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Stochastic entropy production, which quantifies the difference between the probabilities of trajectories of a
stochastic dynamics and its time reversals, has a central role in nonequilibrium thermodynamics. In the theory
of probability, the change in the statistical properties of observables due to reversals can be represented by
a change in the probability measure. We consider operators on the space of probability measures that induce
changes in the statistical properties of a process, and we formulate entropy production in terms of these change-
of-probability-measure (CPM) operators. This mathematical underpinning of the origin of entropy production
allows us to achieve an organization of various forms of fluctuation relations: All entropy production has a
nonnegative mean value, admit the integral fluctuation theorem, and satisfy a rather general fluctuation relation.
Other results such as the transient fluctuation theorem and detailed fluctuation theorems then are derived from
the general fluctuation relation with more constraints on the operator of entropy production. We use a discrete-
time, discrete-state-space Markov process to draw the contradistinction among three reversals of a process:
time reversal, protocol reversal, and the dual process. The properties of their corresponding CPM operators are
examined, and the domains of validity of various fluctuation relations for entropy production in physics and
chemistry are revealed. We also show that our CPM operator formalism can help us rather easily extend other
fluctuation relations for excess work and heat, discuss the martingale properties of entropy production, and
derive the stochastic integral formulas for entropy production in constant-noise diffusion process with Girsanov
theorem. Our formalism provides a general and concise way to study the properties of entropy-related quantities
in stochastic thermodynamics and information theory.
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I. INTRODUCTION

Stochastic thermodynamics is a milestone extending equi-
librium statistical physics to the nonequilibrium realm, and
it could provide a general theory for emergent phenomena in
mesoscopic systems [1–5]. It studies entropy production (EP),
its relation to work and heat done by the system of interest [6],
its statistical properties, such as expectations and martingale
properties, and also how its probability density functions
change after time reversals, called fluctuation theorems or
fluctuation relations (FRs) [3,7–9].

Various distinct FRs for different EP have been studied
in various settings including discrete-time Markov chains
[6,10–12], continuous-time Markov chains (Markov jump
processes) [13–18], diffusion processes (as stochastic dif-
ferential equations or Langevin equations) [10,17–22], and
even general stochastic processes [2,8,17,23–25]. To discuss
a few, in Ref. [8], Crooks’ fluctuation theorem for the total
entropy production was introduced for systems with detailed
balance and the conditions for it to hold was illustrated; in
Ref. [23], the dissipation function from Evans and Searles
[26] was rigorously shown to generally admit the transient
fluctuation theorem (TFT); in Ref. [15], a detailed fluctuation
theorem related to the involutive property of the change in
probability (iDFT) was introduced but the correct condition
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for total entropy production and nonadiabatic entropy pro-
duction was not stated; in Ref. [3], the generalized Crooks’
fluctuation theorem for nondetail balanced systems (rDFT)
and TFT for different EP were discussed thoroughly for
diffusion processes. iDFT was also discussed briefly; and in
Ref. [27], rDFT was thoroughly discussed in general Markov
processes for the three entropy productions except dissipation
function.

The extensiveness of FTs calls for an unifying formalism
to derive all FTs mentioned above in one general theory,
organize their domain of validity comprehensively, and open
ways to reveal more properties of EP. It is suggested in
Refs. [2,17,23–25,28] that measure-theoretic probability the-
ory pioneered by Komogorov [29] will do the trick. One
key is the understanding that EP in physics is the fluctuating
relative entropy for trajectories between the original process
and the reversed process, with different EP given by different
reversals or composite of reversals [3,6,8]. In the measure-
theoretic formalism, EP is thus mathematically expressed
as the negative logarithm of the Radon-Nikodym derivative
(RND), which is a reweighting factor in taking expectation
to change a probability measure from the original one to the
other. It is this mathematical underpinning that enables us
to arrive an organization of FRs and further derive/recover
other properties with a deeper understanding of EP, e.g., its
martingale properties [25,30,31].

Our paper thus serves as a comprehensive overview on
how to understand EP and its statistical properties, primar-
ily FRs, from measure-theoretic probability theory and our
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TABLE I. The five fluctuation relations (FRs) of the EP, Sν , with the CPM operator ν discussed in this paper. IFT is the integral fluctuation
theorem [7]; GFR is the general FR in Eq. (8c); TFT is the transient fluctuation theorem in Refs. [3,20,23,26], iDFT is the detailed fluctuation
theorem in Ref. [15], and rDFT is the generalization of Crooks’ fluctuation theorem [3,8,22,27]. We have shown in the text that TFT implies
iDFT. This summarizes the hierarchical structure of the validity of the five FRs.

FR Definition EP involved Validity and sufficient conditions

GFR P {Sν ∈ ds} = esP ν{Sν ∈ ds} Sν (ω) = ln dP
dP ν (ω) Generally valid

IFT E[e−Sν ] = 1
rDFT P {Sν (ω) ∈ ds} = esP ν{S̄ν[r(ω)] ∈ −ds} S̄ν (ω) = ln dPR

dPRν (ω) S̄ν[r(ω)] = −Sν (ω)

iDFT P {Sν (ω) ∈ ds} = esP ν{S̃ν (ω) ∈ −ds} S̃ν (ω) = ln dP ν

dP νν (ω) ν involutive on P
TFT P {Sν (ω) ∈ ds} = esP {Sν (ω) ∈ −ds} Sν (ω) = ln dP

dP ν (ω) ν realized by an
involutive map on �

change-of-probability-measure (CPM) operator theory. We
revisit discussions on different time reversals, their associated
EP in physics and chemistry, and derive various FRs from
our general and concise approach. Our goal is to demonstrate
that by adopting this CPM operator formalism, one can neatly
derive many known results in the literature with more rigor
and generality, achieve new understanding on EP and FRs,
and reveal more properties of EP.

The outline of this paper is summarized below. In Sec. II,
we briefly introduce measure-theoretic probability theory, the
notion of CPM operator, and present general statistical prop-
erties for a general EP as a fluctuating relative entropy in
general stochastic processes without Markovian assumption.
With more constraints on the properties of the CPM operator,
we deduce the general conditions for various known FRs and
reveal a hierarchy of the domain of validity for various FRs
with new relations recognized between them such as TFT ⇒
iDFT. In Sec. III, we further use a discrete-time Markov
chain to illustrate the contradistinction of three different time
reversals of the dynamics that are prominent in physics and
chemistry. The involutive and commutative properties of their
corresponding CPM operators are discussed.

In Sec. IV, we apply the results in the previous two sections
to discuss the properties of the four EP commonly considered
in physics and chemistry. Notably, we discuss the difference
between dissipation function and total entropy production and
show that the two EP have nonzero difference in expectation
for finite time interval in time homogeneous processes but
have the same entropy production rate in infinitesimal time
interval. The two seemingly contradicting results are resolved
by noting the nonadditivity of the dissipation function when
connecting time intervals.

We further demonstrate how properties of EP other than
its FRs can be derived and extended in a rather straightfor-
ward way with this CPM operator formalism. We discuss
the martingale properties of the four EP which can lead to
more statistics on EP [25,30,31], and we extend the so-called
differential FR for work and heat [32,33] to nonequilibrium
systems at the end of Sec. IV. We also show how to use our
CPM operator formalism and Girsanov theorem [2] to derive
the stochastic integral formulas of the four EP for general time
inhomogeneous constant-noise diffusion processes in Sec. V.
The notations for the five heavily discussed FRs and the EP
involved in them are summarized in Table I. Properties of
the four EP we have discussed primarily in this paper are

also summarized in Table II. Finally, in Sec. VI, we discuss
possible future extensions of our work.

II. GENERAL THEORY

To describe stochastic processes with a measure-theoretic
probability theory, we start by specifying a tuple (�,F ) called
measurable space, where the sample space � collects all pos-
sible trajectories ω and the σ -algebra F collects all events of
interest. Physical quantities, as observables, are then random
variables defined on (�,F ) [21]. The statistical properties
of a stochastic process are further specified by a probability
space (�,F ,P ) with a probability measure P that assigns
probabilities to events of interest in F . See in subsection 1 of
Appendix for a more thorough introduction.

The collection of all possible probability measures on
a given measurable space (�,F ) forms an affine space of
probability measures P [35]. Each probability measure P ∈ P
corresponds to a stochastic process with specific statistical
properties [36]. In this paper, we would assume P collects
probability measures that are absolutely continuous to each
other (also called equivalent in probability theory); i.e., if an
event has zero probability for a stochastic process P ∈ P , then
the event has zero probability under all P in P .

A. Change of probability measure

With the statistical properties of stochastic processes spec-
ified by probability measures P ∈ P , the difference between
the statistical properties of two processes is characterized by
a change of probability measure (CPM) P → P ν ∈ P , which
induces changes in the statistical properties of observables.
This change in statistical properties can be mathematically
represented by a random variable called the Radon-Nikodym
derivative (RND), denoted as dP ν

dP (ω) [35,37]. Intuitively,
RND serves as a reweighting factor in taking expectation.
For an arbitrary random variable Y (ω) defined on (�,F ), it’s
expectation under P ν, denoted as Eν[Y (ω)], can be expressed
by the reweighting factor and the previous expectation E[·],

Eν[Y (ω)] = E

[
Y (ω)

dP ν

dP
(ω)

]
. (1)

Note that to get the probability density function of a
random variable X (ω), we can let Y (ω) to be an indicator
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TABLE II. Properties of the four entropy production (EP) for Markov processes. ST is the dissipation function [3,26]; Stot is the total EP
[3,14,15,34]; Qhk is the housekeeping heat [3,14] or called the adiabatic EP in Ref. [15]; and Sna is the nonadiabatic EP [15]. E[·] denotes the
expectation and the nonnegative expectation of entropy production is the classical second law of thermodynamics. P0 is the initial distribution
of the original process. PR

t is the terminal distribution of the protocol reversed process, i.e., the distribution one gets by starting with initial
distribution Pt and then marching with reversed order of transition proability matrices for t steps. TH stands for time homogeneous; SS stands
for steady state; and DB means the steady state has detailed balance. Note that when TH and SS, i.e., when the system is in nonequilibrium
steady state, we have ST ≡ Stot ≡ Qhk and Sna = 0.

EP = 0 when E[·] � 0, IFT, GFR TFT iDFT rDFT Additive in time e−[·] a martingale

ST = ln dP
dPT TH+SS+DB Yes Yes Yes TH+SS TH+SS TH+SS

Stot = ln dP
dPRT TH+SS+DB Yes TH+SS TH+SS if P0 = PR

t Yes TH+SS

Qhk = ln dP
dP† TH+DB Yes TH+SS Yes Yes Yes Yes

Sna = ln dP
dPR†T TH+SS Yes TH+SS TH+SS if P0 = PR

t Yes TH+SS

function of X (ω) taking values in between x and x + dx
(denoted as X (ω) ∈ dx for simplicity). That is,

P ν{X (ω) ∈ dx} = Eν[I{ω:X (ω)∈dx}] (2a)

= E

[
I{ω:X (ω)∈dx}

dP ν

dP
(ω)

]
, (2b)

with the indicator function IA(ω) returning 1 if ω is in the
event A and returning 0 otherwise. Throughout the paper,
we use capitalized letters for random variables and their
corresponding lower letters for their values for a specific
realization.

CPM and RND are key concepts in the theory of fluctuating
entropy and EP [18,21,37]. For systems with a discrete sample
space � (trajectory space when considering processes), RND
reduces to the ratio of two probability mass functions, and for
those with continuous sample spaces, it reduces to the ratio of
two probability density functions. In either case, the RND is
obtained from the ratio, which is defined on the codomain of a
random variable, with random variables plugged back in [37].

In stochastic thermodynamics, a physical operation such
as a time reversal in the dynamics is an operation that changes
the probability measure P ∈ P to a new probability measure
P ν ∈ P based on P alone. This means we are interested in
a transformation ν on the space of all probability measures
P → P , and for each given measure P ∈ P , a physical oper-
ation defines a RND that is dependent upon the current pro-
cess (�,F ,P ). Thus, we consider operators ν that operates
on P , giving every measure P ∈ P an image P ν ∈ P and
a corresponding RND. The new probability measure P ν is
obtained by

P ν{A} := E

[
dP ν

dP
IA

]
, (3)

∀A ∈ F and ∀P ∈ P .
As we shall show, only very special operator ν defined

on P can be represented as a result of a map μ from �

to �. In those special cases, the map μ maps an event of
interest A ∈ F to another, μ(A) ∈ F , which is obtained by
replacing all the ωs in A by the μ(ω)s; e.g., if A = ω1 ∪
ω2, then μ(A) = μ(ω1) ∪ μ(ω2). The new measure is then

given by

P ν{A} = P {μ(A)}. (4)

B. Fluctuating entropy production

In stochastic thermodynamics, fluctuating EP of a CPM
operator ν is defined as the negative natural logarithm of the
RND,

Sν (ω) := ln
dP

dP ν
(ω), (5)

which is also a random variable [18,21,37–39]. The advan-
tages of working with Sν instead of the RND can be seen by
its additivity, statistical properties and applications in infor-
mation theory [40–42]. We note that Sν is always finite given
our assumption that P collects P s that are absolute continuous
to each other, i.e., 0 < dP

dP ν (ω) < ∞.
The prominent role of the reference measure P ν in the very

definition of EP has a clear physical meaning. As the concept
of energy, both entropy and EP are relative to a reference state,
for which the choice is often question dependent. It is well
understood that various different “free energies,” as thermo-
dynamic potentials, are determined by the physical settings of
an equilibrium ensemble. In theories of dynamical systems,
ergodic stationary measure, with a translational symmetry in
time, has been widely used as a “natural” reference in physics
and mathematics [43]. In stochastic dynamics, stationarity
does not imply local time-reversal symmetry, which is often
coupled to certain parity symmetry. In the work below, this is
best illustrated as an involutive map on � and/or an involutive
operation on P .

The EP, Sν (ω), can be understood as the fluctuating rel-
ative entropy of trajectories ω with respect to the reference
probability measure P ν . It reflects the difference between two
probability measures. If the stochastic process is symmetric
under the operator ν, i.e., P ν = P , then Sν (ω) = 0,∀ω ∈ �.
With different ν, we can have various different EP that are
physically important, e.g. the nonadiabatic EP that is related
to work and heat. It is therefore desirable to find the gen-
eral statistical properties of a given EP given it’s definition
in Eq. (5).
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C. Fluctuation relations

Directly from the definition of EP in Eq. (5), the following
three key statistical properties of Sν can be derived rather
straightforwardly.

(a) Nonnegative expectation: By Jensen’s inequality, the
expectation of Sν with respect to P is nonnegative, E[Sν] � 0,
and equality only holds when P = P ν due to the strict
convexity of negative logarithm. This result for EP in
physical processes extends the classical second law of
thermodynamics [17].

(b) Integral Fluctuation Theorem (IFT), or Jarzynski’s
equality [7]:

E[e−Sν (ω)] = E

[
dP ν

dP
(ω)

]
= Eν[1] = 1. (6)

(c) General fluctuation relation (GFR):

P {Sν (ω) ∈ ds} = esP ν{Sν (ω) ∈ ds}, (7)

where ds is a shorthand for the infinitesimal interval
(s, s + ds). This GFR states for the EP, Sν = ln dP

dP ν , that
quantifies the difference between P and P ν , its probability
densities under P and P ν are up to a exponential factor.

GFR can be derived by considering the probability density
of Sν under the new measure P ν , characterizing the statistical
properties of Sν in the ν process:

P ν{Sν (ω) ∈ ds} = E

[
dP ν

dP
I{ω:Sν (ω)∈ds}

]
(8a)

= E[e−Sν (ω)I{ω:Sν (ω)∈ds}] (8b)

= e−sP {Sν (ω) ∈ ds}. (8c)

We will see below that most fluctuation relations discussed in
the literature come directly from this GFR. We remark that
the three properties above holds for any fluctuating relative
entropy defined as the negative logarithm of a RND.

1. Detailed fluctuation theorems

The detailed fluctuation theorems that were considered in
the literature [3,8,15,22] have the form of

P {Sν (ω) ∈ ds} = esP ν{Ŝν (ω) ∈ −ds}, (9)

where Ŝν can be various different random variables under
different considerations. The DFT comes directly from GFR
in Eq. (8c) if there is an odd parity between the original
random variable Sν and the new random variable Ŝν under
consideration,

Ŝν (ω) = −Sν (ω). (10)

Two choices of Ŝν were discussed in the past, which we will
briefly summarize below.

Recall that Sν serves as a random variable that quantifies
the effect of the CPM operator ν acting on (�,F ,P ). When
considering a different process (�,F ,P η ), the EP that does
the same for the η process as Sν does for the original process
should be given by replacing P with P η,

Sη
ην (ω) := ln

dP η

dP ην
(ω), (11)

where P ην = [P η]ν is operating η on P first and then applying
ν on P η. The two Ŝνs considered in the past [3,15] correspond
to two different ηs.

A mathematically natural consideration for η is to take η as
ν, which will lead to Esposito and Van den Broeck’s detailed
fluctuation theorem in Ref. [15]. In this setting, the odd parity
requirement in Eq. (10) becomes an involutive requirement of
the operator ν,

Sν
νν = ln

dP ν

dP νν
= −Sν = ln

dP ν

dP
⇔ P νν = P . (12)

Denoting Sν
νν as S̃ν , the detailed fluctuation theorem from the

involutive property (iDFT) [15] then reads

P {Sν (ω) ∈ ds} = esP ν{S̃ν (ω) ∈ −ds}. (13)

In a physical process, the driving protocol of the system
is determined by macroscopic thermodynamics parameters,
and thermodynamics quantities such as heat and work are
dependent upon the driving protocol. Therefore, in most of the
physics literature, the Ŝν considered was given by first taking
η as the macroscopic, protocol reversal R, as we will defined
explicitly in Eq. (23), and then evaluating Ŝν at the order
reversed trajectory r(ω) where r is a map from � to � that
reverses the trajectory ω ∈ �. By denoting S̄ν (ω) := SR

Rν (ω)
and using S̄ν[r(ω)] for Ŝ(ω), we get the generalized Crooks’
fluctuation theorem [3,8,11,22,27],

P {Sν (ω) ∈ ds} = esP ν{S̄ν[r(ω)] ∈ −ds}. (14)

To fix the terminology, we would refer this detailed fluctuation
theorem as the rDFT. The odd parity requirement S̄ν[r(ω)] =
−Sν (ω) turns out to be an involutive requirement on the
operator R for the CPM operators we are interested in, as
shown in Eqs. (39) and (58).

To check the validity of iDFT and rDFT, we should check
the necessary and sufficient condition: for Sν and −Ŝν to have
the same probability density of under P ν . The odd parity
condition in Eq. (10) is a stricter condition on Sν and Ŝν

[44] and only a sufficient condition. To prove a DFT to be
valid, we can show this sufficient condition to be true, but
to prove a DFT to be invalid, we would need to show a
necessary condition of it to be false. For simplicity, we will
only check the the sufficient condition in Eq. (10) for a DFT
in this paper. If an EP does not admit this odd-parity condition,
then we will leave its DFT inconclusive and leave it for future
consideration.

2. Transient fluctuation theorem

If an operator ν is involutive, i.e., P νν = P , then we
already know that Sν admits iDFT. Now, if the operator
ν is further realized by an involutive map μ : � → � on
the trajectory space as we have shown in Eq. (4), i.e.,
μ[μ(ω)] = ω, then we would have Sν[μ(ω)] = ln dP ν

dP νν (ω) =
S̃ν (ω) = ln dP ν

dP (ω) = −Sν (ω). Then, by Eq. (4), we have
P ν{Sν (ω) ∈ ds} = P {Sν[μ(ω)] ∈ ds}. With our GFR, we
obtain the so-called transient fluctuation theorem (TFT)
[1–3,23,26,45],

P {Sν (ω) ∈ ds} = esP {Sν (ω) ∈ −ds}. (15)
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TFT is particularly important since it provides explicitly the
asymmetry between having a positive and negative EP in the
same process. The probability (density) of finding a positive
EP is exponentially higher than the probability of finding a
negative one.

The validity of TFT is easy to check since involutive
property P νν = P is an necessary condition for TFT. If P νν 
=
P , then E[ln dP

dP νν ] > 0 ⇒ E[Sν] > E[−Sν
νν] by Jensen’s in-

equality. We then know Sν and −Sν
νν have different probability

densities with respect to P ⇒ TFT is false. Here, we see that
TFT is a sufficient condition for Sν to have iDFT but not nec-
essary. This is because not all involutive operator ν : P → P
can be realized by an involutive map μ : � → � [46]

D. Summary

Treating a physical operation on stochastic processes as
a CPM operator ν on probability space P , we have charac-
terized the change in the statistical properties of a physical
operation via the negative natural logarithm of the RND,
which one defines it as the EP Sν . In fact, a hierarchy of the
validity for FRs in general stochastic processes is revealed
from our work as summarized in Table I:

(a) Nonnegative expectation, IFT [3,7], and GFR are gen-
erally true from the definition of Sν .

(b) With Ŝν (ω) = −Sν (ω), we have DFTs. In the literature,
Ŝν (ω) was chosen to be S̃ν (ω) := Sν

νν (ω) to get iDFT [15] if
the CPM operator ν is involutive, or S̄ν[r(ω)] := SR

Rν[r(ω)]
to get rDFT [3,8,11] if the protocol reversal operator R is
involutive (for the ν we considered).

(c) Further with the CPM operator ν as an involutive map
on the trajectory space, from � → �, we have TFT [3,23,26].

The results above are true no matter the stochastic process
has discrete or continuous state space X , is with discrete or
continuous time, is time homogeneous or not, or has any
specific initial distribution such as the invariant distribution.
The Markovian assumption is not even imposed except the
definition of the protocol reversal R. Our derivation only relies
on assuming all P ∈ P to be absolute continuous to each
other, the notation of CPM operator, the definition of EP, and
conditions for more restricted FRs such as DFTs and TFT.

With these general results in hand, we shall consider EP
in physics and chemistry, the reversal operators it corre-
sponds to, and its fluctuation relations as examples in the
following sections. We will start by introducing different
reversals in Sec. III and then various EP with their fluctuation
relations in Sec. IV. As we will see, our CPM operator
notion clarifies the difference between different time reversals
and between EP, especially between the dissipation function
and the total entropy production, which are easily confused
quantities.

III. DIFFERENT TYPES OF REVERSAL

EP in nonequilibrium physics and chemistry is introduced
by comparing the original process to its “time reversal” [3].
The definition of a time reversal, however, is inevitably based
on our understanding of the physics of time. See Ref. [47] for
a discussion of “overdamped” versus “underdamped” thermo-
dynamics.

Here, for general Markov processes, we would consider
three different reversals. We use a discrete-time Markov chain
with t time steps and discrete state space X as a paradigm.
Markov processes in continuous time and continuous space
will be discussed in Sec. V.

We use the colon notation X0:t to represent a sequence of
random variables (X0, X1, · · · , Xt ) and a specific trajectory
x0:t = (x0, x1, x2, · · · , xt ). In our consideration, ω is a specific
trajectory x0:t and our trajectory space � is given by the outer
product of (t + 1) state spaces, X ⊗ X ⊗ · · · ⊗ X or simply
X t+1. The full probabilistic description of the state variables
X0:t is given by their joint probability denoted as

P0:t (x0:t ) := P {X0 = x0, X1 = x1, · · · , Xt = xt }. (16)

The marginal probabilities Pn(xn) := P {Xn = xn} and the con-
ditional probabilities Pm|n(xm|xn) := P {Xm = xm|Xn = xn} can
be computed from the joint probability. We would denote the
transition matrix at the nth time step as

Mn(xn|xn−1) := Pn|n−1(xn|xn−1). (17)

With this notion, the joint probability for a time-
inhomogeneous Markov process,

P0:t (x0:t ) = P0(x0)
t∏

n=1

Mn(xn|xn−1), (18)

is determined by the driving protocol, which constitutes the
initial distribution P0 and all the transition matrices Mn for
n = 1, 2, · · · , t . For each transition matrix, we also assumed
the existence of a unique invariant distribution πn satisfying∑

i∈X πn(i)Mn( j|i) = πn( j).

A. Time reversal

The time reversal of a Markov chain for n = 0, 1, · · · , t is
conventionally defined by a change of random variable

X T
n (ω) = Xt−n(ω), (19)

where we use superscript T to represent time reversal. This
definition of X T

n can be treated as the random variable induced
by a map on the trajectory space, r : � → �,

X T
n (ω) = Xn[r(ω)], (20)

where the map r reverses the order of a trajectory ω, r(x0:t ) =
xt :0. Given a specific trajectory ω = x0:t , the state variable
Xn(ω) is understood as the observed state of the system at
time n. We can then clearly see the equivalence between these
two definitions:

X T
n (x0:t ) = Xt−n(x0:t ) = xt−n = Xn(xt :0 ). (21)

By the equivalence between change of random variable
and change of probability measure [37], instead of regarding
time reversal as a change of random variable, we can also
characterize the time reversal as a change of probability
measure with a CPM operator T . The CPM operator T is
realized by the map r : � → � on the trajectory space. The
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joint probability after time reversal is thus given by

PT
0:t (x0:t ) = P T {X0(ω) = x0, · · · , Xt (ω) = xt } (22a)

= P {X0[r(ω)] = x0, · · · Xt [r(ω)] = xt } (22b)

= P {Xt (ω) = x0, · · · , X0(ω) = xt } (22c)

= Pt :0(x0:t ) (22d)

= P {X0(ω) = xt , · · · Xt (ω) = x0} (22e)

= P0:t (xt :0 ). (22f)

We see that the joint probability of finding x0:t in the time
reversed process is the same as the joint probability of finding
the order-reversed trajectory xt :0 in the original process. The
assumption that the order-reversed trajectory has a nonzero
probability in the original process is the microscopic re-
versible assumption required in Ref. [8].

When using a change of probability measure perspective,
the meaning of the random variables Xn is preserved as the nth
state of the process. The changes in its statistical properties
are due to the change in probability measure. An interesting
analog to these two equivalence ways of characterizing the
change is the Schrödinger’s and Heisenberg’s pictures of
quantum mechanics [37]. We also note that, from the results
above, it can be mathematically shown that the time reversed
Markov chain is still Markovian but will be time inhomoge-
neous even if the original process is time homogeneous.

B. Protocol reversal

The joint probability of a Markov chain is determined by
the driving protocol, P0 and Mn, n = 1, 2, · · · , t . Thus, we can
consider the process where we used the terminal distribution
Pt as our new initial distribution and reverse the temporal
order of the transition matrices. We shall call this reversal the
protocol reversal of the process and denote the corresponding
CPM operator as R. The new joint distribution is then given
by

PR
0:t (x0:t ) = Pt (x0)

t∏
n=1

Mt+1−n(xn|xn−1). (23)

Compare to the time reversal T which is a “time reversal” at
the microscopic/trajectory level, protocol reversal R is rather
a “time reversal” at the macroscopic/thermodynamics level.

The “time reversal” that was considered by most of the
previous studies on fluctuation relations [15,18,22] is in fact
the composition of the two reversals we have just introduced:
R and T , denoted as PRT . The joint distribution is given by[

PR
0:t

]T
(x0:t ) = PR

0:t (xt :0 ) (24a)

= Pt (xt )
t∏

n=1

Mt+1−n(xt−n|xt−n+1). (24b)

This computation in Eq. (24b) actually gives us a con-
venient result when working on composite CPMs with time
reversal as the last operation, P → P νT . The joint probability
for such composite operators is given by evaluating at the
order-reversed trajectory:

PνT
0:t (x0:t ) = Pν

0:t (xt :0 ). (25)

Note that the two operators R and T do not generally com-
mute, PRT

0:t 
= PT R
0:t [48].

C. The dual process

The last reversal we consider in this paper is by introducing
the driving protocol that reverses the probability flux in the
invariant steady state at each time step. This new process is
called the dual process [3,11] of the original process. For
a time homogeneous process, the dual process is equivalent
to the time reversal of the process if the process starts and
stays in the invariant steady state. However, for a general time
inhomogeneous process, the correspondence between the dual
and the time reversal can only be drawn within each given
time step.

For the nth time step where the transition matrix is Mn and
the invariant distribution is πn, the probability flux from state
i to state j is given by the joint probability difference between
i → j and j → i:

Jn(i, j) := πn(i)Mn( j|i) − πn( j)Mn(i| j). (26)

The probability flux can then be reversed, J†
n (i, j) =

−Jn(i, j), by replacing Mn with its dual matrix

M†
n ( j|i) = πn( j)

πn(i)
Mn(i| j). (27)

The definition of a dual process is thus given by replacing all
the Mn with M†

n :

P†
0:t (x0:t ) = P0(x0)

t∏
n=1

M†
n (xn|xn−1). (28)

It can be shown from Eq. (27) that Mn and M†
n have the same

invariant distribution πn.
Recall the detailed balance condition is given by

πn(i)Mn( j|i) = πn( j)Mn(i| j),∀i, j ∈ X , (29)

which is equivalent to J†
n = Jn = 0 and M†

n = Mn. Therefore,
comparing the dual process to the original one directly reveals
whether the system possesses detailed balance or not. Detailed
balance systems are invariant under the CPM operator †.

D. Involutive properties of the reversals

Considering reversals of a process, it is natural to ask
whether we can recover the original process by applying the
reversal twice or not, i.e., in mathematical terms, whether
the operator is involutive or not. As we have shown above,
the involutive properties of the CPM operator for a EP are the
keys for the EP to have FRs.

It is rather straightforward to show that both T and † are
involutive. The time reversal T is involutive since the map
r : � → � is involutive. We can verify this by computing
PT T

0:t (x0:t ) = PT
0:t (xt :0 ) = P0:t (x0:t ). The dual reversal † is in-

volutive by computing P††
0:t (x0:t ) = P†

0 (x0)
∏t

n=1 M††
n (xn|xn−1).

From the joint probability in Eq. (28), we get P†
0 = P0 and one

can show M††
n = Mn by π†

n = πn.
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Finally, the protocol reversal R is not involutive in general.
To see this, we start by

PRR
0:t (x0:t ) =PR

t (x0)
t∏

n=1

MR
t+1−n(xn|xn−1). (30)

We thus need to compute PR
t and MR

t+1−n from the joint
probability given in Eq. (23). It is straightforward to check
that the latter is given simply by

MR
t+1−n( j|i) = Mn( j|i). (31)

However, the terminal distribution of the protocol reversed
process is generally not the initial distribution of the original
process, PR

t 
= P0 [16]. This can be seen by a time homoge-
neous Markov chain where PR

t is given by Pt further evolved
by t more steps, which gives us P2t not P0. Thus, we have

PRR
0:t (x0:t ) = PR

t (x0)

P0(x0)
P0:t (x0:t ). (32)

From this, it is also clear that if PR
t = P0, then the protocol

reversal R becomes involutive [49].

IV. ENTROPY PRODUCTION IN PHYSICS
AND CHEMISTRY

With different reversals and their corresponding CPM op-
erators introduced, we are now ready to consider different EP
in physics and chemistry and their fluctuation relations. We
already knew that every EP as a fluctuating relative entropy
has a nonnegative expectation and admit both IFT and GFR.
Thus, we would mainly discuss the rDFT, iDFT, and TFT for
various different EP in physics and chemistry.

A. Dissipation function ST

The EP that corresponds to the time reversal T is histor-
ically called the dissipation function by Evans and Searles
[3,26], a term goes back to Onsager,

ST (ω) := ln
dP

dP T
(ω) = ln

P0:t [X0:t (ω)]

P0:t [Xt :0(ω)]
. (33)

We note that the dissipation function does not satisfy additive
properties when connecting two time intervals, i.e., for 0 <

s < t , we have

ST (x0:t ) 
= ST (x0:s) + ST (xs:t ). (34)

Since the CPM operator T is realized by an involutive map
r : � → �. We thus know ST admits both TFT and iDFT. The
TFT of ST has been discussed in Refs. [3,23,26]. However,
ST does not satisfy the odd-parity, sufficient condition for
rDFT. We note that the dissipation function ST on the protocol
reversed process R is given by S̄T (ω) = ln dPR

dPRT (ω), which
gives

S̄T [r(ω)] = ln
dPRT

dPRT T
(ω) = ln

dPRT

dPR
(ω) (35a)

= −S̄T (ω) 
= −ST (ω). (35b)

Unless pathologically S̄T [r(ω)] 
= −ST (ω) but
P T {S̄T [r(ω)] ∈ −ds} = P T {ST (ω) ∈ −ds}, the dissipation
function ST would not admit rDFT.

B. Total entropy production Stot

The total entropy production discussed in
Refs. [3,14,15,34] is given by composing protocol reversal R
and then the time reversal T ,

Stot (x0:t ) = ln
dP

dPRT
(x0:t ) = ln

dP

dPC
(x0:t ) (36a)

= ln
P0(x0)M1(x1|x0) · · · Mt (xt |xt−1)

Pt (xt )Mt (xt−1|xt ) · · · M1(x0|x1)
, (36b)

where we have denoted the composition of R and T as a
composite operator C, i.e., PC = [PR]T

. We note that the total
entropy production satisfies additive property when connect-
ing two time intervals, i.e., for 0 < s < t ,

Stot (x0:t ) = Stot (x0:s) + Stot (xs:t ). (37)

The composite operator C is generally not involutive [50].
Thus, Stot does not admit TFT and the odd-parity, sufficient
condition for iDFT. For rDFT, we note

S̄tot (ω) := ln
dPR

dPRC
(ω) = ln

dPR

dPRRT
(ω), (38)

and thus

S̄tot[r(ω)] = ln
dPRT

dPRRT T
(ω) = ln

dPRT

dPRR
(ω), (39)

which becomes −Stot (ω) if R is involutive, i.e., PRR = P .

Hence, if R is involutive, Stot admits rDFT. Recall that the
requirement for R to be involutive is the terminal distribution
of the protocol reversed process to recover the initial distribu-
tion of the original process, i.e., PR

t = P0. This condition was
discussed in Refs. [3,8,18].

C. Difference between ST and Stot

The physical meanings of the two EP discussed above
are clearly different. For a given trajectory ω = x0:t , the
dissipation function ST quantifies the probability difference
between observing the trajectory ω = x0:t and the order re-
versal of it r(ω) = xt :0 in the original process. However, the
total EP, Stot , quantifies the probability difference between
observing a trajectory x0:t in the original process and observ-
ing the order-reversed trajectory xt :0 in the protocol-reversed
process R.

In time homogeneous processes where all Mn = M, ∀n =
1, 2, · · · , t , their difference gives another EP,

D := ST − Stot = ln
dPRT

dP T
(40a)

= ln
Pt (Xt )Mt (Xt−1|Xt ) · · · M1(X0|X1)

P0(Xt )M1(Xt−1|Xt ) · · · Mt (X0|X1)
(40b)

= ln
Pt (Xt )

P0(Xt )
= ln

dP

dP d
, (40c)

where the time homogeneous assumption kicks in to eliminate
all the Ms. The corresponding joint probability in the measure
P d would be

Pd
0:t (x0:t ) = P0(xt )

Pt (xt )
P0:t (x0:t ). (41)
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This implies that the expectation of the dissipation function is
bigger than the total EP,

E[D] � 0 ⇔ E[ST ] � E[Stot], (42)

for time homogeneous processes. By Jensen’s inequality, we
also know the equality holds if and only if Pt = P0.

In the time homogeneous cases, the expectation of D
is actually the Kullback-Leibler divergence between the
terminal distribution Pt and initial distribution P0. With-
out time homogeneity, D is generally not an EP, since
P0(xt )M1(xt−1|xt )···Mt (x0|x1 )
Pt (xt )Mt (xt−1|xt )···M1(x0|x1 ) P0:t (x0:t ) is not generally normalizable
and thus not a joint probability. This also indicates that the
expectation of D in time inhomogeneous systems does not
generally have a definite sign.

The infinitesimal time interval limit t → 0 can be taken to
consider the entropy production rate (EPR) [14,17]. In such
a limit, we see that E[D] is in O(t2), whereas both E[ST ]
and E[Stot] are ept + O(t2) with the same entropy production
rate, ep. This is one of the reason why the contradistinction
between ST and Stot was not clear in the past literature. See in
subsection 2 of Appendix for derivation.

Recall that when connecting two time intervals, Stot satis-
fies the additive property whereas ST does not! Thus, when
one integrate the EPR of ST and Stot over time, the value one
gets is E[Stot] not E[ST ]. This resolves the seemly contradict-
ing results that the expectations of the two EP are different for
any finite time interval but with the same rate in infinitesimal
time interval.

D. Total heat, excess heat, and housekeeping heat dissipation

One of the most important breakthrough in nonequilibrium
thermodynamics is the discovery of the heat dissipation in
nonequilibrium steady state (NESS) and its statistical prop-
erties [2,10,13,14,19,20,23,45,51,52]. By the energy conser-
vation, this amount is also the amount of energy required to
sustain the NESS, historically called the housekeeping heat
Qhk and is conventionally chosen to be positive as a heat
dissipated by the system.

To understand the housekeeping heat with our Markov
chain paradigm, we consider a time inhomogeneous t-step
Markov chain with a transition matrix Mn. The total heat
dissipation for a trajectory ω = x0:t is given by the transition
matrices,

Q(ω) = ln
t∏

n=1

Mn(xn|xn−1)

Mn(xn−1|xn)
, (43)

for general systems even nondetailed balanced [8,10]. Without
detailed balance, the probability flux between two states i, j at
NESS at time n is nonzero:

0 
= Jn( j|i) = πn(i)Mn( j|i) − πn( j)Mn(i| j). (44)

This is physically originated from the nonconservative force
that sustains NESS [3]. With the invariant distribution πn

in nondetailed balanced systems, we can use the so called
(fluctuating) nonequilibrium potential �n(x) based on the
invariant distribution at each time step [3],

�n(x) = − ln πn(x), (45)

which would be the potential of mean force if one chooses the
free energy of the entire system (the system of interest and
the environment) as the zero potential energy reference point
[5]. It is worth noting that for time homogeneous diffusion
processes in the thermodynamic limit, this definition of the
nonequilibrium potential, with proper scaling, gives us a
Lyapunov function of the emerged, dissipative deterministic
dynamics [53].

The changes of the nonequilibrium potential due to a tran-
sition in microstate would then be the excess heat dissipation:

Qex(x0:t ) =
t∑

n=1

�n(xn−1) − �n(xn) (46a)

= ln
t∏

n=1

πn(xn)

πn(xn−1)
. (46b)

The housekeeping heat (dissipation) is given by the difference
between the total heat dissipation Q and the excess heat
dissipation Qex:

Qhk = Q − Qex. (47)

This will become

Qhk(ω) =
t∑

n=1

ln
Mn(Xn|Xn−1)

M†
n (Xn|Xn−1)

(48a)

= ln
P0(X0)

P0(X0)

t∏
n=1

Mn(Xn|Xn−1)

M†
n (Xn|Xn−1)

(48b)

= ln
dP

dP †
(ω), (48c)

which shows that it is an EP with corresponding the CPM
operator †, thus has a nonnegative expectation, and admits
both IFT and GFR. If the system possesses detailed balance,
then Qhk = 0. Straight from the definition in Eq. (48a) that,
similar to Stot , the housekeeping heat is also additive when
connecting time intervals:

Qhk(x0:t ) = Qhk(x0:s) + Qhk(xs:t ). (49)

With detailed balance, Qhk = 0 and the excess heat dissipation
Qex reduces to the total heat dissipation Q [19].

Since † is involutive, the housekeeping heat Qhk generally
admits iDFT. To show whether it admits rDFT or not, we com-
pute the housekeeping heat in the protocol-reversed process
evaluated at the order-reversed trajectory:

Q̄hk[r(ω)] = ln
dPRT

dPR†T
(ω) (50a)

= ln
t∏

n=1

Mt+1−n(Xt−n|Xt+1−n)

M†
t+1−n(Xt−n|Xt+1−n)

(50b)

= ln
t∏

n=1

M†
t+1−n(Xt+1−n|Xt−n)

Mt+1−n(Xt+1−n|Xt−n)
(50c)

= −Qhk(ω), (50d)

where we have used Mk ( j|i)
M†

k ( j|i) = M†
k (i| j)

Mk (i| j) . Hence, the housekeeping

heat Qhk(ω) generally admits rDFT.
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FIG. 1. Excess heat and excess work definitions in a discrete time
Markov chain. xn is the state of the system at time n. Mn is the
transition matrices at the nth time step, and πn is the corresponding
unique invariant distribution.

Last, for time homogeneous processes, the housekeeping
heat is the dissipation function ST starting at the invariant
distribution π since, as we have discussed, the dual process
is equivalent to the time reversal if the system reaches the
invariant state. Since ST admits TFT for arbitrary initial
distribution, this also means that Qhk also admits TFT for time
homogeneous processes starting at the invariant steady state
[2,13,20,23,51].

E. Exergy, excess work, and nonadiabatic entropy production

With the notion of the nonequilibrium potential �n defined
in Eq. (45) at each step for general nondetailed balance
systems, the excess work done by the system for a trajectory
x0:t is then the difference between the nonequilibrium poten-
tial dissipation −	� and the excess heat dissipated Qex as
illustrated in Fig. 1,

Wex(x0:t ) = −	�(x0:t ) − Qex(x0:t ) (51a)

= ln
t−1∏
n=0

πn+1(xn)

πn(xn)
, (51b)

which is the change in the nonequilibrium potential due to
change in the transition matrices (and thus the corresponding
invariant distribution).

The fluctuating relative entropy between Pn and πn is given
by

Fn(x) = �n(x) − Sn(x) = ln
Pn(x)

πn(x)
. (52)

For systems with detailed balance, the sum of this fluctuat-
ing relative entropy and the free energy defined in classical
equilibrium thermodynamics was called nonequilibrium free
energy in Ref. [54]. For this reason, the relative entropy
also got a name nonsteady-state addition (to free energy) in
Ref. [12]. Furthermore, it was shown in Ref. [55] that this
relative entropy itself could be understood physically as a
“free energy” as well. To avoid possible confusion on the
terminology in this paper, we would follow Ref. [56] and
call this (fluctuating) exergy from now on. For a trajectory
ω = x0:t , the exergy that got absorbed by the system is then

	F (x0:t ) = ln
Pt (xt )

πt (xt )
− ln

P0(x0)

π0(x0)
. (53)

The difference between the exergy dissipation −	F and
the excess work done by the system Wex then gives us the
nonadiabatic EP, Sna, defined in Ref. [15]:

Sna(ω) = −	F (ω) − Wex(ω) (54a)

= Qex(ω) + 	S(ω) (54b)

= ln
dP

dPR†T
(ω). (54c)

The equivalence between the last two lines can be seen by a
direct computation of PR†T

0:t (x0:t ). We note that Sna becomes
the exergy dissipation −	F in time homogeneous processes
since Wex = 0 in time homogeneous processes. We also note
that the nonadiabatic EP is also additive when connecting time
interval,

Sna(x0:t ) = Sna(x0:s) + Sna(xs:t ), (55)

which is obvious from its relation to Wex and 	F . Note that
Sna reduces to the dissipative work Wd defined in Refs. [6,7]
for systems with detailed balance.

Similar to the total EP Stot, the nonadiabatic EP Sna admit
neither the TFT nor the odd-parity, sufficient condition for
iDFT since the composite operator R†T is not involutive in
general. For rDFT, we compute

S̄na[r(ω)] = ln
dPRT

dPRR†
(ω) (56a)

= ln
Pt (Xt )

PR
t (X0)

t∏
n=1

Mn(Xn−1|Xn)

M†
n (Xn|Xn−1)

, (56b)

where the denominator can be obtained by using Eq. (32) for
PRR and apply † on it. Now, since

Mn(Xn−1|Xn)

M†
n (Xn|Xn−1)

= πn(Xn−1)

πn(Xn)
, (57)

we get

S̄na[r(ω)] = ln
P0(X0)

PR
t (X0)

− Sna(ω). (58)

We see that the condition for the odd parity to hold,
S̄na[r(ω)] = −Sna(ω), is P0 = PR

t , i.e., R to be involutive!
Hence, similar to the total EP Stot , the nonadiabatic EP Sna

admits rDFT if the CPM operator R is involutive. The rDFT
of Sna is an extension to Crooks’ fluctuation theorem [6,8,11].

F. Martingale properties of entropy production

With our measure-theoretic understanding of EP, more
statistical properties of EP could be found by revealing more
on the mathematical properties of its corresponding RND and
CPM operators. For example, by recognizing the RND of Qhk,
exp(−Qhk ), is a martingale, a statistics of the infimum of Qhk

is introduced in Refs. [25,30,31]. Here, we shall discuss the
martingale properties of the four EP and the conditions for the
exponential of the negative of them to be a martingale.

In our discrete time Markov chain paradigm, a functional
M(X0:t ) is a martingale if it satisfies

E[M(X0:t )|X0:s] = M(X0:s), (59)

∀s ∈ {0, 1, · · · , t}. It can be shown rather straightforwardly
that since ST is not additive in time, exp(−ST ) would not
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generally be a martingale. Thus, in the following discussion,
we will focus on Stot, Qhk, and Sna.

We note that all of Stot, Qhk, and Sna are additive in
time. Therefore, for exp(−Sν ) to be a martingale where ν =
RT , †, or R†T , we need

E[e−Sν (X0:t )|X0:s] = e−Sν (X0:s )E[e−Sν (Xs:t )|X0:s] (60a)

= e−Sν (X0:s )E[e−Sν (Xs:t )|Xs] (60b)
!= e−Sν (X0:s ). (60c)

We thus want to have

E[e−Sν (Xs:t )|Xs] = 1, (61)

∀s ∈ {0, 1, · · · , t}.
By using the definition for ν = RT , †, and R†T , one will

find

E[e−Stot (Xs:t )|Xs] = PR
end(Xs)

Ps(Xs)
, (62a)

E[e−Qhk (Xs:t )|Xs] = 1, and (62b)

E[e−Sna (Xs:t )|Xs] = PR†
end(Xs)

Ps(Xs)
, (62c)

where

PR
end(xs) =

∑
xs+1:t

Pt (xt )
t−s−1∏

n=0

Mt−n(xt−n−1|xt−n) and

PR†
end(xs) =

∑
xs+1:t

Pt (xt )
t−s−1∏

n=0

M†
t−n(xt−n−1|xt−n) (63)

are the terminal distributions of the processes R and R†
defined on the time interval s : t .

This shows that exp(−Qhk ) is always a martingale which
implies that Qhk is a submartingale satisfying

E[Qhk(X0:t )|X0:s] � Qhk(X0:s), (64)

by the convexity of negative logarithm. Since s is arbitrary in
0 : t , the right-hand side of Eqs. (62a) and (62c) needs to be
1 for all xs and s. This means that exp(−Stot ) or exp(−Sna )
are only martingale when the reversal R or R† recovers all
the marginal distributions in a reversed order: Pt → Pt−1 →
· · · → P0 in the reversed process, which is not generally true.
One exception is when the dynamics is time homogeneous
and also starts with the invariant distribution such that Pn = π ,
∀n ∈ {0, 1, · · · , t}.

G. Summary

The properties of the four EP in physics and chemistry
including various FRs we have discussed above have been
summarized in Table II. Here, we note that the three reversals
T , R, and † are actually related. By direct computation, one
can get

dP

dPRT
= dP

dP †

dP

dPR†T
, (65)

which leads to the famous decomposition of the total EP
introduced in Ref. [17]:

Stot = Sna + Qhk. (66)

Since Qhk = 0 when the system possesses detailed balance,
we also see that Stot ≡ Sna in detailed balance systems.

H. Two fluctuation relations for heat and work

As an another demonstration on how the formalism can
help us obtain statistical properties of EP-related quantities,
we note that there is another generally valid FR called differ-
ential fluctuation theorem for the work done by the system
W , derived in Refs. [32,33] and experimental verified in
Ref. [57] for detailed balanced systems. Here we provide a
more general derivation to extend it to nondetailed balanced
systems. The key observation is that the excess work defined
in Eq. (51b) always has odd parity under the composite CPM
operator C ≡ RT , i.e., W̄ex[r(ω)] = −Wex(ω). Knowing this,
we can consider the joint probability of the work Wex, initial
state X0, and the terminal state Xt ,

PWex,X0,Xt (w, x0, xt ) = E[I{Wex∈dw,X0=x0,Xt =xt }]. (67)

The joint probability under the measure PR†T is then given
by

PR†T
Wex,X0,Xt

(w, x0, xt ) = E[e−SnaI{Wex∈dw,X0=x0,Xt =xt }] (68a)

= ew+	F (x0,xt )E[I{Wex∈dw,X0=x0,Xt =xt }]

(68b)

= ew+	F (x0,xt )PWex,X0,Xt (w, x0, xt ),

(68c)

where we have used the fact that the exergy increment
	F (ω) = ln Pt (Xt )

πt (Xt ) − ln P0(X0 )
π0(X0 ) is a function of X0 and Xt .

By using W̄ex[r(ω)] = −Wex(ω), we thus have

PWex,X0,Xt (w, x0, xt )

PR†
W̄ex,X0,Xt

(−w, xt , x0)
= e−	F (x0,xt )−w. (69)

Also, a similar differential fluctuation theorem for the excess
heat dissipated Qex(ω) can also be derived,

PQex,X0,Xt (q, x0, xt )

PR†
Q̄ex,X0,Xt

(−q, xt , x0)
= eq+	S(x0,xt ), (70)

since Q̄ex[r(ω)] = −Qex(ω) and Sna = −	F − Wex = Qex +
	S.

V. ENTROPY PRODUCTION IN CONSTANT-NOISE
DIFFUSION PROCESSES

We will now briefly go through how to use measure-
theoretic probability theory and the CPM operator formalism
to derive the stochastic integral formulas for the four EP
in time inhomogeneous constant-noise diffusion processes.
With the formulas, one can further derive the expression for
the moments of EP with Ito calculus. In a constant-noise
diffusion process in Rn, the probability density of the mi-
crostate variable Xt , p(x, t ), is governed by the Fokker-Planck
equation,

∂

∂t
p(x, t ) = −∇ · J[p(x, t )], (71)
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with probability flux given by

J[p(x, t )] = b(x, t )p(x, t ) − D∇p(x, t ). (72)

and the stochastic trajectory governed by the stochastic differ-
ential equation,

dXt = b(Xt , t )dt + �dWt , (73)

where D = ��T/2 is a constant diffusion matrix (T denoting
transpose) and Wt is the n dimensional Wiener processes
(Brownian motions) with each component independent and
having unit strength of noise.

To derive the stochastic integral formula for the four EP
from their RND definitions, we rely on Girsanov theorem [2]
to give us the RND to “kill” the drift b(Xt , t ) in the dynamics
of Xt . Given a time interval t ∈ [0, τ ] and the RND,

dPB

dP
= e− 1

2

∫ τ

0 D−1b·dXt + 1
4

∫ τ

0 b·D−1bdt (74a)

= e− 1
2

∫ τ

0 D−1b◦dXt + 1
2

∫ τ

0 ∇·bdt+ 1
4

∫ τ

0 b·D−1bdt , (74b)

the probability density of the process Xt under the measure PB

satisfies ∂
∂t pB(x, t ) = ∇ · D∇pB(x, t ), i.e., Xt is a Brownian

motion with strength � under PB. The CPM operator B “kills”
the drift by changing of the probability measure from P to
PB. We note that the first stochastic integral in Eq. (74a) is an
Ito integral and the first stochastic integral in Eq. (74b) is a
Stratonovich integral. We rewrote the stochastic integral into
a Stratonovich form for later convenience when considering
time reversals.

A. Dissipation function

To use Eq. (74b) to get ST , we perform the decomposition
of its corresponding RND:

dP

dP T
= dP

dPB

dPB

dPBT

dPBT

dP T
. (75)

We already have the first term dP
dPB = − dPB

dP by Eq. (74b). For
the third term, it can be rewritten as

dPB

dP
[r(ω)] = exp

{
1

2

∫ τ

0
D−1b(Xt , τ − t ) ◦ dXt

+ 1

2

∫ τ

0
∇ · b(Xt , τ − t )dt

+ 1

4

∫ τ

0
b · D−1b(Xt , τ − t )dt

}
, (76)

where we have used the change of integration variable for the
three integrals in the exponent using

∫ τ

0
b(Xτ−t , t ) ◦ dXτ−t = −

∫ τ

0
b(Xt , τ − t ) ◦ dXt and

∫ τ

0
f (Xτ−t , t )dt =

∫ τ

0
f (Xt , τ − t )dt . (77)

We note that the first equality in Eq. (77) is true since it is a
Stratonovich integral. If the stochastic integral is in any other

integration scheme, then the change of integration variable
will lead to a change of integral scheme.

The second term in Eq. (75) is the RND of the dissipation
function in Brownian motion. Since Xt is drift-free under PB

and the noise strength is a constant, the conditional probability
for having a path ω = x0:τ conditioning that it starts at x0 is the
same as the one for the reversed path r(ω) = xτ :0 conditioning
that it starts at xt due to the symmetry of Brownian motion.
We thus see that the T operator only changes PB by the
initial probability density p0 from evaluating at X0, p0(X0),
to evaluating at Xτ , p0(Xτ ), and the change of measure is
completed by

dPB

dPBT
= p0(X0)

p0(Xτ )
, (78)

where we have also used that the operator B leaves the initial
probability density invariant, pB

0 = p0.
Putting Eqs. (75)–(78) together, we arrive the dissipation

function for a time inhomogeneous constant-noise diffusion:

ST = ln
p0(X0)

p0(Xτ )
+

∫ τ

0
D−1b̄ ◦ dXt

+ 1

2

∫ τ

0
δ(∇ · b)dt + 1

4

∫ τ

0
δ
(
b · D−1b

)
dt, (79)

where we have used the notation

b̄(Xt , t ) = [b(Xt , t ) + b(Xt , τ − t )]/2, and (80a)

δ f (Xt , t ) = f (Xt , τ − t ) − f (Xt , t ). (80b)

The stochastic integral expression of the dissipation function
ST in Eq. (79) in general time inhomogeneous constant-noise
diffusion process, as far as we know, is a new result.

We note that if the drift is symmetric in the interval t ∈
[0, τ ], i.e., b(·, t ) = b(·, τ − t ), then the two terms with δ

become zero. The expression for dissipation function then
reduces to

ST = ln
p0(X0)

p0(Xτ )
+ Q (81)

where Q = ∫ τ

0 D−1b ◦ dXt is the heat dissipation. As time
homogeneous process being symmetric in the interval, this
is consistent with Ref. [3]. It can also be seen from this
expression that, consistent with our understanding in our
Markov chain paradigm, ST is not generally additive when
connecting time intervals.

B. Total entropy production

With Stot = ln dP
dPRT , we derive the formula of it in a similar

decomposition of the corresponding RND,

dP

dPRT
= dP

dPB

dPB

dPRBT

dPRBT

dPRT
. (82)

We can find the second and the third RNDs in a similar way.
One has

dPB

dPRBT
= p0(X0)

pτ (Xτ )
, (83)

022129-11



YING-JEN YANG AND HONG QIAN PHYSICAL REVIEW E 101, 022129 (2020)

since RT only changes the initial distribution for PB and

dPRBT

dPRT
(ω) = exp

{
1

2

∫ τ

0
D−1b(Xt , t ) ◦ dXt

+ 1

2

∫ τ

0
∇ · b(Xt , t )dt

+ 1

4

∫ τ

0
b · D−1b(Xt , t )dt

}
, (84)

by replacing b(·, t ) with bR(·, t ) = b(·, τ − t ) in Eq. (76).
Putting these together, we can get the famous entropy

change decomposition in time inhomogeneous constant-noise
diffusion processes,

Stot = ln
p0(X0)

pτ (Xτ )
+ Q = 	S + Q. (85)

With this, it is obvious that Stot is additive in time.
We also note that the difference between ST and Stot in

processes with time symmetric b, i.e., when bR = b, is

ST − Stot = ln
pτ (Xτ )

p0(Xτ )
. (86)

This is consistent with what we had in Eq. (40c), leading one
to conclude E[ST ] � E[Stot] when bR = b.

C. Housekeeping heat and nonadiabatic entropy production

Using the CPM perspective to get Qhk has already been
rigorously studied in Ref. [2], here we shall briefly revisit the
derivation and rely on the relation Stot = Qhk + Sna to get the
formula for Sna.

In time inhomogeneous diffusion process, we could con-
sider the instantaneous stationary probability density πt such
that

∇ · J[πt ] = 0, (87)

where J[πt ] = b(Xt , t )πt − D∇πt . From the fact that the
adjoint process is given by reversing J[πt ], we see that the
effect of the operator † on b is given by

b† = −b − 2D∇(− ln πt ). (88)

Then, we use the decomposition

dP

dP †
= dP

dPB

dPB

dP †B

dP †B

dP †
(89)

and note that the second term is 1 since neither † nor B
changes the initial distribution and B kills the drift no matter
it is b or b†. Also, the third term can be evaluated by Eq. (74b)
by substituting b with b†. Further, using Eq. (87) to simplify
the expression one got from above, one would arrive at

Qhk =
∫ τ

0
[D−1b + ∇(− ln πt )] ◦ dXt

= Q − Qex, (90)

where Qex = − ∫ τ

0 ∇(− ln πt ) ◦ dXt is the excess heat dissi-
pation in diffusion. The nonadiabatic entropy production Sna

would then be given by

Sna = Stot − Qhk = Wex − 	F

=
∫ τ

0

∂ (− ln πt )

∂t
dt − ln

pτ (Xτ )π0(X0)

πτ (Xτ )p0(X0)
. (91)

VI. DISCUSSION

In this paper, we characterize the difference between the
statistical properties of the original stochastic process and
the one after reversal by a change of probability measure, an
analog to Schrödinger’s picture on quantum mechanics [37].
A change in statistical properties from a physical operation
is represented by an operator ν operating on a probability
measure P in the probability measure space P . With our
mathematically more general and concise CPM formalism, we
have presented a comprehensive study of the properties of EP,
including FRs. Sufficient conditions for the FRs of the four
EP are summarized in Table II. Importantly, a hierarchy of
the generality for FRs in general stochastic processes can be
revealed from our work: both IFT and GFR are generally true;
rDFT and iDFT require odd parity symmetry with different
Ŝν as stated in Ref. [3]; and TFT further requires the CPM
operator to be realized by an involutive map on the trajectory
space �. This hierarchical structure of the domain of validity
for FRs reveals relation between FRs such as TFT implies
iDFT.

We further demonstrate how to obtain other properties of
EP from its logarithm RND definitions, such as its martingale
properties, and distinguish the difference between dissipation
function introduced by Evans and Searles [26] and the total
entropy production. The “paradox” that the two EP have the
same entropy production rate but with nonnegative difference
in expectation for finite time interval in time homogeneous
processes is resolved by noting the failure of time additivity
for the dissipation function. Stochastic integration expressions
for the two EP are also derived in general time inhomogeneous
constant-noise diffusion to better see the contradistinction of
their physical meaning and properties.

It is important to note that throughout this paper, we have
assumed the state variables Xn to have even parity under the
time reversal, i.e., they are position-like physical quantities.
One extension to our work is to consider variables that have
odd parity under time reversal such as velocity [58–60].

The unit of EP Sν is chosen to be in the natural unit
of information (nat) throughout the paper [8,42]. And tem-
perature of the heat reservoir is assumed to be constant.
When considering diffusion processes in Sec. V, we have also
restricted ourselves to constant-noise diffusion processes. If
the strength of noise � varies in spacetime, then the use of
Girsanov theorem to derive the formula for ST becomes more
involved since dPB

dPBT becomes less straightforward. We note
that Jiang, Qian, and Qian have used Girsanov theorem to
derive the housekeeping heat Qhk for autonomous, noncon-
stant noise diffusion in Ref. [2]. In there, we have a similar
form of Eq. (74) for non-constant noise diffusion and can
thus use the same derivation to argue that Eq. (85) still holds
for autonomous, nonconstant noise diffusion processes. To
obtain the integral equation for ST , however, will need other
methods. One may need the path integral formalism to obtain
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the probability “density” of a diffusion path [61], or make use
of the Riemann geometry introduced by � and D to consider
a constant-noise diffusion on a curved space [62].

The general theory we presented in Sec. II is in fact a
general result for fluctuating relative entropy and its statistical
properties. It can also be applied to entropies defined in
information theory [42]. For example, suppose we have a
finite state space X ≡ �, i.e., there is a fundamental state
random variable X that labels every ω ∈ � with a unique
real number, we can then choose Pν

X to be the uniform dis-
tribution, i.e., P ν as the Lebesgue measure, to get an entropy
corresponding to the maximum entropy ln ‖�‖ minuses the
fluctuating Shannon entropy of the system,

H (ω) = ln ‖�‖ − {− ln PX [X (ω)]}, (92)

where ‖�‖ represents the size of the sample space. Another
example would be to have � = X ⊗ Y and consider the
fluctuating mutual information between two random variables
X and Y ,

I (ω) = ln
PX,Y [X (ω),Y (ω)]

PX [X (ω)]PY [Y (ω)]
. (93)

Our theory immediately implies that both H (ω) and I (ω) have
nonnegative expectation, and admit IFT and GFR.

The combination of information theory and stochastic
thermodynamics is a natural application and extension to
the theory [54,63–65]. One example would be to consider
random transition matrices for stochastic driving protocol.
With randomness in transition matrices, the second law of
thermodynamics is refined by incorporating the mutual in-
formation between the past and present, and the mutual in-
formation between the present and the future, giving us a
thermodynamics of prediction [65]. In our change-of-measure
formalism, we could extend (�,F ) to include all possible
transition matrices. Such future work could be conducted
by considering the theories of random dynamical system for
Markov chains [66,67].
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APPENDIX

1. Modern probability theory and Radon-Nikodym derivative

Here we briefly introduce several key concepts of
modern measure-theoretic probability theory pioneered by
Kolmogorov [29]. For recent textbook introductions, see
Refs. [68,69]. One of the most important concept in the theory
is that one specifies the sample space �, the σ -algebra F , and
a probability (measure) P to start any probabilistic discussion
on stochastic processes.

An outcome ω is a particular result of a random trial. A
sample space � is the collection of all possible outcomes. We
can think of � as the state space of our system of interest.
In this paper, a “state” of the system of interest would be
a trajectory of a given finite time interval t in a stochastic
process. � then becomes the space of trajectories.

An event of interest A is a subset of the sample space that
we seek the probability of. For example, in this paper, it can
be the set of periodic trajectories ω ∈ �, i.e., we might ask
“What is the probability of having a periodic trajectory?” The
collection of all events of interest of � is called σ -algebra
[70], usually denoted as F .

Note that when we are interested in an event, the comple-
ment of it, Ac, i.e., when A does not happen, is also under
our interest. Moreover, if we are already interested in a bunch
of events A1, Ac

2, . . . , then the countable union of them, i.e.,
the event when at least one of it happen, is also interesting
to us. Note that with complement and countable union, the
countable intersections are automatically included in F .

As a result, an σ -algebra of � as a collection of all events
of interest must have the following three properties in its
very definition: (1) containing the empty set ∅ where nothing
happen, (2) being closed under countable union, and (3)
being closed under complement. One of the many reasons to
introduce σ -algebra F along with the sample space � is that
since we are interested in knowing the probability of every
events of interest, which is given by a probability measure P ,
we need the collection of all events of interest F to actually
define a P .

A probability measure P measures the probability of an
event of interest A ∈ F by assigning the event a real value,
P {A}, between 0 and 1. Since an event A ∈ F is a subset of
�, the probability of an event A can also be represented as an
expectation of the indicator function of an event A, IA(ω), i.e.,

P {A} = E[IA(ω)], (A1)

where IA(ω) gives 1 if ω ∈ A and 0 otherwise, and E[·] de-
notes the expectation. This expectation expression of P {A} is
convenient in many calculations, especially when we consider
a change of probability measure as shown in Eqs. (2b) and (3).

Physical observable as a random variable X (ω) is not just a
function from � to R. Since we are interested in the statistical
properties of X (ω), we would like to use the probability
measure P defined on the F of � to get the probability of
an event such as {X (ω) ∈ (a, b); a, b ∈ R} or for X (ω) in any
countable union/complements of open intervals. The collec-
tion of any set that can be formed from open intervals in R,
complement of them, and/or countable union of them is called
the Borel sets of R, denoted as B(R). The requirement of
being able to use a probability measure P to get that statistical
properties of X (ω) is then the requirement of measurability.
That is, for P {X (ω) ∈ B} to make sense, we need that ∀B ∈
B(R), {X (ω) ∈ B} as a set of ω to be in F . Hence, a random
variable is not a function of � but a measurable function
X (ω) : � �→ R defined on (�,F ) so that {X (ω) ∈ B} ∈ F ,
∀B ∈ B(R).

The very fact that X is defined on a pair (�,F ), without a
specific P , is a manifestation of the Schrödinger’s picture of
changes in statistical properties. For two different stochastic
processes, the change in the statistical properties of a random

022129-13



YING-JEN YANG AND HONG QIAN PHYSICAL REVIEW E 101, 022129 (2020)

variable X (ω), the difference in its distribution PX and Pν
X ,

is due to the change of probability measure P → P ν [37].
Without P , the pair (�,F ) is called measurable space. With a
P defined, the triple (�,F ,P ) is called the probability space.
In this paper, a stochastic process is specified by a probability
space.

With a given measurable space (�,F ), there are many P
that can be considered. Radon-Nikodym derivative (RND) is a
special random variable that can be used to change one prob-
ability measure P to another P ν , denoted as dP ν

dP (ω). As ex-
plained in the main context, the probability of an event A ∈ F
in the new probability measure is given by the expectation
representation shown in Eq. (A1),

P ν{A} = Eν[IA(ω)] = E

[
dP ν

dP
(ω)IA(ω)

]
. (A2)

For � whose ω in � can be 1-1 labeled by x ∈ Z, we have
the RND reduced to the ratio of probability mass functions
Pν (x)/P(x), since

P ν{A} = Eν[IA] =
∑
x∈Z

IA(x)Pν (x) (A3a)

=
∑
x∈Z

IA(x)
Pν (x)

P(x)
P(x) (A3b)

= E

[
IA(x)

Pν (x)

P(x)

]
. (A3c)

For those � whose ω in � can be 1-1 labeled by x ∈ R such
as diffusion processes, we have the RND reduced to the ratio
of probability density functions ρν (x)/ρ(x), since

P ν{A} = Eν[IA] =
∫
R
IA(x)ρν (x)dx (A4a)

=
∫
R
IA(x)

ρν (x)

ρ(x)
ρ(x)dx (A4b)

= E

[
IA(x)

ρν (x)

ρ(x)

]
. (A4c)

2. Entropy production rates for ST and Stot

With our trajectory-based definitions for dissipation func-
tion ST and total entropy production Stot given as

ST (ω) = ln
dP

dP T
(ω) and Stot (ω) = ln

dP

dPRT
(ω), (B1)

where ω = x0x1 · · · xt , here we show that although the two EP
differ in finite time interval as shown in our main context, they
have the same rate in expectation in infinitesimal time interval
t → 0.

With an infinitesimal time interval t → 0, we only need
to consider one infinitesimal time step where the system state
goes from i to j,

ST (i, j) = ln
P0(i)M( j|i)
P0( j)M(i| j)

(B2)

and

Stot (i, j) = ln
P0(i)M( j|i)
Pt ( j)M(i| j)

. (B3)

The difference between the two EP is

D(i, j) := ST (i, j) − Stot (i, j) = ln
Pt ( j)

P0( j)
. (B4)

With t → 0, M is approaching to an identity matrix:

M( j|i) = δi, j + q( j|i)t + O(t2). (B5)

Up to the linear order, we can write

Pt ( j) =
∑

k

P0(k)M( j|k) (B6a)

= P0( j) + t
∑

k

P0(k)q( j|k) + O(t2). (B6b)

In the literature, entropy production rates of ST and Stot are
defined as their limiting re-scaled expectation: limt→0

E[ST ]
t

and limt→0
E[Stot ]

t . Therefore, let us compute the expectation
of ST , Stot, and D as an asymptotic series of small t . Since
D = ST − Stot, we have

E[D] = E[ST ] − E[Stot], (B7)

and we will compute E[D] and E[ST ].
For E[ST ], we have

E[ST ] =
∑
i, j

P0(i)M( j|i) ln
P0(i)M( j|i)
P0( j)M( j|i) (B8a)

= 0 + t
∑

i, j;i 
= j

P0(i)q( j|i) ln
P0(i)q( j|i)
P0( j)q( j|i) . (B8b)

And for E[D], we have

E[D] =
∑
i, j

P0(i)M( j|i) ln
Pt ( j)

P0( j)
(B9a)

=
∑

j

Pt ( j) ln
Pt ( j)

P0( j)
. (B9b)

With Pt ( j) = P0( j) + t
∑

k P0(k)q( j|k) + O(t2), we compute

ln
Pt ( j)

P0( j)
= ln

P0( j) + t
∑

k P0(k)q( j|k) + O(t2)

P0( j)
(B10a)

= t

∑
k P0(k)q( j|k)

P0( j)
+ O(t2). (B10b)

We thus see that

E[D] = t
∑

j

Pt ( j)

∑
k P0(k)q( j|k)

P0( j)
+ O(t2) (B11a)

= t
∑

k

P0(k)
∑

j

q( j|k) + O(t2) (B11b)

= 0 + O(t2). (B11c)

Hence, the two EP have the same entropy production rate

ep = lim
t→0

E[ST ]

t
(B12a)

= lim
t→0

E[Stot] + E[D]

t
= lim

t→0

E[Stot]

t
. (B12b)

in the infinitesimal time interval limit.
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