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Griffiths phase and complex persistence exponents
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We present a model which displays the Griffiths phase, i.e., algebraic decay of density with continuously
varying exponents in the absorbing phase. In the active phase, the memory of initial conditions is lost with
continuously varying complex exponents in this model. This is a one-dimensional model where a fraction r
of sites obey rules leading to the directed percolation class and the rest evolve according to rules leading to
the compact directed percolation class. For infection probability p � pc, the fraction of active sites ρ(t ) = 0
asymptotically. For p > pc, ρ(∞) > 0. At p = pc, ρ(t ), the survival probability from a single seed and the
average number of active sites starting from single seed decay logarithmically. The local persistence Pl (∞) > 0
for p � pc and Pl (∞) = 0 for p > pc. For p � ps, local persistence Pl (t ) decays as a power law with
continuously varying exponents. The persistence exponent is clearly complex as p → 1. The complex exponent
implies logarithmic periodic oscillations in persistence. The wavelength and the amplitude of the logarithmic
periodic oscillations increase with p. We note that the underlying lattice or disorder does not have a self-similar
structure.
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I. INTRODUCTION

The understanding of phase transition in equilibrium sta-
tistical physics was a major success in theoretical physics in
the 1970s. The concepts of scaling and renormalization group
were introduced to explain the divergence of characteristic
length scales near continuous phase transitions. An extension
of these ideas to the nonequilibrium systems is an active
area of research with applications ranging from granular
matter to epidemics [1–3]. The power laws associated with
the continuous transitions are observed in very close vicinity
of the critical point. They are found precisely in theoretical
models and are a signature of the universality class of associ-
ated phase transition. Very few experimental verifications of
such power laws are obtained. It requires extreme fine-tuning
of experimental parameters. Nonetheless, the power laws in
space and time are ubiquitous. This has led to the paradigm of
self-organized criticality which often requires adiabatic drive
[4–6]. Another reason for power laws can be disorder and
inhomogeneities [7–9].

Usually, the power laws have real exponents. A complex
exponent will lead to log-periodic oscillatory corrections to
the power law. Such oscillations have been obtained or pre-
dicted in a few situations [10–12]. For example, observation
of log-periodic oscillations in the stock market has been
associated with the possibility of a crash. Some understanding
of such oscillations at the critical point when underlying
lattice or disorder has self-similar characteristics is obtained
[10,13,14]. Such oscillations have also been seen in quantum
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systems [15,16]. In this work, we observe log-periodic oscilla-
tions in the memory of initial conditions even when there is no
self-similar structure in the lattice or disorder and the system
is far away from the critical point. This can be interpreted as
an outcome of quenched disorder alone.

Most theoretical studies in the equilibrium and the
nonequilibrium phase transitions involve idealized homoge-
neous systems. It is a useful approximation (like equilibrium).
But the real-life systems involve inhomogeneities invariably.
They play an important role in several experiments. For ex-
ample, in the catalytic reactions, the catalytic surface is not
homogeneous. The inhomogeneities can change or destroy
critical behavior [9]. The theory of spin glasses in equilibrium
systems has given useful insights into disordered systems.
It has found applications in fields ranging from evolution to
computer science [17].

In this work, we focus on the absorbing phase transitions in
nonequilibrium processes in the presence of spatial disorder.
We take the prototypical and widely studied class of directed
percolation (DP). It is characterized by one component order
parameter, short-range dynamical rule, no additional symme-
tries, and no quenched disorder [18,19]. The experimental ver-
ification of DP is rare, although it is very well studied in theory
and simulations. The experimental verifications are related to
the spatiotemporal intermittency [20]. There are some more
universality classes for the transition to an absorbing phase.
One of them is compact directed percolation (CDP). In this
class, if all the neighbors of a given site are active, it becomes
active with probability 1 [21].

Certain justifications have been proposed for difficulties in
observing DP behavior in experiments [20]. Intrinsic fluctua-
tions may smear out the transition to the truly absorbing phase.
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DP does not take into account possible intermediate phases in
the reaction sequence. The nature of the update (parallel or
random sequential), can change the nature of the transition.
Finally, realistic systems cannot avoid random inhomogene-
ity of some kind. Not only the experimental values of the
exponents may vary from their theoretical prediction, but the
critical behavior may be destroyed due to the inhomogeneity
[22].

We study the impact of spatially quenched disorder on the
DP universality class. We consider a very strong disorder in
which the universality class of the underlying system changes
completely. Several studies have been carried out to study the
effect of spatially quenched disorder in the past. However,
a clear picture is still eluding. The studies on the effect of
quenched disorder on the DP model show that even very
weak randomness can drastically modify the phase diagram
and critical behavior [9]. According to the Harris criteria,
the quenched disorders are relevant perturbations if dν⊥ < 2
where d is the dimensionality and ν⊥ is the correlation length
exponent in the spatial direction of the pure system [23]. In
particular, we consider disorder in which half the sites obey
DP and the other half obey CDP rules. This is a very strong
perturbation. For d = 1, ν⊥ = 1.09 for DP and ν⊥ = 1 for
CDP. Since ν⊥ < 2 in either case, we can expect quenched
disorder to be a relevant perturbation.

In the CDP universality class, we observe compact percola-
tion clusters. It is characterized by an additional Z2 symmetry.
Here, an active site with all active neighbors cannot become
inactive. The transition is governed by random walks at the
end of the string [21].

We find that the presence of random spatial inhomogene-
ity leads to a change in the critical behavior and ultraslow
dynamics in the one-dimensional (1D) model. The system
undergoes algebraic decay with changing exponents in a part
of the absorbing phase, followed by stretched exponential
and exponential decay. The region with generic power laws
is known as Griffiths phase. It is known to emerge from
rare region effects due to the presence of quenched defects
[24]. The rare regions locally favor one phase over the other,
i.e., although the bulk is globally in the absorbing phase, the
rare regions are locally in the fluctuating phase with over
average percolation probability. The dynamics of rare regions
are extremely slow which leads to stretched exponential decay
or algebraic decay [25].

Of late, there has also been interest in the possibility of
determining the nature of phase transition from short-time
dynamics. The short-time dynamics of the spin-glass model
and the Baxter-Wu model were studied. Novel critical expo-
nents unrelated to known exponents were obtained [26,27].
Other quantifiers such as persistence exponents have also been
studied. We studied local persistence for this study which
quantifies the loss of memory of the initial conditions. In
general, power-law decay of the persistence and well-defined
persistence exponents (if any) are obtained only at the criti-
cal point. However, for our model, we observe well-defined
persistence exponents over the entire fluctuating phase. These
exponents are complex and we observe logarithmic periodic
oscillations over and above the usual power laws. The oscil-
lations do not average out (by the cancellation of phase) by
averaging over disorder and initial conditions.

II. MODEL

We consider the cellular automata model of contact process
(CP) originally proposed by Domany and Kinzel [28,29].
This model shows the transition in DP or CDP class. We
consider a 1D lattice of length N . Each site i is associ-
ated with variable vi(t ) which is 0 or 1 depending whether
they are “inactive” or “active.” Each site at any time t + 1
becomes active with certain probability depending on its
neighbors’ state at the previous time t . The conditional prob-
abilities P(vi(t + 1)|vi−1(t ), vi+1(t )) are defined as follows:
P(1|0, 0) = 0, P(1|1, 1) = q, P(1|1, 0) = P(1|0, 1) = p. DP
transition can be obtained for q �= 1. Let us consider p = q <

1 for simplicity. The order parameter, the fraction of active
sites, is given by ρ(t ) = 1

N

∑N
i=1 vi(t ). Below the critical prob-

ability pc, the cluster goes to an absorbing phase from which
it cannot escape. Above pc, ρ(t ) > 0. In this case ρ(t ) ∼
exp(−λt ) for p < pc after a brief transient and ρ(∞) > 0
asymptotically for p > pc. At p = pc, ρ(t ) decays as a power
law ρ(t ) ∼ t−δ with δ = 0.158 in 1D. For the above model,
pc = 0.705.

For CDP q = 1 and p < 1. Thus, no inactive sites can be
created in a continguous region of active sites. By symmetry,
pc = 0.5 and ρ(∞) jumps from 0 to 1 at pc. The exponent
δ = 0 for CDP.

Now, we consider a model in which a fraction of sites r
marked as type A evolve according to CDP rules and the
remaining 1 − r fraction of sites marked as type B evolve
according to DP rules. For the contact process modeling
diseases, the type A particles can be interpreted as children,
elderly, or sick people who are extremely vulnerable and will
catch a disease if everyone around them is sick. The rules are
symmetric and our update is synchronous. The conditional
probabilities of the update are mentioned above. For the
particles of type A, q = 1, and for type B, q = p, p < 1. We
consider the model for r = 0.5.

We compute two quantities: (a) the fraction of active sites
ρ(t ) and (b) the local persistence Pl (t ). Pl (t ) is the fraction of
sites such that vi(t ) = vi(t ′) for 0 � t ′ � t . These sites have
not changed their state even once from their initial conditions
until time t . This is a non-Markovian quantity. Interestingly,
it has been found that this quantity displays a power-law
decay at the critical point of dynamic phase transition in some
cases. In these cases, Pl (t ) ∼ 1/t θl at the critical point where
θl is known as the local persistence exponent. This is a new
exponent independent from other critical exponents related to
the transition. It is not universal. However, it has been found
useful in finding other exponents such as z and ν‖ [30,31].

The quantity ρ(t ) is an order parameter for the absorbing
state transitions while Pl (t ) is an order parameter for the
spreading transition. ρ(∞) = 0 implies that there are no
active sites in the lattice asymptotically and evolution has
effectively stopped. Pl (∞) �= 0 suggests that some sites do not
deviate from their initial conditions even once. The persistent
sites partition lattice in various clusters such that there is
no spread of information from one cluster to another. Both
ρ(∞) as well as Pl (∞) can give us information about the
phase transition. We average over initial conditions as well
as disorder realizations.

The order parameter ρ(∞) > 0 for p > pc. We find that
for r = 0.5, pc = 0.651 and a finite density of active sites
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is obtained for p > pc. Normally, all inactive sites become
active at some point in time in the active phase and Pl (∞)
asymptotically approaches zero for p > pc. On the other hand,
Pl (∞) > 0 for p � pc. However, it will be shown in the next
section that at p = pc, the active sites decay logarithmically.
The dynamics is extremely slow and we do not obtain power-
law decay of persistence. The persistence decays as power
law for p � ps. For pc < p � ps, the decay is slower than
power law. The persistence exponent is the largest at p = ps

and reduces as p → 1.

III. SIMULATION AND RESULTS

We simulate the system for 2.5 × 106 sites and average
more than 103 configurations.

(a) The absorbing state transition: For p � pc = 0.651,
all sites eventually become inactive and the evolution stops.
Normally, we observe an exponential decay of ρ(t ) for p < pc

and a power-law decay is observed at p = pc. However, in our
case, a power-law decay of ρ(t ) is observed over a range of
parameters below the critical point but not at the critical point,
i.e., ρ(t ) ∼ 1/t δ with decreasing δ, as p → pc. The regime in
which the power-law decay of ρ(t ) with changing exponents
is observed is known as the Griffiths phase. The relaxation
behavior changes to stretched exponential and eventually to
exponential for very small values of p 	 pc. Figure 1(a)
shows the density of active sites ρ(t ) vs time t on logarith-
mic scale for various values of p. Relaxation is slower as
p → pc and δ → 0. The power-law decay ρ(t ) ∼ t−δ implies
that ρ(t )t δ approaches a constant value asymptotically. This
expectation is indeed fulfilled. Figure 1(b) shows ρ(t )t δ with
t on logarithmic scale for p < pc, close to pc. As p → pc, δ

decreases.
This transition has been confirmed by the large lattice

simulation mentioned above as well as by simulations starting
with a single seed. At p = pc the relaxation is ultraslow. For a
large lattice of size 2.5 × 106, we observe logarithmic decay
of ρ(t ) at p = pc. The transition is expected to be in the
universality class of activated scaling [32–35]. For this class,
the proposed behavior is ρ(t ) ∼ [ln(t/t0)]−δ̄ . Thus, if we plot
ρ(t )−1/δ̄ as a function of ln(t/t0) we observe linear behavior
only at the critical point. In Fig. 2, we have plotted ρ(t )−1/δ̄

as a function of ln(t/t0) with δ̄ = 0.381 at p < pc, p = pc,
and p > pc. The value δ̄ ∼ 0.381 is close to the previously
obtained value δ̄ = 0.381 97.

Due to logarithmic decay, it is extremely difficult to locate
the critical point precisely and further tests are required to
locate it. We confirm the above value with single seed sim-
ulations. We compute (a) the survival probability (fraction
of clusters surviving until time t) Ps(t ) and (b) the average
number of particles in a cluster starting from single seed N (t ).
At p = pc, (a) the quantity Ps(t ) is expected to decay asymp-
totically as Ps(t ) ∼ [ln(t/t0)]−δ̄ and (b) N (t ) decays as N (t ) ∼
[ln(t/t0)]�. Again we plot Ps(t )−1/δ̄ as a function of ln(t/t0)
and obtain linear behavior only for p = pc [see Fig. 3(a)].
Similarly, if we plot N (t )1/� as a function of ln(t/t0), a
linear behavior is expected only at p = pc. We observe that
for t0 = 0.2, δ̄ = 0.381, and � = 1.236, linear behavior is
obtained only at p = 0.651 [see Fig. 3(b)]. The values of δ̄

and � match with those expected in the class of activated

FIG. 1. (a) Overview of time evolution of average density ρ(t )
of a 1D system of size N = 2.5 × 106 for r = 0.5 and p � pc in the
range 0.64 to 0.85 (from bottom to top), where pc = 0.651. We find
that ρ(t ) ∼ t−δ for p is close to pc and p < pc. (b) Log-log plot of
ρ(t ) × t δ vs time in the Griffiths region for a system with p < pc in
the range 0.61 to 0.648 (from top to bottom). Exponent δ changes
continuously and reaches 0 as p → pc.

scaling [34,35]. Thus, we confirm pc = 0.651 ± 0.0005 in
three different ways using both large lattice simulations as
well as single seed simulations.

(b) Persistence: We compute Pl (t ) as a function of time for
a large system of size N = 2.5 × 106. Usually, the absorbing
state transition is accompanied by the spreading transition.
(In the active phase, we expect the inactive sites can be
expected to become active at some time and the active sites
will become inactive due to fluctuation.) Since the active sites
decay logarithmically at p = pc, the persistence decays very
slowly at the critical point and cannot be fitted by a power law
(see Fig. 4). However, we observe a clear power-law decay of
persistence for p � 0.655. We can even observe the finite-size
scaling of persistence at p = ps. For ps = 0.655, we show the
asymptotic value of persistence at various system sizes N . We
observe a power-law decay of Pl (∞) as a function of N . If
we expect finite-size scaling, we can postulate that Pl (∞) ∼
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FIG. 2. The time evolution of density of active sites ρ(t ) for
a system of size 2.5 × 106 with p < pc, p = pc, and p > pc. ρ(t )
decays as [ln(t/t0)]−δ̄ where δ̄ = 0.381 only at p = pc.

N−zθ . We find that zθ = 3.18 and θ = 1.92 implying that
z = 1.656. (z < 2 indicating superdiffusive behavior. For 1D
DP, z = 1.58.) Figure 5 shows the scaling plot of Pl (t ) Nzθ

with t/Nz. Such scaling is not obtained for other values of p.
In general, persistence shows exponential decay in the

active phase. The power-law decay is observed only at the
critical point. But our case is different. At pc, the persistence
decays slower than power law. This is because active sites
spread logarithmically in time and it takes very long for
inactive sites to become active. Thus persistence is dominated
by inactive sites that did not become active until that time. We
denote the persistence of type A (CDP) sites with initial state
1 and 0 by Pl (A, 1, t ) and Pl (A, 0, t ), respectively. We define
Pl (B, 1, t ) and Pl (B, 0, t ) in an analogous manner for DP sites
of type B. Pl (t ) is the sum of these four quantities. The total
persistence Pl (t ) is found to be dictated by Pl (A, 1, t ). The
quantity Pl (A, 1, t ) deviates from the initial condition very
slowly for p > ps. For p � pc, the evolution effectively stops
as soon the system reaches an absorbing state and a finite
value of persistence is expected. For p > pc the persistence
is expected to go to zero asymptotically. For p � ps it shows
power-law decay.

For p = ps we observe a clear power-law decay of persis-
tence in time with exponent 1.92. For p � ps, the quantity
Pl (t ) continues to decay as power law as shown in Fig. 6(a).
The decay exponent is smaller for p > ps. Thus the rate
at which the system loses the memory of initial conditions
is fastest at p = ps. Unlike other cases where we observe
exponential decay of persistence in the active phase, the
memory of initial conditions decay very slowly even in the
active phase. The behavior can be described by Pl (t ) ∼ t−θl

for p � ps where θl is known as the persistence exponent.
Thus Pl (t )t θl is a constant. For larger values of p close to 1,
there are systematic oscillations over and above the power-law
decay and they can be best described by a complex persistence
exponent. The amplitude of oscillations increases as p → 1
[see Fig. 6(b)].

FIG. 3. (a) The time evolution of the survival probability Ps(t )
for disorder concentration r = 0.5 starting with a single seed, for p <

pc, p = pc, and p > pc. Ps(t ) decays as [ln(t/t0)]−δ̄ with δ̄ = 0.381.
(b) The time evolution of average number of active sites in a cluster
starting with a single seed N (t ) for p > pc, p = pc, and p < pc. N (t )
decays as [ln(t/t0)]� with � = 1.236 and t0 = 0.2.

This oscillatory nature of persistence is not reflected in any
other quantity. The number of active sites saturates quickly in
few time steps. Similarly, the rate at which active sites become
inactive and vice versa reaches a constant value quickly. The
number of domain walls where active and inactive sites are
next to each other does not show any oscillations. If we
discriminate between different initial conditions and compute
four different quantities, depending on the initial condition
and whether the site is of DP character or CDP character, we
observe that the persistence is essentially dictated by sites of
CDP type that are active initially. All other persistence goes to
zero exponentially fast and logarithmic oscillations are due to
CDP sites which are active in the beginning. The probability
of finding k consecutive CDP sites decays exponentially with
k. However, the larger the size, it is more difficult for 0’s to
invade the center of the CDP cluster.

We simulate the systems of k + 2 sites such that the first
and k + 2th sites are fixed at 0 and we have a cluster of k
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FIG. 4. Time evolution of local persistence Pl (t ) for a system of
size 2.5 × 106 with r = 0.5 and p < ps in the range 0.62 to 0.654
(from top to bottom).

sites evolving according to CDP rules. These sites are active
at the beginning. If all active sites have become inactive at
least once, we consider it as a configuration which has not
survived. In Fig. 7(a), we have plotted the number of surviving
configurations as a function of time for different values of k
for p = 0.96. We also compute the average time by which
all these k sites have become inactive at least once. This
time Tk increases exponentially. But there are oscillations
over and above the exponential. In Fig. 7(b) we plot Tk the
average time taken by k + 2 sites to become inactive as a
function of the number of sites k in the cluster. Figure 7(c)
shows the plot of the relation Tk/ exp(γpk) with varying k
for different values of p. The probability of a CDP cluster

FIG. 5. Scaling plot of the local persistence Pl (t ) at r = 0.5. with
p = ps = 0.655 for different lattice sizes N . The time required for
saturation scales as Nz and the saturation value of Pl (t ) scales with
N−zθ where N = 80, 160, 320, 640, 1280 (from bottom to top). Inset:
Time evolution of Pl (t ) with r = 0.5, p = ps for various sizes of
lattice N = 80, 160, 320, 640, 1280 (from top to bottom).

FIG. 6. (a) Time evolution of Pl (t ) with r = 0.5 and p � ps.
Power law is obtained at p � ps in the range 0.655 to 0.99 (from
bottom to top). Clearly the persistence exponent θ changes continu-
ously in this range. (b) Log-log plot of Pl (t ) × t θ with r = 0.5 and
p > ps, in the range 0.88 to 0.99 (from bottom to top) p → 1. The
log-periodic oscillations are clearly evident in this figure. The y axis
is multiplied by arbitrary constants for better visualization.

of size k decreases exponentially. However, the lifetime of
such a cluster increases exponentially. The combination of
exponentially rare regions which survive for exponentially
long times leads to a power law and the oscillations over
and above this exponential lead to log periodicity. For larger
p, there are bigger odd-even oscillations in lifetime and the
amplitude of log-periodic oscillations in persistence is also
bigger.

At longer times, bigger and bigger clusters of CDP sites
are invaded fully and the sites become inactive at least once.
There is a certain timescale at which say, a cluster of four
sites is invaded and after a certain time a cluster of size five is
fully invaded. However, apart from an exponential increase in
timescales, there is an odd-even oscillation which could be a
reason for logarithmic oscillations in persistence.
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FIG. 7. (a) Starting with 104 configurations, we plot the number
of surviving configurations vs t/Tk for CDP clusters of k sites
surrounded by inactive sites for p = 0.96. We consider k = 3–8. Tk

is the average time taken by a cluster of k CDP sites to become
inactive. Clearly, the distribution of lifetimes is different for odd
(at the bottom) and even (at the top) values of k. (b) We plot
Tkvs k. Ignoring odd-even oscillations, it can be fitted as Tk ∝
exp(γpk) where γp = 0.915, 1.1, 1.6 for p = 0.85, 0.9, 0.96. (c) We
plot the relation Tk/ exp(γpk) vs k. The odd-even oscillations are
evident.

FIG. 8. Semilogarithmic plot of Re(θl ) = θ and Im(θl )/2π =
θ ′/2π for p = 0.96 and varying disorder fraction r.

A complex exponent would imply that θl = θ + iθ ′.
Now the behavior is given by Pl (t ) ∼ Re(At−θ−iθ ′

) ∼
At−θ cos [θ ′ ln(t )] and Pl (t )t θ ∼ A cos [θ ′ ln(t )]. If we plot
Pl (t )t θ as a function of t , we should observe log-periodic
oscillations over and above the constant. This is precisely
the behavior for large values of p as shown in Fig. 6(b).
Since the function is log periodic, it is very difficult to
find exact time periodicity. The period of these oscillations
decreases and amplitude increases as p → 1. For p close to
ps, the amplitude (if any) is very small, and it is difficult to
determine if θ ′ �= 0 is close to ps. Log-periodic oscillations
emerge due to the inherent self-similar structure in a variety
of studies [11,36]. In our model the self-similarity is absent.
The value of θ decreases as we approach p = 1. For p → 1,
θ → 0.

For CDP, Pl (∞) > 0 for any p. For DP, Pl (t ) will decay
exponentially for p > pc. When both types of evolution are
possible, naively one may expect that the decay will be slower
than exponential due to clusters of CDP sites. One could
expect a stretched exponential, power law, or even logarithmic
decay. The dynamics will further slow down with an increase
of r, leading to a decrease in the real part of the exponent.
Figure 8 shows that the real part of the persistence exponent
varies as log(r). Therefore, θ → 0 as r → 1. However, the
imaginary part of the persistence exponent θ ′ decreases only
slightly with an increase in r.

IV. SUMMARY

We studied the contact process when a fraction r of sites on
the 1D lattice follows CDP rules, and the rest evolve according
to the rules leading to DP universality class. For r = 0.5,
we observe a transition to the fluctuating phase at critical
probability pc = 0.651 for r = 0.5. In the absorbing phase,
we observe the Griffiths phase over a range of parameters,
where the order parameter ρ(t ) decays as a power law with
continuously varying exponent. For p 	 pc, ρ(t ) decays in a
stretched exponential manner and eventually shows exponen-
tial behavior. For p > pc, ρ(∞) > 0. The slow dynamics in
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the absorbing phase is due to the rare region effect. The rare
region effect decomposes the lattice into several disconnected
finite-size clusters. These clusters are active while the bulk is
in the inactive phase. Thus the overall activity is the sum of
activities of clusters of various sizes. At p = pc, the decay
is extremely slow and we observe a logarithmic decay. We
confirmed the critical point by large lattice as well as single
seed simulation. We have also obtained the survival probabil-
ity Ps(t ) and the average number of active sites in a cluster
starting with single seed N (t ).

We also study the local persistence Pl (t ) in this system. In
DP, critical point ps at which Pl (∞) = 0 coincides with pc in
general. For CDP, the persistence Pl (t ) does not go to zero in
either phase. In our case, the decay of persistence is slower
than power law at p = pc. For p � ps, Pl (t ) decays as power
law with a continuously varying complex exponent. The real

and imaginary parts of the exponent decrease as p → 1, but
amplitude increases. This system does not have a self-similar
or fractal disorder and the underlying lattice is not fractal.
Interestingly, log-periodic oscillations can be observed due to
uncorrelated quenched disorder alone. We have shown that the
reason for log-periodic oscillations can be found in lifetimes
of active CDP clusters. We have mainly presented results for
r = 0.5. However, changing r leads to similar results. The
above observations may apply to other dynamical rules and
topologies.
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