free cavities only, while in the regions with
more or less uniformly distributed traps they decay effectively
[8]. Besides the presence of sinks of finite concentration,
another condition is implied. This condition is that the trapped
particle not only gets “frozen” in the infinitely deep trap
forever, but it also falls out from the normalization; i.e., it is
considered as having disappeared in the sink. It is this second
condition of surviving particles that selects only the exotic
all-self-intersecting trajectories in the fluctuation regime at
long time and that renders nonessential the regular paths.

In the regimes (3a)–(3f) under consideration, however,
both these conditions are not met. Therefore, the method
utilized provides correct results, at least up to the prefactor
[21–26]. In other words, in the absence of infinitely deep traps
of finite concentration and with the account of all the particles
(not the survivors only), the kinetic characteristics are formed
by all the trajectories, while the exotic all-self-intersecting
ones have zero weight. In the irreversible case (3g), however,
the present results form the correct intermediate-time asymp-
totics and neglect the purely fluctuational long-time tail of
survivors, as explained above.

Further approximations of higher order on top of the effec-
tive medium for the calculation of correlators can be built.

IV. FLUCTUATIONS AND SELF-AVERAGING

The effective hopping rate w̃eff is obtained as the solution
to the self-consistency equation (18). The generalized diffu-
sion coefficient D(t ) is determined through the mean-square
displacement via the inverse Laplace transform L̂−1:

D(t ) = a2weff (t ) = a2t−1L̂−1[w̃effε−2], (19)

where a is the intersite distance, assumed to be unity here-
after. Then the time-dependent effective hopping rate weff (t ),
defined by Eq. (19), can be used interchangeably with D(t ).

As the mean-square displacement in a disordered system
typically grows nonlinearly, the diffusion coefficient is time

dependent. The initial conditions for the calculated quantities
correspond to the particle initially localized at site 0.

We are looking for the answers to the following questions:
The calculated average values of the kinetic coefficients, such
as (19)—are they well determined at long time and therefore
reliably measurable in experiments, or do their fluctuations
(variations of the values, measured in different samples or
different realizations of disorder) remain substantial?

To find the answer we calculate the variance of the mean-
square displacement,

Var[R2] =
∑

j,k

R2
jiR

2
ki(〈PjiPki〉 − 〈Pji〉〈Pki〉), (20)

and analyze its time dependence with respect to the mean-
square displacement itself.

The correlator in Eq. (20) we calculate with the help
of the series for the Green’s function (17). In the lowest
order in t matrices (15), (16), and (11) with the account of
the self-consistency condition (18) and of the limitations on
summation in Eq. (17) we obtain

〈P̃jiP̃ki〉 = P̃eff
ji P̃eff

ki +
∑

m

(P̃eff t̃mP̃eff ) ji(P̃
eff t̃mP̃eff )ki + · · · .

(21)

In Eq. (21) we neglected some terms of the fourth and
higher orders in the t matrices. However, an overwhelming
majority of terms in all higher orders have been accounted for
in Eq. (21) correctly. These are all the non-all-self-intersecting
trajectories [cf. the reasoning following Eq. (17)] that vanish
due to the self-consistency condition (18). The neglected all-
self-intersecting trajectories obviously become essential in the
long-time limit only in the irreversible case of trapping by
sinks (3g), as noted in Sec. III. In the last case, the result is
correct as an intermediate-long-time asymptotics, prior to the
fluctuation long-time tail. The accurate long-time fluctuation
asymptotics for case (3g) are being considered in [47] within
a different approach.

In contrast to Refs. [21–25], the decoupling of nonlocal
correlators 〈PjiPki〉 = δk, j〈Pji

2〉 + (1 − δk, j )〈Pji〉〈Pki〉 is not
used.

With the account of Eqs. (21) and (15) the formula for
the variance of the diffusion coefficient (20) finally takes the
following form:

Var[R̃2] = 〈F̃ 2〉w̃eff−2 ∑
j,k,m

R2
jiRki

2

× (
εP̃eff

jm − δ jm
)(

εP̃eff
km − δkm

)
P̃eff2

mi . (22)

It is accurate up to the third order in t matrices and it takes
into account most high-order terms, as discussed above.

The sums in Eq. (22) cannot be calculated in the general
form. We do the calculations below for every particular case
(3a)–(3g) and for every dimension separately. First, the so-
lutions to the corresponding self-consistency equations (18)
are required and then the explicit expressions for the Green’s
functions of the effective medium P̃eff are utilized.

V. RESULTS

The short-time limit weff (t )t 	 1 is the most simple.
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A. Short-time domain

The diffusion coefficient (19) in all the cases (3a)–(3g)) is
determined by the average rate of the first hop [21–24]:

D(t ) = 〈w〉 − · · · . (23)

Its variance (22),

Var[D(t )] = 〈w2〉 − 〈w〉2 + · · · , (24)

is not small if the traps are not shallow. Therefore, at
short time the diffusion coefficient in general is not a well-
determined self-averaging quantity. Its dispersion in different
samples is proportional to the degree of disorder.

B. Long-time domain

More complicated is the long-time limit weff (t )t 
 1.

1. Regular and subregular cases

The long-time diffusion coefficient (19) in the regular and
all the subregular cases (3a)–(3d) is provided by a single
formula in all the dimensions [21–24], which follows from
Eq. (18):

D(t ) = 〈w−1〉−1 + · · · . (25)

The reciprocal standard deviation (square root of the vari-
ance, divided by the average value) of the diffusion coefficient
(19) and (22) in the regular case (3a) can be found to decay in
any dimension d in a power-law manner [15,23]:

Var1/2[D(t )]

D(t )
= A(d )

1

(〈
1

w2

〉〈
1

w

〉−2

− 1

)1/2(〈
1

w

〉−1

t

)−d/4

+ · · · , (26)

where A(1)
1 = 2[3 	(3/4)]−1 for d = 1, A(2)

1 =
171/215−1/2π−1 for d = 2 and A(3)

1 = √
2[

√
π 	(1/4)]−1

for d = 3. This corresponds to normal slow self-averaging. It
is illustrated by Fig. 2.

In the subregular 1 case, Eq. (3b), the variance of the
diffusion coefficient coincides with the regular case (3a). It is
provided by the same Eq. (26), which corresponds to power-
law self-averaging. The qualitative illustration is provided by
the same Fig. 2.

In the subregular 2 case, Eq. (3c), the reciprocal standard
deviation of the diffusion coefficient decays at long time
somewhat slower—with an additional logarithmic factor:

Var1/2[D(t )]

D(t )
= A(d )

2

ln1/2(wefft )

(wefft )d/4 + · · · , (27)

where A(1)
2 = [3 	(3/4)]−1, A(2)

2 = √
17/30 π−1, A(3)

2 =
[
√

π 	(1/4)]−1, and weff is determined by Eqs. (19) and (25).
The increasing disorder (fraction of deep traps) slows down
the process of self-averaging. The process of self-averaging
is depicted on a qualitative level in Fig. 2, the dispersion area
getting slightly larger in comparison to case (3b).

Subregular 3 case (3d). Due to the increase of the disorder,
the reciprocal standard deviation of the diffusion coefficient
decays slower at long time in a power-law manner. In one

w0t �1

Var1 2 D D
1

2

3

(a)

(b)

FIG. 2. Illustrative plots of the self-averaging in the regular and
subregular cases (a)–(d) in the long-time limit, (w0t )−1 → 0. (a)
Plot of the reciprocal standard deviation of the diffusion coefficient,
as a function of inversed time. Curves (1)–(3) are for the dimen-
sions d = 1, 2, 3 correspondingly. (b) Plots of the average diffusion
coefficients in dimensions d = 1, 2, 3; solid lines are marked as
(1)–(3), correspondingly. The averaged curves for d = 2 and d = 3
nearly coincide. The dispersion areas, ranging from D − Var1/2[D]
to D + Var1/2[D], are shaded and marked with dashed lines on their
borders. The dispersion area for d = 1 is the biggest; the one for
d = 3 is the smallest. The left ends of the curves correspond to
t → ∞. All the values are scaled to w0.

dimension it is

Var1/2[D(t )]

D(t )
= A(1)

3

(wefft )β/4 + · · · , (28)

where A(1)
3 =

√
πβ (2+β )/2

2(1+β )/2	(2−β/4)
√

sin(πβ )(β+1)β/2 , and weff , as before,
is specified by Eqs. (19) and (25).

In two dimensions, an additional logarithmic correction
emerges:

Var1/2[D(t )]

D(t )
= A(2)

3

(wefft )β /2ln(1−β )/2(wefft )
+ · · · , (29)

where A(2)
3 =

√
17β (2+β )/2

2G(1−β )/2
2 	(2−β/2)

√
15 sin(πβ )(β+1)β/2 and Gd is a con-

stant, specific for the lattice type.
In three dimensions, we get

Var1/2[D(t )]

D(t )
= A(3)

3

(wefft )(1+2β ) /4 + · · · , (30)

with A(3)
3 = β (2+β )/2

23/2G(1−β )/2
3 	(7/4−β/2)

√
sin(πβ )(β+1)β/2 .

The subregular 3 case has larger fluctuations and self-
averages slower than the subregular 2. As always, the increas-
ing disorder (decreasing β) slows down the self-averaging.
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Another effect of the increasing disorder is the following: The
effectiveness of the self-averaging depends somewhat more on
the dimensionality than before—with the growing dimension,
the self-averaging accelerates faster.

In the limit β → 1, the time dependencies go back to
the subregular 2 case (27) up to a logarithmic correction.
In addition, the factor

√
sin(πβ ) in the denominator of the

coefficient A(d )
3 goes to zero and that heralds the appearance

of the additional logarithm in the numerator (27). An accu-
rate derivation in the limit β → 1 reproduces the form (27)
correctly.

With β → 0 the relaxation of fluctuations in one- and two-
dimensional cases (but not in three dimensions) ceases to be
of power-law type.

The subregular 3 case is illustrated qualitatively by the
same shapes in Fig. 2, the dispersion area decaying with
t → ∞ somewhat slower than before.

We have obtained the result (26) for the regular case
(3a) before [15,23]. The subregular (3b)–(3d) asymptotics
with prefactors (27)–(30) are new. Scaling laws of the type
(27)–(30) without prefactors have been obtained recently by
another approximate method in [46].

2. Subdispersive case

In the long-time subdispersive case (3e) the diffusion co-
efficient (19) goes to zero in an extremely slow logarithmic
way:

D(t ) = A(d )
4 w0ln−1(w0t ), (31)

with the following factors for different dimensions d: A(1)
4 = 2

and A(2)
4 = A(3)

4 = 1, Refs. [21–26].
The reciprocal standard deviation of the diffusion coef-

ficient (22) decays anomalously slowly in one- and two-
dimensional systems:

Var1/2[D(t )]

D(t )
= A(1)

5

ln1/2(w0t )
+ · · · , d = 1, (32)

Var1/2[D(t )]

D(t )
= A(2)

5

ln (w0t )
+ · · · , d = 2, (33)

where A(1)
5 = 1 and A(2)

5 = 171/22−1(15πG2)−1/2. Formally
self-averaging takes place, but this is weak self-averaging with
a logarithmic decay of fluctuations. It is much slower than
the power-law decay in the previous cases. Within this weak
self-averaging the fluctuations in the one-dimensional case
are, as usual, bigger, and decay slower, ≈ln−1/2(w0t ), than
in two dimensions ≈ln−1(w0t ).

In three dimensions, the decay of the reciprocal standard
deviation of the diffusion coefficient remains of the power-law
type:

Var1/2[D(t )]

D(t )
= A(3)

5

[w0t ln (w0t )]1/4 + · · · , d = 3, (34)

where A(3)
5 = 21/2[7	(3/4)]−1(πG3)−1/2. The 3D subdisper-

sive diffusion coefficient is still self-averaging. The curves of

w0t �1

Var1 2 D D

1

2

3

(a)

(b)

FIG. 3. Self-averaging in the subdispersive case (3e) in the long-
time limit, (w0t )−1 → 0. (a) Plot of the reciprocal standard deviation
of the diffusion coefficient, as a function of inversed time. Curves
(1)–(3) correspond to dimensions d = 1, 2, 3. (b) Plots of the av-
erage diffusion coefficients in dimensions d = 1, 2, 3; solid lines
are marked as (1), (2), and (3) correspondingly. The averaged curves
for d = 2 and d = 3 nearly coincide. The dispersion areas, ranging
from D − Var1/2[D] to D + Var1/2[D], are shaded and marked with
dashed lines on their borders. The dispersion area for d = 1 is the
biggest; the one for d = 3 is the smallest. The left ends of the curves
correspond to t → ∞. All the values are scaled to w0.

the reciprocal standard deviation and of the dispersion area of
the diffusion coefficient are illustrated by Fig. 3.

The subregular 3 results (28)–(30) in the corresponding
limit β → 0 reproduce the leading power-law dependencies
(32)–(34) up to logarithmic corrections.

The results in the form (32)–(34) are new. We have ob-
tained time dependencies of this kind previously in [26],
though without prefactors.

3. Dispersive case

The dispersive case (3f). Note the change of the variables:
α = −β, 0 < α < 1 in the notations of Refs. [21–26]. The
diffusion coefficient (19) in the long-time limit vanishes in a
power-law fashion [21–25]:

D(t ) = A(1)
6 (w0t )−α/(2−α), d = 1, (35)

D(t ) = A(2)
6 (w0t )−αlnα (w0t ), d = 2, (36)

D(t ) = A(3)
6 (w0t )−α, d = 3, (37)

where A(1)
6 = [ sin(πα)

π2α ]
2

2−α
w0

	[(4−3α)/(2−α)] , A(2)
6 =

Gα
2 sin(πα)(1−α)αw0

π	(2−α) , A(3)
6 = Gα

3 sin(πα)w0

π	(2−α) .
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In the one-dimensional dispersive case we observe non-
self-averaging—the reciprocal standard deviation of the dif-
fusion coefficient does not vanish at long time:

Var1/2[D(t )]

D(t )
=

√
α

2(1 − α)
+ · · · , d = 1. (38)

The diffusion coefficient in this case ceases to be a well-
determined quantity. Its fluctuations remain of the same order
as its average value.

In two dimensions the self-averaging exists, but is pretty
weak:

Var1/2[D(t )]

D(t )
= A(2)

7

ln1/2(w0t )
+ · · · , d = 2. (39)

where A(2)
7 =

√
17α1/2

2
√

15πG1/2
2 (1−α)

.

In the three-dimensional case we find the regular power-
law self-averaging:

Var1/2[D(t )]

D(t )
= A(3)

7

(w0t )(1−α)/4 + · · · , d = 3. (40)

with A(3)
7 = α1/2	(2−α)

23/2π1/4(1−α)1/2	(7/4−3α/4)G1/2+α/4
3 sin1/4(πα)

.

The process of self-averaging in the dispersive case (3f) is
illustrated by Fig. 4.

In the limit α → 0 the dependencies of the preceding
subdispersive case (32)–(34) are reproduced up to logarithmic
factors. In the other limit α → 1, the relative fluctuations
grow. In particular, in 1D the variations of the diffusion coeffi-
cient reveal the tendency to a faster growth in time, compared
to its average value. In 2D the relative standard deviation
reveals the tendency to a loss of weak self-averaging. In 3D
the tendency to a loss of self-averaging in favor of weak
self-averaging is revealed.

We have obtained previously [25] the asymptotics (38)–
(40) with approximate values of the prefactors. Scaling laws
of this type (without prefactors) have been found also in [46].

4. Irreversible case

In the case of irreversible trapping (3g) with the account of
all the particles (not only the survivors) within the effective-
medium approximation, the mean-square displacement at
long time tends to a constant:

D(t ) = A(d )
8 t−1, (41)

where A(1)
8 = 2−2(1 − c2)c−2, A(2)

8 is the solution of the equa-
tion A(2)

8 = G2c−1 ln A(2)
8 and A(3)

8 = G3c−1.
This formula, in accordance with the discussion that fol-

lows Eqs. (17) and (18), is the intermediate long-time asymp-
totics that determines the evolution of the majority of the
particles—though it does not reproduce the long-time fluc-
tuation tail. The fluctuation regime we address separately in
[47]. Here and below in the study of the irreversible case we
limit ourselves to the intermediate long-time mean-field-type
dependencies.

The diffusion coefficient for irreversible trapping in all di-
mensions is a non-self-averaging quantity. Its relative standard
deviation at long time does not vanish, but goes to a nonzero

w0t �1

Var1 2 D D
1

(a)

(b)

2

3

FIG. 4. Self-averaging and non-self-averaging in the dispersive
case (3f) in the long-time limit, (w0t )−1 → 0. (a) Plot of the recip-
rocal standard deviation of the diffusion coefficient, as a function
of inversed time. Curves (1), (2), and (3) correspond to dimensions
d = 1, 2, 3. In one dimension the leading term is a nonzero constant,
so that curve (1) signifies non-self-averaging. (b) Plots of the average
diffusion coefficients in dimensions d = 1, 2, 3; solid lines are
marked as (1)–(3) correspondingly. The averaged curves for d = 2
and d = 3 nearly overlap. The dispersion areas from D − Var1/2[D]
to D + Var1/2[D] are shaded and marked with dashed lines on their
borders. The dispersion area for d = 1 is the biggest; the one for
d = 3 is the smallest. The left ends of the curves correspond to
t → ∞. All the values are scaled to w0.

constant:

Var1/2[D(t )]

D(t )
= A(d )

9 , (42)

where A(1)
9 = 2−1/2(1 − c)−3/4(1 + c)−1/4, A(2)

9 = 171/2

[60πc(1 − c)A(2)
8 ]−1/2 and A(3)

9 = c1/4[23/2π1/2G3/4
3

(1 − c)1/2]−1.
In the limit c → 0 of “weak” irreversible disorder the

process of self-averaging (42) depends on the dimensionality
of the system. In 1D the relative standard deviation remains
nonzero, so the diffusion coefficient is not self-averaging. In
2D the relative standard deviation vanishes logarithmically
≈(− ln c)−1/2, and this is a tendency to a weak self-averaging.
This agrees qualitatively with the weak self-averaging
≈ln−1/2(w0t ) in the preceding 2D dispersive case. In three
dimensions with c → 0 the relative standard deviation van-
ishes in a power-law fashion ≈c1/4, which demonstrates the
tendency to a normal power-law self-averaging. This agrees
qualitatively with the self-averaging of the diffusion coeffi-
cient ≈(w0t )(1−α)/4 in the preceding dispersive case d = 3.

In the limit c → 1 of “strong” irreversible disorder,
the relative fluctuations of the diffusion coefficient grow
unboundedly as (1 − c)−3/4 in 1D and, somewhat slower,
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as (1 − c)−1/2 in 2D and 3D. In other words, for c → 1
the diffusion coefficient is strongly non-self-averaging in all
dimensions.

The intermediate-long-time asymptotics (42) for the recip-
rocal standard deviation of the diffusion coefficient for irre-
versible trapping within the self-consistent effective-medium
approximation is another result of the present study. The plots
of the dependences (41) and (42) are not provided here, as
their shapes are trivial.

The corresponding result for the true long-time fluctuation
tail (non-self-averaging) we found and analyzed recently in
[47] with the use of the method of fluctuational cavities.

VI. DISCUSSION

First, let us discuss the accuracy of the self-consistent
effective-medium approximation [21–24] that our considera-
tion relies upon.

A. Accuracy

The leading terms of the short-time expansions (23) and
(24) are exact [21,22]. This is obvious from their appearance:
They are governed by the first hop.

Now let us address the long-time domain. The reasoning
that follows Eqs. (17) and (18) seems to provide a clear qual-
itative picture. The overwhelming majority of the trajectories
are correctly accounted for—with the exception of the case of
sinks, when the neglected exotic trajectories start to provide
the leading contribution.

Quantitatively, the estimate of the neglected terms in Ref.
[21] suggests that in the regular-type cases, Eqs. (3a)–(3d),
the leading long-time term of the diffusion coefficient is
exact within the considered self-consistent effective-medium
approximation. In the subdispersive (3e) and dispersive (3f)
cases, the result should be accurate up to a numerical pref-
actor. In the case (3g) of irreversible trapping or sinks
the fluctuational long-time tail is not reproduced; the self-
consistent effective-medium approximation provides a correct
intermediate-time asymptotics only.

The results of the self-consistent effective-medium ap-
proximation can also be compared to the exact solutions
known. First, let us consider the average value of the diffusion
coefficient. In one dimension the exact value of the diffusion
coefficient in the regular-type cases (3a)–(3d) [2,15] is repro-
duced by the present method exactly. An electric analogy,
provided in [21], proves that the result for the regular-type
cases (3a)–(3d) is exact in any dimension as well. In the one-
dimensional subdispersive (3d) and dispersive (3e) cases the
exact result [2] is reproduced by the self-consistent effective-
medium approximation up to a numerical prefactor.

The variance of the diffusion coefficient in the regular case
(3a) in any dimension is reproduced by the present method
exactly [15,23,24].

All these facts signify the high accuracy of the method,
except for the long-time limit for irreversible trapping by
sinks. The latter we consider here within the applicability
range of the method, in the intermediate-time domain. The
corresponding long-time fluctuation tail we study in [47]
within a different approach.

In addition, our analytic results (26)–(30) and (38)–(40)
agree with the scaling laws, obtained without prefactors in
Refs. [42,46]. The fact that similar results have been obtained
by a different analytic method provides another proof of their
accuracy.

The numerical simulations provided in [42,46] confirm
their scaling laws and, equally, our time dependencies.

B. Models and methods

We would like also to make some remarks concerning the
methods and the models.

We do not introduce explicit Langevin-type noise in the
evolution. We start with the master equation, where thermal
Langevin fluctuations are accounted for in an averaged form.
In our opinion, if the number of particles is large, the self-
averaging properties are governed by the quenched disorder
and not by the explicit noise. This is backed up by the fact
that the scaling laws, obtained in Refs. [42,46], agree with our
results.

Typical situations involve a macroscopic number of con-
tributing particles. Then, description in terms of noise-
averaged site populations (or concentration of particles in
space) instead of noise-driven single-particle trajectories is
typically quite adequate. This simpler noise-averaged formu-
lation enables a rigorous and transparent study of the leading
effect of quenched disorder. The explicit account of Langevin
noise, in our opinion, is necessary when one has to trace single
or a few particles.

We do not have any time averages in the course of our
solution. As noted above, we do not introduce noise ensemble
or noise averages. Therefore, we do not discuss ergodicity.
The only ensemble we have is constituted of the realizations
of the static disorder.

The method, based on the statistics of distinct sites, visited
by a random walk on a regular lattice seems to be of a
limited applicability. It is satisfactory for a random trap model,
when the escape rates from a trap are the same for the exit
to any of its nearest neighbors. Then the topology of the
trajectories is similar to the ones in a regular system and,
consequently, some statistics for regular systems can be used.
In the other cases, when the exit probabilities to the nearest
neighbors are not the same, the topology of the trajectories
changes drastically. A clear example of this is a percolation-
type system with isolated clusters, where the statistics and
the results are entirely different; cf. [23]. In all such cases,
averaging with the statistics for trajectories in regular systems
becomes inaccurate. In the models of disorder, except for
random traps, the process of “sampling” is inseparable from
the correct account of the topology of the trajectories. In
our treatment, the correct trajectories are generated by the
perturbation expansions (13) and (17) automatically.

C. Qualitative picture

Next, after having provided the quantitative results in
Sec. V, let us discuss the dilemma of “self-averaging” or “non-
self-averaging” on a qualitative level. The qualitative picture
becomes more transparent if we focus on the time dependence
of the reciprocal standard deviation of the diffusion coefficient
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TABLE I. The long-time evolution of the average value of the diffusion coefficient D(τ ) and of its reciprocal standard deviation
Var1/2[D(τ )]/D(τ ), as functions of dimensionless time τ = w0t, τ 
 1. The power-law decay of the reciprocal standard deviation signifies
self-averaging. Logarithmic decay corresponds to weak self-averaging. Nonvanishing of the reciprocal standard deviation manifests non-self-
averaging. In table headings we use abbreviated notations for the cases (3a)–(3g).

Reg Eq. (3a)
+subreg 1
Eq. (3b),
β > 1

Subreg 2
Eq. (3c),
β = 1

Subreg 3
Eq. (3d),
0 < β < 1

Subdisp
Eq. (3e),
β = 0

Disp Eq. (3f),
0 < α = −β < 1

Irreg
Eq. (3g)

D(τ ) ≈τ 0, Eq. (25) ≈ln−1τ ,
Eq. (31)

≈τ− α
2−α ,

d = 1, Eq. (35)
≈τ−1,

Eq. (41)
≈τ−αlnατ ,

d = 2, Eq. (36)
≈τ−α ,

d = 3, Eq. (37)

Var
1
2 [D(τ )]
D(τ ) ≈τ− d

4 ,
Eq. (26)

≈ ln
1
2 τ

τ
d
4

,

Eq. (27)

≈τ− β
4 ,

d = 1, Eq. (28)
≈ln− 1

2 τ ,
d = 1,

Eq. (32)

≈τ 0,
d = 1, Eq. (38)

≈τ 0,
Eq. (42)

≈τ− β
2 ln

1−β
2 τ ,

d = 2, Eq. (29)
≈ln−1τ ,
d = 2,

Eq. (33)

≈ln− 1
2 τ ,

d = 2, Eq. (39)

≈τ− 1+2β
4 ,

d = 3, Eq. (30)
≈τ− 1

4 ln− 1
4 τ ,

d = 3,
Eq. (34)

≈τ− 1−α
4 ,

d = 3, Eq. (40)

Var1/2[D(τ )]/D(τ ) as a function of dimensionless time τ =
w0t . The long-time limit τ 
 1 is summarized in Table I.

The average value of the diffusion coefficient D(τ ) di-
minishes with the increase of the disorder. It changes from a
time-independent constant ≈τ 0 through the logarithmic decay
≈ln−1τ and a faster power-law decay ≈τ−α/(2−α), ≈τ−αlnατ ,
and ≈τ−α in 1D, 2D, and 3D, respectively, to ≈τ−1 for irre-
versible trapping. The latter corresponds to a limited mean-
square displacement and forms, in fact, an intermediate-time
asymptotic with the fluctuation tail left out. All these cases of
the averaged evolution were traced in [21–24].

The main topic of the present study is self-averaging and
non-self-averaging of the diffusion coefficient. At short time,
the dispersion of the diffusion coefficient (24) is proportional
to the degree of disorder and thus it is not small. In the
intermediate-time domain the dispersion is not small either.
Only at long time, the sample-to-sample fluctuations may start
to decay; see the bottom row of Table I.

1. Regular self-averaging

Regular self-averaging at long time, Fig. 2, takes place
in the cases of “relatively weak” disorder, starting with the
regular case (3a), the column on the left. This “normal” self-
averaging is, nevertheless, of a rather slow power-law-type
≈τ−d/4 [15,23]. With the increasing disorder (the columns
to the right), the self-averaging slows down more for low-
dimensional systems in the first place. In the subregular 2
case (3c) a logarithmic factor appears. In the subregular 3
case the exponent becomes β dependent (2). However, for
all subregular cases, self-averaging remains of the power-law
type. In 3D the regular power-law self-averaging persists even
in the more strongly disordered subdispersive (3e) and disper-

sive (3f) cases. In the former, an additional logarithmic factor
appears; in the latter, the exponent becomes α dependent.

2. Weak self-averaging

The weak (logarithmic) self-averaging appears in the sub-
dispersive case (3e), Fig. 3, in one- and in two dimensions,
≈ln−1/2τ and ≈ln−1τ , respectively. Weak self-averaging also
persists in the stronger-disordered dispersive case in 2D
≈ln−1/2τ . In practice, such logarithmic decay of fluctuations
in time should hardly be observable.

3. Non-self-averaging

Non-self-averaging appears first in the dispersive case (3f)
in 1D, Fig. 4. In the irreversible case (3g), the diffusion
coefficient, calculated for all the particles, not the survivors
only, is non-self-averaging in all dimensions. For both of
these cases the variance of the diffusion coefficient is of the
same order as its average value. Besides, we note that in
the latter case, in fact, not the long-time asymptotics, but the
intermediate-long-time asymptotics is implied, cf. [47].

4. General remarks

Within each case (column) the self-averaging gets worse
with the diminishing dimension.

The crossover between all these regimes is traced qualita-
tively in Sec. V.

Weak self-averaging and, especially, non-self-averaging
signify that the fluctuations of the measured diffusion co-
efficient are large. In the case of weak self-averaging, the
tendency to the diminishing of these fluctuations will not
be obvious. For non-self-averaging, the fluctuations remain
of the same order as its average value. In experiments, this
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will be manifest as a huge dispersion of the measured quanti-
ties, in different samples and with different initial conditions
(starting points). Not only the values, but also the shapes of
the measured time-dependent curves may differ considerably
in different samples. Single curves may deviate considerably
from the calculated averages as well. In this case, the theoret-
ical average can be practically restored only as a result of an
averaging process over an anomalously large number of real-
izations or samples or measurements. The convergence of the
averages in the measurements is expected to be anomalously
slow.

Thus, all the regimes, starting with the subdispersive case
(3e) are anomalous in terms of the average kinetics (the

diffusion coefficient). Anomaly in the fluctuations decay starts
with the subregular 2 case (3c). Non-self-averaging starts with
the 1D dispersive (3f) case. The dispersion of the values of
the diffusion coefficient in the irreversible case (3g) in the
intermediate-long-time domain in all dimensions remains of
the same order as its average value.
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