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Efficiency of one-dimensional active transport conditioned on motility
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By conditioning a stochastic process on the value of an observable, one obtains a new stochastic process with
different properties. We apply this idea in the context of active matter and condition interacting self-propelled
particles on their individual motility. Using the effective process formalism from dynamical large deviations
theory, we derive the interactions that actuate the imposed mobility against jamming interactions in two toy
models—the totally asymmetric exclusion process and run-and-tumble particles, in the case of two or three
particles. We provide a framework which takes into account the energy-consumption required for self-propulsion
and address the question of how energy-efficient the emergent interactions are. Upon conditioning, run-and-
tumble particles develop an alignment interaction and achieve a higher gain in efficiency than TASEP particles.
A point of diminishing returns in efficiency is reached beyond a certain level of conditioning. With recourse to
a general formula for the change in energy efficiency upon conditioning, we conclude that the most significant
gains occur when there are large fluctuations in mobility to exploit. From a detailed comparison of the emergent
effective interaction in a two- versus a three-body scenario, we discover evidence of a screening effect which
suggests that conditioning can produce topological rather than metric interactions.
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I. INTRODUCTION

How should a single biological entity—a macromolecule, a
cell, an organism—act to efficiently fulfill its functions in the
presence of restrictive collective effects? This question inverts
the usual aim of active matter theories, which is to derive the
“macroscopic” consequences of a postulated “microscopic”
dynamics where fluxes and forces are generated by consum-
ing energy [1,2]. In populations of self-propelled particles,
for instance, the efficiency with which the particles convert
energy into motion is reduced by collisions [3]. However,
in biological systems equipped with sensing and feedback
mechanisms between constituents, we expect well-adapted,
or smart, interactions to reduce inefficient behavior like jam-
ming. This suggests that smart interactions of active systems,
such as an alignment rule à la Vicsek [4], might emerge
as solutions to physically motivated optimization problems
[5–7].

The idea central to the present work is that smart inter-
actions such as collision avoidance and alignment, can be
obtained by conditioning an active matter model on high
values of individual motility. This generalizes to the field of
active matter an idea due to Evans [8,9], of deriving driven
nonequilibrium models with a specific steady-state current
from a subensemble of atypical trajectories of an equilibrium
process. We summarize below how conditioning in this way
has been made operational using modern mathematical tools
(Sec. I A) and how, in this work, we apply it to simple few-
particle active matter models in one dimension (Sec. I B).

A. Model-making by conditioning

To condition a stochastic process is to build a condi-
tioned probability in the classic Kolmogorov sense. If � is a

realization of the stochastic dynamics (a full specification of
the trajectories of all constituents) and O(�) = O denotes a
constraint on some trajectory-dependent observable, then the
conditioned process is defined via

P(� |O) = P(� and O)

P(O)
. (1)

P(� and O) is the probability of observing a specific
constraint-fulfilling trajectory � among all possible trajec-
tories. Dividing by the probability P(O) of realizing the
constraint with any consistent trajectory, we obtain a new nor-
malized ensemble P(� |O) were every trajectory satisfies the
constraint. The problem of translating this formal construction
into an explicit stochastic dynamics has only recently been
solved with some generality. The key assumptions needed are
that (1) the observation-time t of trajectories is large compared
to the characteristic time-scale(s) of the original dynamics,
(2) the dynamical observable O(�) is time-additive, i.e., all
its cumulants scale linearly with t , and (3) that the original
process is Markovian and time-homogeneous. Based on the
theory of large deviations, one can extract an effective pro-
cess [10] whose typical realizations (asymptotically) coincide
with the trajectory ensemble implied by the conditioning
Eq. (1) [11–14]—i.e., the effective process describes how a
fluctuation, meaning an atypical value of O, is generated.
Remarkably, the effective process is Markovian and time-
homogeneous too, and general expressions for its transition
rates (discrete case) [12] or drift and diffusion functions
(continuous case) [14] have been derived. How such a process
is generated is illustrated in Fig. 1.

The same effective process emerges from the so-called
Maximum Caliber (MaxCal) method [15–17]. Based on the
constrained maximisation of a path-wise entropy, MaxCal
extends the maximum entropy principle of Jaynes [18] and
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(a)

(b)

(c)

FIG. 1. Illustration of the effective process generation. (a) Under
the naive dynamics, each particle attempts to jump forward at the
same rate: some succeed (red), some fail due to steric interactions
(gray). (b) Due to the stochasticity of the dynamics, the system can
end up in an unlikely state where collective motion has been achieved
by mere chance (in the figure because there is some space between
particles). (c) The effective process mimics the beneficial fluctuation,
by adding to the original process a repulsive interaction between
particles.

yields the effective process when the constraints are made
on long-time averages of time-additive observables (non-
Markovian ensembles may otherwise result). MaxCal has
been applied with success in active matter problems, to infer
from empirical data the interactions that govern bird flocking
[5,19].

For a Markov process describing a system of interacting
particles, the additional effective interactions that emerge
upon conditioning can be directly appreciated from the rates
of the effective process—if one can find them. That amounts
to solving an eigenvalue problem in the dimension of the
state space, wherefore analytical results are scarce. There are
nonetheless a few notable successes for integrable models,
including a range of results for current fluctuations in the
TASEP [11,20–23] and zero-range processes [24,25], as well
as kinetically constrained models [26,27]. These, together
with numerical and analytical evidence from nonequilibrium
liquids [6,7,28,29], indicate that effective interactions are
capable of driving a constrained system toward novel phases.
There is, however, still a limited understanding of what fea-
tures of the unconditioned process and conditioning variables
lead to interactions that have physical plausibility—first, in
the sense of their qualitative features, like the range of in-
teractions; secondly, in terms of their energy efficiency. This
work is an basic study of this question through a detailed
comparison of simple active matter models.

B. Description of models and results

We consider two one-dimensional toy models of active
matter: the totally asymmetric exclusion process (TASEP) and
interacting run-and-tumble particles (RTPs). In the TASEP on
an L-periodic lattice, N particles hop clockwise each with a
rate γ , unless the arrival site is already occupied. The RTP
model differs only in that each particle has a variable direction

+ (clockwise) or − (anticlockwise), alternating or tumbling
between the two with a rate ω [30]. The TASEP has several
active matter interpretations, including motor protein trans-
port and DNA transcription [31,32]. The RTP dynamic is a
simplistic model of microswimmer motility, e.g., the motility
patterns of bacteria such as Escherichia coli [33,34]. We refer
to the two processes just described as naive, to emphasize
that these interactions have not been optimized with respect
to motility.

When interpreted as active agents, both TASEP and RT
particles accomplish their function, i.e., self-propulsion, with
some level of efficiency. In the energetic picture we have in
mind, a unit of energy is consumed at a rate γ (e.g., from the
hydrolysis of one ATP molecule [35]), and is converted into a
hop on the lattice if possible; otherwise it is wasted. Therefore,
we identify the total number of steps per particle on the lattice
as an output. The efficiency is the ratio of output to input,
with the input being the number of energy units consumed.
The output coincides with the particle current for the TASEP,
while for the RTPs it is an undirected particle traffic.

For both the TASEP and RTPs, exclusion interactions
reduce the energy efficiency of motion as defined above. By
conditioning on the number of steps of each particle, we aim
to recover the equivalence between energy units consumed
and steps taken. However, as clarified below, conditioning
alters not only the interactions between particles, but also the
individual base rate of energy consumption. Therefore, the
conditioned process is not guaranteed to be more efficient
than the naive one, and the efficiency needs to be assessed
in both cases and compared. Due to the lack of general
analytical solutions, we proceed numerically but exactly with
the conditioning problems, and limit our scope to two and
three particles. While the effective interactions have been
derived exactly for the N-particle TASEP in the limit of
a large current [11], this limit alone is insufficient for our
analysis which encompasses also moderate levels of condi-
tioning. In fact, we find that when conditioning the TASEP
on higher currents a state of diminishing returns quickly sets
in. Further increase in output is accompanied by negligible
increase in efficiency. In simpler terms, the main effect of
the conditioning is to make the particles jump faster, and at
a proportionally higher energy consumption. The effect of
the emergent effective interaction—long-range and repulsive
[11]—is small in comparison.

The outcome is remarkably different in the RTP model,
whose effective process has not been considered elsewhere
for more than one particle [36]. Given a high active Péclet
number (Pe = γ /ω), there is a window of fluctuations of the
naive process for which the corresponding effective process
exhibits directional alignment interactions, with little increase
in the base hopping rate. Therefore, the gain in efficiency upon
conditioning on higher-than-average motility is substantial.
A similar alignment phenomenon was also observed in rare
event simulations of active particles [6].

Building on the comparison between the two examples
studied, we give a general quantitative argument that a large
variance-to-mean ratio in the output, as, for example, afforded
by slowly evolving internal states coupled to the output,
implies a high attainable gain in efficiency. Furthermore, we
present a formal construction of an interaction potential that is
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guaranteed to increase the efficiency of a naive process whilst
keeping the energy consumption fixed. Finally, comparing the
two- and three-particle conditioned processes allows us to
make some concrete statements on open questions regarding
the factorization of the effective interactions. For example:
when do emergent N-body interactions reduce to simpler
(e.g., two-body), and what is the nature of many-body con-
tributions?

II. DYNAMICAL LARGE DEVIATIONS FORMALISM

We begin with an overview of the mathematical machinery
of dynamical large deviations theory, which allows the ex-
plicit construction of the effective process introduced above.
We then illustrate its application to interacting particle sys-
tems. The theory concerns the asymptotic probability distri-
butions of time-integrated observables of Markov processes
[14,37,38]. A Markov jump process, specifically, is charac-
terised by a vector of probabilities P (with a component for
each configuration) evolving by the master equation ∂t P =
WP. The matrix W has elements [39]

WC ′,C = W (C → C ′) − δC ′,C
∑
C ′′ �=C

W (C → C ′′), (2)

where W (C → C ′) denotes the transition rate from configura-
tion C to C ′. Consider a time-additive observable Nt (�), e.g.,
the total number of steps of an active particle for the real-
ization �. To determine the exact time-dependent distribution
Pt (Nt ) is a daunting task. It is nonetheless often possible to
characterise its fluctuations via a large deviation principle
[40,41]:

P(Nt ) � e−t I (Nt /t ), I (σ ) = sup
s∈R

{sσ − c(s)}. (3)

The symbol � means equality of the logarithms in the t → ∞
limit. The rate function I (σ ) is a nonnegative function which
vanishes at the average σ̄ ≡ limt→∞〈Nt 〉/t . For Nt = σ t �=
σ̄ t , it gives the decay rate of the likelihood of sustaining the
fluctuation. The scaled variable σ is the effective hopping rate
observed over time t . When convex and differentiable, I (σ ) is
the Legendre-Fenchel (LF) transform of the scaled cumulant
generating function (SCGF) c(s), defined as the long-time
limit of t−1 ln 〈esNt 〉.

According to the Donsker-Varadhan theory [42], c(s) co-
incides with the principal eigenvalue of the tilted transition
matrix W tilt(s), defined by multiplying each off-diagonal
element of W by esα(C→C ′ ), where α measures the increase
in Nt across the transition C → C ′, e.g., 1 if the transition is
a hop, else 0. By the Perron-Frobenius theorem [43], c(s) is
a real function of s. The spectral elements of W tilt(s) also
furnish the construction of the effective process—the process
whose typical value of Nt/t can be any chosen σ , and whose
typical trajectories coincide with those atypical trajectories
generating σ as a fluctuation in the original process [12,14].

In the first step of its construction, the effective process is
parametrized by the bias parameter s, rather than the desired
fluctuation σ . Its transition rates W eff are given by

W eff(C → C ′, s)

W (C → C ′)
= 	(C ′, s)

	(C, s)
exp{sα(C → C ′)}, (4)

where 	(s) is the left eigenvector or W tilt(s) corresponding to
the eigenvalue c(s). The factor 	(C ′, s)/	(C, s) can be cast in
the form of an ‘effective’ potential difference via the definition

V (C, s) ≡ − log 	(C, s). (5)

The function α(C → C ′) enters as a nonconservative driving
force, since it cannot in general be written as a potential
difference. In the last step of this construction, any chosen
fluctuation Nt/t = σ of the original process is made typical
in the effective process by substituting for s the saddle point
value s(σ ) = I ′(σ ), i.e., the maximiser of the LF transform in
Eq. (3). This last step requires convexity of I at σ .

The whole procedure generalizes painlessly when more
than one observable is considered, as when we condition a
system of N interacting active particles on each particle’s
output simultaneously. As the observable Nt becomes an N-
component vector Nt , so do s and σ , and the product sσ in
Eq. (3) is replaced by a scalar product s · σ. However, we
will ultimately set the conditional outputs of the different
constituents to the same vale σ , i.e., σi = σ , i = 1, . . . , N .
The multidimensional LF transform then becomes

I (σ ) = sup
s∈RN

{(
N∑

i=1

si

)
σ − c(s1, . . . , sN )

}
, (6)

where I (σ ) denotes I (σ1, . . . , σN ) computed at σ1 = · · · =
σN = σ . For the limited number of particles considered in this
paper, i.e., N � 3, it is safe to assume due to the particle’s
indistinguishability that the supremum of Eq. (6) is attained
on the line s1 = s2 = · · · = sN . In this case, Eq. (6) can be
replaced with the simpler

I (σ ) = sup
s∈R

{Nsσ − c(s)}, (7)

where c(s) is a shorthand for c(s, . . . , s). Although we have
verified this assumption a posteriori in all the cases examined
here, a symmetry breaking for permutations of the particle
labeling cannot be excluded in the general case, so that Eq. (6)
would not reduce to Eq. (7).

III. THE TWO-BODY CONDITIONING PROBLEM

A. The two-particle TASEP

We come now to the two-body TASEP conditioning prob-
lem. We set the hopping rate γ = 1 without loss of generality
by rescaling time. For the TASEP, the efficiency η reduces
to the ratio of steady state currents of the (effective or naive)
interacting and noninteracting processes. Concerning the effi-
ciency of the naive process, we may in fact suppose arbitrary
particle number N and (periodic) lattice size L. Since all
configurations are equally likely in the TASEP steady state,
one finds (cf. Sec. 2.1.1 of Ref. [44])

ηTASEP
naive = 1 − N/L

1 − 1/L
. (8)

As noted in the introduction, and now demonstrated with
reference to Eq. (4), we see that conditioning carries two ef-
fects: the addition of an effective interaction potential V (C, s)
and a renormalization of the “bare” hopping rate 1 → es (α =
1 for all allowed transitions). Therefore, the effective-process

022130-3



F. CAGNETTA AND E. MALLMIN PHYSICAL REVIEW E 101, 022130 (2020)

FIG. 2. The efficiency of the two-particle TASEP (blue) can be
slightly increased over the naive efficiency (=2/3, orange, dashed)
by conditioning on larger-than-averge σ . In the main graph the
system size L = 4 which represents a crowded system. The inset
shows how efficiency generally increases with L, while the naive–
effective difference shrinks; the conditioning variable was chosen to
σ = γ = 1 (red vertical).

efficiency for a given level of conditioning σ is

ηTASEP
eff (σ ) ≡ σ

es(σ )
, (9)

where the dependence on L and N is left implicit. To obtain the
saddle-point s(σ ), we first compute c(s) via a “tilted” Bethe
ansatz of the dynamics [11,20], then solve the maximization
Eq. (3). In Fig. 2 we plot the resulting efficiency for N = 2
against σ and L. The efficiency gain with respect to the
naive process is small, and rapidly diminishes with larger
system size L (see inset). Just as in the analytically tractable
case of large current fluctuations, the effective interaction for
moderate conditioning is still a weak long-range repulsion. It
is “smart” in the sense of reducing the tendency to jam, but it
does not contribute substantially to the hopping rate (at σ = 1,
e�V � 1.03 for L = 16 and decreases with L). Rephrasing,
the most probable way for the two particles to be as active
as in the absence of crowding (i.e., choosing σ = γ ) is to
simply “push harder.” As this requires more energy input, the
efficiency quickly reaches a point of diminishing returns.

B. Two run-and-tumble particles

The conclusions are substantially different for the RTP
model, which we now consider for N = 2. Upon rescaling
time so as to set the tumbling rate ω = 1, the hopping rate
γ can be interpreted as the active Péclet number Pe = γ /ω,
which quantifies the ratio of self-propulsion to diffusion. At
any given time, the directions τi ∈ {+,−}, i = 1, 2, of the
particles may be either aligned or anti-aligned—crucially, a
pair of particles may be found in a jammed configuration
where each obstructs the other. The exact nonequilibrium
steady state of the RTP model is only known for N = 2 [45];
there, the jammed configuration carries an anomalously large
weight. From this solution we obtain an explicit expression for
the efficiency of the naive two-particle process. In particular,
it has a simple scaling form for large L,

ηRTP
naive(γ ) � 1 + γ /L

1 + 2γ /L
(N = 2). (10)

(a)

(b)

FIG. 3. Two naively interacting RTPs. (a) The efficiency (from
exact formula, not displayed) approaches a scaling form as the sys-
tem size L becomes large. As the Péclet number becomes comparable
to system size, the efficiency drops significantly due to jamming.
(b) The rate function Eq. (3) for the total number of hops develops
a flat region for large Péclet numbers. This region extends beyond
the average σ̄ up to about σ ≈ γ . Consequently, the saddle point
s(σ ) = I ′(σ ), shown in the inset for γ = 100, is close to zero in this
range. All graphs show L = 32; I (σ ) was computed by LF transform
of c(s), in turn obtained by a numerical diagonalization of the tilted
Markov matrix.

For smaller L, as shown in the top panel of Fig. 3, the exact
efficiency curve collapses approximately onto the scaling
form Eq. (10), provided the RTP efficiency is normalised by
the L-dependent TASEP efficiency, Eq. (8). As one would
expect, the efficiency drops with increasing Péclet number:
when γ  L, the particles will with equal probability be
either jammed or in an aligned TASEP configuration, thus
mustering only half the TASEP efficiency on average.

Next, we construct the effective process and determine
its efficiency. Consider first the large deviations of the total
number of steps Nt per particle. As shown in bottom panel
Fig. 3, the naive process average σ̄ = 〈Nt 〉/t [i.e., the zero
of I (σ )] decreases relative to γ as this parameter becomes
large. The SCGF can be calculated numerically either directly
from the tilted transition matrix or by solving a tilted version
of the “root-paramterized eigenvalue equations” derived in
Ref. [46]. The resulting rate function has a Gaussian pro-
file for fluctuations larger than σ � γ , whereas the comple-
mentary regime of fluctuations smaller than the free-particle
speed becomes almost flat for large Péclet number. This large
variance stems from the particles’ ability to either align and
produce a large current, or anti-align and then quickly reach
the jammed state [28]. This feature proves instrumental in
increasing the efficiency of the RTP process. As the inset of
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FIG. 4. This figure illustrates the effective interaction that
emerges upon conditioning two RTPs on the value σ = γ ; we keep
L = 32 and vary γ . The tendency to align is largest at short face-
to-face distance, as quantified by �Ealign(d ), where d is the distance
from particle one (red) to two (black). When γ � L and the particles
are close and back-to-back, this configuration is preferred as the
particles have a chance of increasing their distance and then aligning;
if γ  L, anti-alignment quickly leads to jamming, and therefore
aligning is at all separations the most likely way to increase mobility.
The potential Eq. (5) was found from a numerical calculation of the
spectral elements of the tilted transition matrix.

Fig. 3 shows, in the approximate window σ ∈ [σ̄ , γ ] where
the rate function is flat, the saddle point (which does depends
on γ for the RTPs) sγ (σ ) = I ′(σ ) is close to zero. Condition-
ing the process on σ is this range will, beyond the potential
Eq. (5), only weakly alter the hopping rates, as esα ≈ 1. In
this way, the output can be increased without immediately
encountering diminishing returns.

For each orientation sector (τ1, τ2) we get via Eq. (4) the
σ -dependent effective potential Vτ1τ2 (x2 − x1) [with V++ =
V−− and V+−(d ) = V−+(L − d ) by symmetry]. The largest
and most relevant potential difference is the alignment affinity
�Ealign(d ) ≡ V+−(d ) − V++(d ) shown in Fig. 4. The align-
ment interaction is strongest at short face-to-face distance, and
is superimposed on a weak long-range repulsion similar to
that of the TASEP for large L and/or small γ . In addition,
Fig. 4 suggests that stronger interactions emerge, together
with the “flat” branch of the rate function, when γ exceeds
the ring size. The present result for two particles should then
be relevant for systems with many interacting particles where
the typical inter-particle distance replaces the ring size—the
features of the large deviations [6,28] do not seem to vary
qualitatively by this generalisation.

The efficiency depends separately on γ and σ (since the
saddle point does) as

ηRTP
eff (σ, γ ) = σ

γ
e−sγ (σ ), (11)

which we plot in Fig. 5 versus σ . As anticipated, most of the
possible gain in efficiency occurs before σ ≈ γ , i.e., with little
jump rate renormalization, after which diminishing returns
sets in and the efficiency plateaus.

IV. BEYOND THE TWO-BODY CONDITIONING PROBLEM

Equation (11) is not limited to active transport problems.
Its formulation presupposes a collection of N entities, each

FIG. 5. The efficiency of two interacting RTPs conditioned on
higher-than-average σ (solid lines) increases significantly over the
naive efficiency (dashed lines), especially at large γ /L. The rate of
increase in efficiency at the intersection with the naive value (marked
by a dot) is given by Eq. (12).

independently receiving an input quantity at a rate γ . In a
(Markovian) collective process, this quantity is converted into
an output σ (per entity) that obeys a dynamical large deviation
principle. We first explore the general implications of this
setting. Then we will specialize on the three-body TASEP and
RTP problems.

The derivative of η with respect to σ , evaluated at the
naive average σ̄ , quantifies the immediate improvement in
efficiency upon conditioning:

η′(σ̄ ) = 1

γ

[
1 − σ̄

N (σ 2 − σ̄ 2)

]
, (12)

where we have used the general identities s(σ̄ ) = 0, Ns′(σ̄ ) =
I ′′(σ̄ ) = 1/Var σ [47], with N the number of constituents.
Note that since σ is defined per entity, it scales as 1/N . There-
fore the subtracting term in Eq. (12) is not ensured to vanish
in the large-N limit. If the input-to-output conversion follows
strictly Poisson statistics (as for noninteracting particles on a
lattice), then η′(σ̄ ) = 0.

The general conclusion afforded by Eq. (12) is that a
large variance-to-mean ratio in the output implies high pos-
sible gains in efficiency by conditioning. In effect, when
there is ample variance in output, conditioning may produce
a more optimized process by chiefly retaining the high-
performance trajectories of the original process and discard-
ing low-performance ones. Consider again RTPs at high Pé-
clet number, as in the above numerical study for N = 2. The
large variance in mobility is afforded by the separation of
time-scales between the reorientation and hopping events. We
therefore expect that the efficiency of self-propelled particle
systems can be increased by exploiting fluctuating internal
states coupled to the current-generating dynamics [36,48]. As
Eq. (12) holds also for large N , it could be directly applied
to active models for which the large deviation functions have
been determined from simulation or by other means, e.g.,
Ref. [6].

We now put three particles on the lattice, and study nu-
merically the same conditioning problem as for two RTPs
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FIG. 6. SCGF c(s) scaled by γ for N = 3 RTPs, with γ in the
key. Notice the approximate overlap for s > 0, analogous to that
observed for N = 2 and shown in Fig. 3. The inset shows the mean
(blue dots) and variance (yellow dots) of σ , computed from the c(s)
derivatives, as functions of γ .

or TASEP-particles in Sec. III. The lattice size is fixed to
L = 16. The apposite questions to ask are, firstly, whether the
observation for two particles (viz., the alignment interaction
for the RTPs) generalizes to higher particle numbers; sec-
ondly, if the effective three-body potentials are the sum of the
pairwise potentials obtained from the two-body conditioning.
Regarding the first question, Fig. 6 shows the SCGF c(s) for
three RTPs, for a range of γ . By scaling c(s) with γ , we
achieve an approximate superposition of the curves in the
s > 0 half-plane. Therefore, according to Eq. (7), the rate
functions superimpose for σ > σ̄ , as they do for N = 2 (cf.
Fig. 3). Additionally, the second derivative at s = 0, c′′(0)
(Fig. 6, inset), increases quite steeply with γ . By Legendre
duality, the rate functions will become progressively flatter, as
it does for N = 2. The peculiar large deviations of interacting
RTPs are then preserved in the passage from N = 2 to N = 3.
Furthermore, we can use Eq. (12) to predict the expected
efficiency gain. The inset of Fig. 6 shows both the mean σ̄ and
the variance Var σ . Their ratio is already in the hundreds for
γ = 16, indicating an efficiency derivative close to the upper
bound 1/γ .

The TASEP large deviations also do not change apprecia-
bly from N = 2 to N = 3, especially for large L. Nevertheless,
it is interesting to compare the effective potentials obtained
in the two cases. For the potential to be pairwise, the total
potential of each N = 3 configuration must coincide with the
sum of the N = 2 potentials of the three particle pairs. A con-
ceptually important issue immediately arises of what respec-
tive levels of conditioning make two- and three-body systems
meaningfully comparable. It may at first seem physically in-
tuitive to compare the N = 2 and N = 3 systems for the same
output per particle σ . However, although the large deviations
are qualitatively similar, there is a quantitative dependence
on the particle density such that, for instance, σ̄N=2 > σ̄N=3,
especially for small L. Importantly, the saddle-point function
s(σ ) is N-dependent, giving differing renormalizations es(σ )

of the base hopping rates in the N = 2 and N = 3 processes
conditioned on the same σ . This suggests that processes with
different particle numbers should be compared at fixed s rather

FIG. 7. Effective potential of the three-particle TASEP, with L =
16 and s = 0.15, as a function of d12 and d23. The potential, whose
value is represented by the color, is measured with respect to the
minimum at the maximum-distance configurations (d12, d23 = 5, 5;
6, 5; and 5, 6, at the center of the color plot). The snapshots on
the left-hand side and top-right corner depict the three maximum-
potential configurations where the particles are next to each other,
corresponding to the corners of the color plot.

than σ . In addition, as the effective potential is determined
by the left eigenvector 	(C, s), it is likely to have a simpler
algebraic dependence on s than it does on σ via s(σ ) = I ′(σ ).
In fact, in the one and only known case where the effective
potential factorizes, it does so as function of s. Nonetheless,
the clearest results will be found in the limits of small/large s,
equivalent to the small/large σ − σ̄ limits.

A. TASEP three-body potential

Let us then consider the effective potential V (3)(d12, d23) of
the three-particle TASEP, where di j is the distance (in number
of lattice sites) from particle i to j, with periodicity demanding
d31 = L − d12 − d23. As in the N = 2 problem, the potential
is generally repulsive, with maxima at d12, d23 = 1, L − 2.
This is clearly manifest in Fig. 7. We now compare, for
s and L fixed, the potential V (3) to the pairwise potential
Ṽ (3) constructed as the sum of the effective two-body po-
tentials V (2) found in the previous section; Ṽ (3)(d12, d23) =
V (2)(d12) + V (2)(d12) + V (2)(L − d12 − d23). The difference
� = V (3) − Ṽ (3) indicates the extent to which the three-body
interaction is reducible to pairwise interactions—which we
refer to as factorization (of the left principal eigenvector of
W tilt

s ). Figure 8 shows � as a function of d12 and d23, for
L = 16 and two values of s. The top-right color plot refers to
the high-s case, the bottom-left to the low-s case considered
also in Fig. 7. For the larger s, � � 0, following the large-s
factorization of the TASEP effective potential, demonstrated
in Ref. [11]. As s is reduced, � decreases, signaling that
three-body interactions play a significant role in optimally
achieving the fluctuation.

We find this reduction to be more pronounced when the
three particles are all next to each other (corners of Fig. 8). Our
result indicates the cost in (effective) potential of keeping the
three particles from colliding to be less than that of keeping
the three particle pairs singularly disjoint. This is caused by
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FIG. 8. Fixed-s potential difference � = V (3) − Ṽ (3) between the
effective three-body potential and sum the of effective pairwise
potentials from the two-particle conditioning, for the TASEP. In the
upper color plot s = 2.5 (high s) and in the lower s = 0.15 (low s).

a sort of screening effect due to the third particle. If, e.g.,
d12 = d23 = 1 (as in the bottom-left corner of Fig. 7), then the
repulsion between 1 and 3 is already effected by the repulsion
between 1–2 and 2–3. Alternatively, the result can be resolved
with an interaction whose strength decreases not only with the
metric distance, i.e., the length in lattice units of the shortest
path between two particles, but also with the topological
distance, that is the number of other particles located on this
shortest path [49].

The difference � also reveals the directional asymmetry of
V (3), a purely three-body effect caused by the unidirectional
motion of TASEP. Imagine, for instance, fixing the first two
particles and moving the third along the lattice, thus exploring
the d12 = 1 vertical line of the potential landscape shown
in Fig. 7. In moving from d23 = 1 to L − 2 (the maximum
distance for a given L), the pairwise potential V (2) reaches its
minimum at the midpoint and is symmetrical. The minimum
of V (3), instead, is slightly shifted toward the d23 = L − 2 end.
In simple terms, V (3) favors configurations where particle 3
lies behind the small cluster formed by 1 and 2, rather than that
where d23 = d31. This effect, which resembles slipstreaming
(in the absence of any fluid), is clearer in the difference � (cf.
Fig. 8) than in the three-body potential itself.

B. RTP three-body potential

We now discuss the three-body effective potential for a
system of RTPs. The effective potential depends on the orien-
tational as well as translational degrees of freedom. We then
write the potential as V (3)

τ1τ2τ3
(d12, d23), where di j is the distance

from particle i to j and τi ∈ {+,−} is the orientation of the ith
particle. For the TASEP (Sec. IV A), we only had the single
orientation sector τ1τ2τ3 = +++; for the RTPs, we consider
only the sectors +++ and −++, as the rest are related to
these by permutation of particle labeling and spatial inversion.

Plotting V (3)
+++(d12, d23) would reveal the same weak re-

pulsive interaction found for the three-particle TASEP and
shown in Fig. 7; the difference V (3)

+++ − V (3)
−++ shows an align-

ment interaction reminiscent of that discussed in Sec. III B.
Additional three-body contributions are better understood by
resorting to the difference with respect to the sum of pairwise
interactions, �τ1τ2τ3 —notice the dependence on particle orien-
tations for RTPs. This difference is shown for both the +++
(bottom-left triangle) and −++ (top-right triangle) sectors in
Fig. 9, at γ = ω = 1 and L = 16. The left and right panels are
representative of the low s and high s regimes, respectively.
Let us begin with the former, i.e., compare �+++ and �−++
at low s.

�+++, though generally small, is larger in modulus at the
corners of the color plot, implying a weaker repulsion than in
the two-body case. This observation, as in the TASEP, can be
explained by a screening effect due to the third particle. �−++
displays a similar landscape, apart from two differences. First,
the well at d12 = L − 2, d23 = 1 is deeper than for �+++ (see
Fig. 9, left panel, bottom-right corner). This is a jammed
configuration, which is obtained by the d12 = L − 2, d23 =
1 configuration shown in the top-right corner of Fig. 7 by
flipping the arrow of particle 1: the rightmost particle, then,
is in the - state, and faces the two + particles on its left.
The two outer particles (namely, 1 and 2), whose interaction
is screened by the middle particle, are pointing against each
other. Their two-body potential, then, is higher than if they
were parallel, so that the reduction in the three-body potential
is greater than in the +++ sector. Second, the well at d12 =
d13 = 1 (Fig. 9, left panel, bottom-left and top-right corners)
is shallower than for �+++. The outer particles of this config-
uration (1 and 3) are indeed aligned outwards, so that their
two-body potential is minimal. Following this argument, it
is natural that at d12 = 1, d23 = L − 2, where the two outer
particles (3 and 2) are aligned with each other, �−++ is similar
to �+++.

Upon increasing s, the three-RTP potential of the +++
sector becomes closer and closer to a pairwise potential in
analogy with the TASEP potential (see the bottom-left corners
of the color plots of Fig. 9). Conversely, in the −++ sec-
tor, the difference between three-body and pairwise potential
increases with s. This observation holds for γ > 1, i.e., in
general, γ > ω. For γ � ω, i.e., approaching the limit of a
symmetric simple exclusion process (SSEP), factorization is
achieved in both the +++ and the −++ sectors.

V. DISCUSSION

Is conditioning a route to “smart” matter? The simplest
example of just two interacting particles demonstrates that
smart interaction can indeed emerge in this way: run-and-
tumble particles develop an effective alignment interaction
to sustain atypically large mobilities. This result provides a
microscopic basis to the observation of aligned states in large
work fluctuations of two-dimensional active Brownian parti-
cle systems [6]. It also points toward a generality which ex-
tends beyond the one-dimensional continuous-time processes
considered in this paper. To judge whether conditioning yields
an actual improvement on the individual energetics, we have
proposed an efficiency framework which takes into account
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(a) s = 0.15 (b) s = 2.5

FIG. 9. Plot of the discrepancy � = V (3) − Ṽ (3) between three-body potential and sum of pairwise interactions for the RTP, for (a) low
s-value and (b) high s-value. Lower triangles show �+++, and upper triangles �−++. Parameters are L = 16 and γ = 1.

the energy-consuming nature of forces in active systems.
Additionally, we have discussed the relationship between the
effective potential in a two- and three-body scenario, which
serves as a prototype for the generalization to higher particle
counts.

In terms of the efficiency, we discover in both the RTP
and TASEP models that there is a phenomenon of rapidly
diminishing returns, such that a relatively small window of
conditioning values accounts for most of the range of possible
efficiency gain. Furthermore, the relative amount of gain in
efficiency differs substantially between the models. Condi-
tioning can only “act” on naturally occurring fluctuations of
the original dynamics, which are limited for the TASEP to
fluctuations in hopping speed fortuitously correlated with in-
terparticle distances. In contrast, the RTP model, whose initial
efficiency is lower due to head-to-head jamming, displays a
broader repertoire of fluctuations to be exploited by condi-
tioning (both speed and direction), which explains the larger
efficiency gain compared to the TASEP. Formula Eq. (12)
encapsulates this finding by providing a quantitative basis for
the claim that a large variance in the output results in high
gains in efficiency upon conditioning. In simple terms, when
there are large and relatively likely fluctuations, conditioning
can exploit them. At a mathematical level, high variance
in output is equivalent to near-flatness of the saddle-point
s(σ ). In a sense, this amounts to being close to a dynamical
phase transition, at which the saddle-point would become
truly flat, signaling the break-down of the large-deviation
principle. However, as that happens, the ensemble equivalence
that underlies the effective process construction is moot. We
stress that studying the so-called s-ensemble, as is common,
without relating it back to the value of the constraint σ , misses
a qualitatively important aspect of conditioning, namely how
the structure of the rate function itself determines the outcome
of conditioning.

By comparing the two- and three-particle scenarios, we
confirm that, in the general case, many-body interactions

emerge that are not simple to extrapolate from the knowledge
of the two-body interactions. While this may be perceived
as a fundamental limitation of the conditioning approach,
our detailed study of the three-body cases demonstrates that
these many-body interactions need not be overly compli-
cated. In the cases we examine, for instance, they can be
ascribed to a topological screening effect: by placing an
intermediate particle between two nearby ones, they are ef-
fectively screened, making the pairwise interaction across the
intermediate particle superfluous. Thus, the 1D setup may
be a main contributive factor to the lack of factorization
of the interaction. However, there are certainly situations
in which factorization of the many-body interaction does
occur, as in the high-current TASEP phase. To this we add
the observation that, in the SSEP-limit of the RTP, the ef-
fective interaction factorizes for arbitrary s. Conversely, for
large Péclet number, three-body contributions to the RTP
potential increase rather than decrease with the bias s. Fu-
ture research may investigate more systematically what as-
pects of the dynamics lead to factorization (e.g., integrability
and/or reversibility) while giving a thorough characterisa-
tion of three-body contributions when factorization is not
expected.

Let us also stress that the conditioning framework is not
limited to the arena of statistical mechanics. One may think
of diverse practical scenarios where a specific potential or
force is sought to achieve some outcome—this is the sub-
ject of optimal control theory, with which the concepts here
discussed have been rigorously linked (see Ref. [14] and
references therein). As in active and driven systems, it may be
desired that the chosen constraint be satisfied only by adding
a potential-like interaction, as the “tilt” factor esα implies an
increased energy injection. To fix, in our language, the base
hopping rate γ , one could consider a replica (R) of the naive
process with hopping rate γR � γ and choose a conditioning
value σ such that R when conditioned on it attains a renor-
malized hopping rate γResγ0 (σ ) = γ , i.e., σ = s−1

γR
[log(γ /γR)].
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Finally, take γR = γ ∗ as the value that optimizes the efficiency
σ/γ of this effective process,

γ ∗ = arg max
γR

{
s−1
γR

(
log

γ

γR

)}
. (13)

Construct the potential Eq. (5) from the tilt of the transition
matrix with hopping rate γ ∗ and with tilt parameter s∗ =
log(γ /γ ∗). This interaction potential added to the rates of the
naive process with hopping rate γ will have a higher efficiency
(or at least not lower) while keeping energy input fixed. The
price paid is that the resulting effective process is not strictly
speaking representing the most probable fluctuations of the
naive process it is compared to.

In closing, conditioning remains an intriguing frame-
work to derive nontrivial interactions. It is intimately linked
to inference from data [5,19], and to optimal control.
In the active matter context, the way conditioning ex-
ploits beneficial fluctuation is suggestive of an evolutionary
point-of-view [6], furthered by the similarity shared by rare-

events sampling techniques [50] and gene selection. We have
here only taken elementary steps in setting out the main ideas
behind the framework and applying it to toy models. Our
results nonetheless point to the effective process having a
certain structure and robustness that generalizes with larger
system sizes, provided the system parameters and condition-
ing value are chosen in a physically plausible way. While
presently calculating large deviation elements of large systems
is prohibitively costly, we expect concurrent developments of
advanced approximations [51] and numerical methods [52,53]
to overcome this hurdle.
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