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Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction
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In finite-time quantum heat engines, some work is consumed to drive a working fluid accompanying
coherence, which is called “friction.” To understand the role of friction in quantum thermodynamics, we present
a couple of finite-time quantum Otto cycles with two different baths: Agarwal versus Lindbladian. We solve them
exactly and compare the performance of the Agarwal engine with that of the Lindbladian engine. In particular,
we find remarkable and counterintuitive results that the performance of the Agarwal engine due to friction can be
much higher than that in the quasistatic limit with the Otto efficiency, and the power of the Lindbladian engine
can be nonzero in the short-time limit. Based on additional numerical calculations of these outcomes, we discuss
possible origins of such differences between two engines and reveal them. Our results imply that, even with an
equilibrium bath, a nonequilibrium working fluid brings on the higher performance than what an equilibrium
working fluid does.
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I. INTRODUCTION

How quantumness plays a role in thermodynamics is one of
the interesting and important questions to understand quantum
phenomena, which is the so-called quantum thermodynamics
[1] that concerns the relation between quantum mechanics and
thermodynamics. In a sense, to study quantum heat engines,
Ref. [2] (and references therein) has provided useful frame-
works for further theoretical and experimental developments.

A quantum heat engine is a cycle with thermodynamic
processes, and its working fluid is a quantum system with
coherence, entanglement, and discrete energy levels. Due
to the development of experimental techniques, it has been
realized in various ways [3–6], and various heat baths have
also been considered: A coherent bath was used to exceed
the Carnot efficiency, and a decoherent one was introduced to
find the signature of quantumness [7–9]. Squeezed bath [10]
also allowed the efficiency to be beyond the Carnot efficiency
due to the nonequilibrium resource. Moreover, it is known
that a quantum phase transition can be used to increase the
efficiency [11] or decrease it [12].

Owing to the discovery of the trade-off relation between
the power and the efficiency of the engine [13–15] as well
as the development of the shortcut-to-adiabaticity technique
[16], the finite-time quantum heat engine has steadily gathered
significant attention, where the working fluid can have coher-
ence without any special bath, such as a squeezed or coherent
bath. When Hamiltonians at different times do not commute,
a portion of work is used to generate coherence. At last, it is
dissipated when the system is coupled to a heat bath later.
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Such a mechanism is regarded as a quantum analog of
friction. There have been many ways to measure friction in
quantum heat engines [17–20], but we focus only on the
friction by the power term that is required to drive the working
fluid in the finite-time mode, which has been in Otto heat
engines [17,18].

The Otto cycle (see Fig. 1) has been widely studied
due to its analytic tractability [12,16–18,21–27]. It has been

FIG. 1. A finite-time quantum Otto cycle is schematically illus-
trated with harmonic potentials and Wigner functions, which consists
of isochoric and adiabatic processes. In the isochore, the working
fluid exchanges heat with heat bath of temperature Th (Tc ) by the
propagator Ph (Pc ) of the vector (〈Ĥ〉, 〈L̂〉, 〈D̂〉, 〈Î〉) for the process
time τh(τc ), whereas, in the adiabatic expansion (compression),
the internal energy change of the working fluid becomes work by
Phc (Pch ) for τhc (τch ). The total-energy expectation of the working
fluid is drawn as a function of ω in the middle panel.
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reported that the quantum Otto engine can also be used as a
precise thermometer [28] and the Otto engine with the finite
power and the quasistatic efficiency can be achieved by the
shortcut-to-adiabaticity technique [16]. Most recently, it has
also been realized with the nuclear magnetic resonance spec-
trometer [5,6] and its quasistatic efficiency has been beaten
in the finite-time mode with a heat bath of effective negative
temperatures [5].

In this paper, we consider two quantum Otto cycles in
finite-time frameworks with a time-dependent harmonic os-
cillator, exactly solve their performance, and discuss the role
of friction in them as a quantum effect. To describe a quan-
tum system connecting to the corresponding heat bath, we
revisit the well-known Lindblad master equation (Lindblad
bath, L) [29] with a propagator of a dynamical semigroup,
and the Agarwal master equation (Agarwal bath, A) [30,31]
(and references therein) as paradigmatic models. In particular,
we focus on how they are different from each other in the
finite-time mode. Finally, it turns out that they exhibit fruitful
physics with remarkable and counterintuitive results.

In the quasistatic limit, regardless of detailed model ap-
proaches, the Otto efficiency is only determined by the volume
ratio between hot and cold isochores. As the cycle time
becomes infinity, its power becomes eventually zero. As a
result, the quasistatic limiting performance of quantum Otto
heat engines is rather trivial, so that two baths (propagators)
do not make any difference between their performances in the
quasistatic limit. However, in the finite-time mode, they can
be different due to the role of friction and the setup of the heat
bath. To the best of our knowledge, the case of the Lindblad
bath was exactly solved, but the Agarwal case has not been
exactly solved yet. So, in this paper, we exactly solve the
Agarwal case and compare it with the Lindbladian and discuss
the origin of counterintuitive results.

Both the Agarwal bath and the Lindbladian bath are based
on the Born-Markov approximation [32]. For the Lindbla-
dian case, the secular approximation is applied as neglecting
rapidly oscillating terms [33]. While the Lindbladian master
equation is appropriate to model Otto engines based on quan-
tum optics and the completely positive map, the Agarwal mas-
ter equation corresponds to the Born-Markov master equation
without the secular approximation and the positive map. It is
known that, by adding some terms, a master equation of a
positive map can be completely positive and with the fixed
master equation does not satisfy translational invariance of
dissipation and detailed balance simultaneously [34,35]. A
possible experiment has been proposed with an impurity in a
quantum gas to observe the system [32]. Although our Agar-
wal engine might be too simple to describe real experiments,
we believe that this research paves the way to understand the
differences between an engine with quantum optics and an
engine with an impurity in an ultracold quantum gas.

The rest of this paper is organized as follows: In Sec. II,
we describe a finite-time quantum Otto heat engine with the
harmonic oscillator and present two different types of baths,
where the performances (efficiency and power) of Otto cycles
are denoted with the analytic forms of work and heat. In
Sec. III, we exactly solve the performance of each case as
well as numerical enumerations for related physical quanti-
ties, where we argue the possible origins of the differences

between two cases and confirm them. In particular, we focus
on the performance in the short-time limit and near resonance
conditions, where it gets better counterintuitively. Finally, in
Sec. IV, we conclude this paper with a summary and some
remarks.

II. SYSTEM

A. Otto cycle

As illustrated in Fig. 1, an Otto cycle consists of two iso-
choric (constant volume) and two adiabatic (no heat transfer)
processes. In the isochore, there is no external force and no
explicit time dependence on the Hamiltonian, Ĥ (t ), so that all
the energy change of the engine becomes heat. We consider a
couple of heat baths for the isochores, which drive a system
into the same equilibrium state, the Lindblad bath versus the
Agarwal bath.

The governing equation of the density matrix is

d ρ̂(t )

dt
= − i

h̄
[Ĥ (t ), ρ̂(t )] + Lk (ρ̂(t )), (1)

where Lk is a superoperator to describe an interaction between
the working fluid and heat bath, and k is either A (Agarwal)
or L (Lindbladian). Equation (1) without the superoperator is
just a von Neumann equation, which describes a closed quan-
tum system. Note that a hat symbol (·̂) denotes an operator.

The superoperator of the Agarwal bath [31] is written as

LA (ρ̂(t )) =−iκ

h̄
[x̂, { p̂, ρ̂(t )}]− 2κmω

h̄

(
n̄+ 1

2

)
[x̂, [x̂, ρ̂(t )]],

(2)

where κ is a heat conductance that governs the energy ex-
change rate between the working fluid and the Agarwal bath,
and n̄ is the expectation value of the number operator for
the heat bath of temperature T , n̄ = [exp (h̄ω/kBT ) − 1]−1.
Expanding Eq. (2) in the high-temperature limit, it becomes
the Caldeira-Leggett master equation, which is well known to
model quantum tunneling phenomena in a dissipative system
[36].

For the Lindblad bath, it is as follows:

LL (ρ̂(t )) = γ

2
(n̄ + 1)

[
âρ̂(t )â† − 1

2
[â†âρ̂(t ) + ρ̂(t )â†â]

]

+ γ

2
n̄

[
â†ρ̂(t )â − 1

2
[ââ†ρ̂(t ) + ρ̂(t )ââ†]

]
, (3)

where γ is heat conductance of the Lindblad bath [33] and â
(â†) represents an annihilation (creation) operator. The annihi-
lation operator is the combination of position and momentum
operators, â = √mω

2h̄ (x̂ + i
mω

p̂), and the creation operator is
the complex conjugate of â, â† = √mω

2h̄ (x̂ − i
mω

p̂). For the
adequate comparison of the Agarwal bath with the Lindblad
bath, we set the heat conductance of the Agarwal bath as
κ = γ /8.

In the adiabatic process, the volume of the working fluid
is changed without heat transfer between heat bath and the
working fluid, so that the master equation with γ = 0 cor-
responds to the adiabatic process, where Ĥ (t ) is explicitly
time dependent and all the energy change of the working fluid
becomes work.
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Combining these processes into a quantum Otto cycle,
we generate the following procedure: First, we compress the
working fluid in the adiabatic process, where work is exerted
on the working fluid and its energy level becomes higher
than it was before. Second, we connect the working fluid to
a hot bath with temperature Th. In the hot isochore, heat is
transferred to the working fluid from the hot bath, which is
transformed as other types in the following adiabatic process.
Third, in the adiabatic process, we expand the working fluid,
so that the energy of the engine is transferred to the external
agent. Finally, in the cold isochore, we connect the working
fluid to the cold bath with temperature Tc. Since the working
fluid does not connect to the heat bath when Hamiltonian has
the explicit time dependence, solving an Otto engine is easier
than other finite-time cyclic heat engines.

B. Working fluid: Harmonic oscillator

To make our problem simple and analytically tractable,
we employ harmonic oscillators as the working fluid of the
Otto cycle. The harmonic oscillator is useful to model diverse
phenomena, such as a cavity, a trapped ion, a RLC circuit, and
a mechanical spring. The Hamiltonian for the time-dependent
harmonic oscillator is given by

Ĥ (t ) = p̂2

2m
+ mω2(t )x̂2

2
, (4)

where m and x̂ ( p̂) are mass and position (momentum) op-
erator, respectively. For the harmonic gas, it is known that the
inverse of the frequency ω(t ) corresponds to the volume of the
working fluid [37]. Hence, in the adiabatic process, we change
the frequency ω(t ), whereas in the isochore, we do not.

With the Wigner function representation, we can map
Eq. (1) for the density matrix to an equation for the c number.
The Wigner function describes a quasiprobability that repre-
sents the density function operator as a real function, which is
written as

W (x, p) = 1

π h̄

∫
dz e−2ipz/h̄〈x + z|ρ̂(t )|x − z〉. (5)

The quasiprobability does not satisfy probability axioms and
can have negative values. For the Gaussian state, W (x, p) is
guaranteed to be a non-negative value [38].

For the harmonic oscillator, the master equation of
W (x, p) is

∂tW (x, p) = −�∇q · [Ak · �q − Bk · �∇q]W (x, p), (6)

where

AA =
(

0 1
m

−mω2(t ) − γ

4

)
, BA =

(
0 0

0 mγ

4 T̃

)
(7)

for the Agarwal bath, and

AL =
(

− γ

4
1
m

−mω2(t ) − γ

4

)
, BL =

(
γ T̃

4mω2(t ) 0

0 mγ T̃
4

)
(8)

for the Lindblad bath, and T̃ = h̄ω(n̄ + 1/2).
Equation (6) has the same structure as the Fokker-Planck

equation [39]. The corresponding Langevin equation to the

master equation of the Wigner function is called the quasi-
classical Langevin equation [38]. The Langevin equation for
the Agarwal bath is

∂t x = p

m
,

∂t p = −mω2x − γ

4
p +

√
γ h̄mω(n̄ + 1/2)

4
ηp(t ), (9)

where 〈ηi(t )η j (t ′)〉 = 2δi, jδ(t − t ′). In this case, if we take the
high-temperature limit, then Eq. (9) becomes the Langevin
equations for a Brownian particle.

The Langevin equations for the Lindblad bath are

∂t x = p

m
− γ

4
x +

√
γ h̄(n̄ + 1/2)

4mω
ηx(t ),

∂t p = −mω2x − γ

4
p +

√
γ h̄mω(n̄ + 1/2)

4
ηp(t ). (10)

Note that, for the Lindblad bath, an additional heat channel
exists in position. For the governing equation for momentum,
both cases are exactly the same due to the choice of κ = γ /8,
which helps to resolve the role of the positional heat channel
in Eq. (10). Due to this fact, the relaxation of potential energy
for the Lindblad bath and the Agarwal bath are quite different,
which leads to a huge difference in the performances of both
Otto engines in finite time. Such outcomes are presented and
discussed with possible origins in Sec. III.

Since Eq. (6) has the quadratic form, the cyclic steady state
of Otto engines can be described by a Gaussian. As a result,
the Wigner function is non-negative in the limit cycle [40].
Due to the left-right symmetry for the breathing potential, 〈x̂〉
and 〈p̂〉 are zero in the cyclic steady state. Therefore, it is
enough to calculate the second moments for describing cyclic
steady states.

With the adjoint master equation of W (x, p), we can write
down equations for Hamiltonian Ĥ , Lagrangian L̂, and a
correlation function D̂, respectively:

Ĥ (t ) = p̂2

2m
+ mω2(t )x̂2

2
,

L̂(t ) = p̂2

2m
− mω2(t )x̂2

2
,

D̂(t ) ≡ ω(t )(x̂ p̂ + p̂x̂)

2
,

which are the linear combinations of second moments.
The evolution of a vector

�φ(t ) ≡ (〈Ĥ (t )〉, 〈L̂(t )〉, 〈D̂(t )〉, 〈Î〉)T ,

where Î is the identity operator. The vector is governed by a
linear master equation [18]:

d

dt
�φ(t ) = Mk

j
�φ(t ), (11)

where k is either A or L, and j is either adiabatic (a) or
isochoric (i ∈ {c, h}).
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In the adiabatic process, the matrix M of Eq. (11) is
written as

MA/L
a = ω(t )

⎛
⎜⎜⎜⎜⎝

ω̇(t )
ω2(t ) − ω̇(t )

ω2(t ) 0 0

− ω̇(t )
ω2(t )

ω̇(t )
ω2(t ) −2 0

0 2 ω̇(t )
ω2(t ) 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠. (12)

Here work per unit time is given as

∂t 〈Ĥ〉 = ω̇(t )

ω(t )
(〈Ĥ〉 − 〈L̂〉). (13)

On the right-hand side of Eq. (13), the second term associated
with 〈L̂〉 is called friction because it disappears in the qua-
sistatic limit and decreases the power of Otto heat engines
in the finite-time mode [18]. However, we show that, in
the engine with an Agarwal bath, the friction term can have
the same sign as the first term, so that it helps to enhance the
performance of the engine.

When ω̇(t )/ω2(t ) is constant, we can factor out ω(t ) in the
adiabatic matrix Ma and the solution of Eq. (11) has a closed
form [41]:

ω(t ) = ωiω f

ω f − (ω f − ωi )t/τ
, (14)

where i is initial, f is final, and τ is the time of the adiabatic
process. Then the propagator of the adiabatic process, Pi f , is
written as

ln
(
Pi f

) =

⎛
⎜⎜⎜⎜⎝

rw −rw 0 0

−rw rw
2τi f rw

ω−1
f −ω−1

i
0

0 − 2τi f rw

ω−1
f −ω−1

i
rw 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠, (15)

where rw ≡ ln(ω f /ωi ). For simplicity, we take the notation
of the propagator of the adiabatic compression (expansion)
process as Pch (Phc), as stated in Fig. 1.

In the isochore, the matrix M of Eq. (11) is given as

MA
i =

⎛
⎜⎜⎜⎜⎝

− γ

4 − γ

4 0 γ T̃i
4

− γ

4 − γ

4 −2ωi
γ T̃i
4

0 2ωi − γ

4 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠, (16)

and

ML
i =

⎛
⎜⎜⎜⎜⎝

− γ

2 0 0 γ T̃i
2

0 − γ

2 −2ωi 0

0 2ωi − γ

2 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠, (17)

where i is h (c) for the hot (cold) isochore. Because the matrix
in the isochore is independent of time, the propagator is given
as Pk

i = exp (Mk
i t ). By substituting the matrix in Eq. (11)

with Eqs. (16) and (17), we get equations for the evolution of
the Hamiltonian, Lagrangian, and correlation. For the case of
ML

i , 〈Ĥ〉 directly approaches energy in equilibrium and does
not couple to 〈L̂〉 and 〈D̂〉. On the other hand, for the case of
MA

i , they are coupled to one another. This difference leads to

a big difference in the performance of finite-time engines in
cyclic steady states, which is discussed in Sec. III in detail.

Rearranging equations for the isochores, we obtain the
equations for kinetic energy (KE) and potential energy (PE).
The dynamic equations of KE and PE are written as

d

dt

〈
p̂2

2m

〉
= −γ

2

〈
p̂2

2m

〉
− ωiD + γ T̃i

4
,

d

dt

〈
mω2

i x̂2

2

〉
= ωiD, (18)

for the Agarwal bath and

d

dt

〈
p̂2

2m

〉
= −γ

2

〈
p̂2

2m

〉
− ωiD + γ T̃i

4
,

d

dt

〈
mω2

i x̂2

2

〉
= ωiD − γ

2

〈
mω2

b f ix̂
2

2

〉
+ γ T̃i

4
, (19)

for the Lindblad bath. For both cases, the governing equation
for KE is the same and this is our criterion to regulate a heat
conductance for both baths. From propagator expressions as
shown in Fig. 1, we are able to calculate cyclic steady states
and the performance of engines regarding the assigned bath.
The propagator for one cycle is given by Pk

cyc ≡ Pk
cPhcPk

hPch.
With the condition that the Hamiltonian, Lagrangian, and

the correlation function remain the same after one cycle, the
cyclic steady state �φk

ss can be calculated [41]. Then, work and
heat are written as

Wk
ch = �d · (Pch − I ) · �φk

ss,

Wk
hc = �d · (Phc − I )Pk

hPch · �φk
ss,

Qk
h = �d · (

Pk
h − I

)
Pch · �φk

ss,

Qk
c = �d · (

Pk
c − I

)
PhcPk

hPch · �φk
ss, (20)

where

�d ≡ (1, 0, 0, 0)T (21)

and I is an identity matrix of size four. From Eq. (20), the
performance of the Otto engine, its efficiency and power, can
be calculated as follows:

ηk = −(
Wk

ch + Wk
hc

)
/Qk

h,

Pk = −(
Wk

ch + Wk
hc

)
/τcyc. (22)

III. RESULTS

In this section, we present the remarkable difference be-
tween Agarwal and Lindbladian Otto engines, in the con-
text of the performance of the finite-time engine, which is
based on exact solutions. However, the exact mathematical
forms are not directly shown in this paper since they are
quite complicated. Instead, we present the analytic forms of
the approximated result in the short cycle-time limit. Using
the analytic condition for the divergence of the engine with the
resonance, we show that the finite-time Otto heat engine is
different from the quasistatic limiting case. For the finite-time
performance, we provide enumerated results to support our
interesting findings, where we set all the parameters to be
dimensionless and, for simplicity, kB = h̄ = 1.
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FIG. 2. The contour plots of ηA (upper left), ηL (upper right),
ηA/ηO (lower left) and ηL/ηO (lower right) are presented as a
function of τh + τc (the sum of the isochoric time, y axis) and
τch + τhc (the sum of the adiabatic time, x axis). Since we plot only
when the cycle behaves as a heat engine, there are diagonal blank
spaces. Unless isochoric process time is long, the blank spaces well
coincide with purple dotted (green dashed) lines which are derived
from Eq. (24) when n is odd (even). Near purple resonance lines, we
can find some regions that show ηA 	 ηL . In both panels, the red
solid line represents (τch + τhc)/(τh + τc ) = 1/5, and the orange dot
corresponds to the case of τcyc = 1.2, which is discussed in Figs. 3
and 4. Here we set all parameters to be dimensionless and h̄ = kB =
m = γ = 1, ωh = 4, ωc = 3, Th = 200, and Tc = 1, which are kept
used from now on unless other values are indicated separately. For
the simplicity, we choose τh = τc and τch = τhc.

Before moving onto our results, we briefly review the
quasistatic behavior and give some intuition of the Otto heat
engine. When the time periods of both adiabatic processes
are sufficiently large, the engine has the universal efficiency,
ηO = 1 − ωc/ωh, known as the quantum Otto efficiency [18].
The Otto efficiency is smaller than the Carnot efficiency ηC =
1 − Tc/Th. This statement is consistent with the fact that the
system operates as an engine only when Tc/Th < ωc/ωh. In
the quasistatic limit, if we control the frequency ratio beyond
it, the Otto cycle becomes a refrigerator, rather than a heat
engine [42].

In Fig. 2, we show how the Agarwal (Lindbladian) Otto
engine in the left (right) panel works with the following
parameter settings: m = γ = 1, ωh = 4, ωc = 3, Th = 200,
and Tc = 1. The y axis (x axis) is the sum of two isochoric
(adiabatic) times, and we plot the efficiency only when the
engine behaves as heat engine. Blank spaces appear along the
dotted lines, which are drawn by the divergence or resonance
condition by Eq. (23). The condition is based on the classical
argument, if the period of the system is a multiple of the period
of the driving force, then resonance can be observed. Due to the
left-right symmetry of our engines, we can observe resonances
even when the half period of the system is a multiple of the
period of the driving force. With this condition and the lack
of dissipation to the heat bath, the energy of the working fluid
can be accumulated in every cycle, which leads to the energy
divergence. Hence, in this case, the cyclic steady state does
not exist. For the quantum Otto heat engine, the resonance
condition neglecting the effect of the heat bath is calculated as

FIG. 3. Along the red line of each panel in Fig. 2, we compare
the performance of the Agarwal Otto engine (blue, ) with that of the
Lindbladian (red, ), in the context of its efficiency η (top), power
P (middle), and entropy S (bottom), which are functions of τcyc. In
the quasistatic limit (τcyc → ∞), ηA , ηL → ηO , and PA , PL → 0,
which are drawn as horizontal red solid lines. In addition, the analytic
short-time results of Eq. (25) for ηL and PL are drawn as horizontal
black dashed lines up to τcyc = 1.2, whereas ηA → 0 and PA → 0.
Vertical orange solid lines are drawn at τcyc = 1.2 (orange dots in
Fig. 2), where ηA > ηO > ηL . For nonengine or unphyiscal values,
we use different symbols from that of the heat engine and put some
explanations as keys: fridge, useless, and divergent.

follows:

nπ =
∫ τcyc

0
dtω(t ). (23)

The simplified resonance condition can be written as

nπ = ωcτc + ωhτh + ωcωh

ωh − ωc
ln (ωh/ωc)(τch + τhc). (24)

The right-hand side of Eq. (24) is the summation of phase
difference for the four processes in the Otto cycle. Near the
condition of Eq. (24) in the short-time region, the working
fluid continuously gets energy, so that energy diverges. How-
ever, if the contact time with the heat bath is long enough to be
dissipated, then energy does not pile up in the working fluid
and a cyclic steady state exists.

In Fig. 3, we show the performance of two finite-time Otto
engines along the red line of each panel in Fig. 2, where the
ratio of an isochoric time to an adiabatic time is fixed as
5 : 1. The finite-time quantum Otto cycle can be one of the
following four ways: In the heat engine, heat flow is converted
to work. In the refrigerator, heat is absorbed from the cold
bath due to work. In the useless machines, both work and
heat are consumed and exerted into the cold bath. We allocate
different symbols to each case, circles for engines, squares for
refrigerators, triangles for useless machines, and crosses for
the divergent case in Fig. 3. However, the refrigerator is not
found with those parameters. We also present the behavior
of entropy for both cases, which shows that the entropy in
the short-time limit is the same, but the Lindbladian case is
larger than the Agarwal case in the finite-time mode. The
quasistatic values of the efficiency and the power are plotted
as a red horizontal line in Fig. 3. In the Supplemental Material
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FIG. 4. At τcyc = 1.2 when ηA > ηO (indicated in Fig. 3), the
expectation values of the kinetic energy (KE, dashed lines) and the
potential energy (PE, solid lines) are plotted as a function of time
t , where we set τh = 0.1 and τhc = 0.5. Three vertical black solid
lines represent three boundaries, from the adiabatic compression to
the hot isochore, from the hot isochore to the adiabatic expansion,
and from the adiabatic expansion to the cold isochore, respectively
(from left to right). Here we use the same parameters and colors as
used in Fig. 3. In Agarwal’s adiabatic expansion (the last part for
0.7 � t � 1.2, see the two blue lines), the PE is always larger than
the KE, which is different from the Lindbladian where the sign of the
Lagrangian changes. This implies that the friction term − ω̇(t )

ω(t ) 〈L̂〉 in
Eq. (13) contributes to ηA > ηO .

(SM) [43], we confirm that both Otto engines approach the
quasistatic values with oscillatory behavior (see Fig. S1 in the
SM).

A noticeable difference between the Agarwal Otto engine
and the Lindbladian Otto engine is that the efficiency of the
Agarwal case is higher than that of the Lindbladian case near
the resonant condition from Eq. (24). To figure out the origin
of such a notable difference, we measure the trajectories of
the KE, PE, Hamiltonian, and friction term of the limit cycle
at τcyc = 1.2 when the difference is dominant. It is because
they are essential to calculate the performance of the two heat
engines.

In the upper panel of Fig. 4, we present the expectation
values of KE and PE for each engine at τcyc = 1.2 (orange
vertical line in Fig. 3), where the solid (dashed) line is the PE
(KE). In the lower panel of Fig. 4, we present the expectation
values of the Hamiltonian and the frictional term for two
engines. It is observed that, for the Agarwal Otto engine
(red), the PE is always larger than the KE in the adiabatic
expansion process (0.6 � t � 0.7). This means that the sign
of the friction term (− ω̇

ω
〈L̂〉) is negative during the adiabatic

expansion process and increases the extracted energy. As a
result, the friction term increases the efficiency of the finite-
time Agarwal Otto engine to exceed ηO . For the case of the
Lindblad Otto engine, we have to invest more energy during
the adiabatic compression process (0.0 � t � 0.1) because
the friction of the Lindblad engine is higher than that of the
Agarwal Otto engine. Note that, in the quasistatic limit, the
friction term becomes zero (see Fig. S2 in Sec. II of the SM
[43], which shows additional trajectories for the three choices
of τcyc from short-time to long-time regimes). The contrast
of imbalance between KE and PE in the expansion process

originates from the different dynamics for PE in the isochore,
Eqs. (18) and (19). Owing to the different relaxation behavior
of the PE, the short-time performances of the heat engines also
show immense differences.

Another interesting phenomenon is observed for the very
short cycle time, τcyc � 1, where the Lindbladian Otto cycle
can work as a heat engine but the Agarwal one cannot. For
small τcyc, we approximate work in Eq. (20) under the condi-
tion when the adiabatic time is shorter than the isochoric time
and the expansion time equals the compression time for the
simple result (τh, τc 	 τch = τhc). The first-order expressions
of work are as follows:

WA = 0 + O
(
τ 3

cyc

)
,

WL = γ τcτh
(
ω2

h − ω2
c

)(
T̃hω

2
c − T̃cω

2
h

)
4ω2

cω
2
h(τc + τh)

+ O
(
τ 2

cyc

)
. (25)

When τh = τc, Lindblad work WL in the complete sudden
limit was calculated in the review paper by Kosloff and Rezek
[42]. Using Eq. (25), the efficiency and power values of two
engines are calculated as well. For the Agarwal Otto engine,
it is found that ηA, PA → 0 because QA

h = γ τcτh (T̃c−T̃h )
4(τc+τh ) and the

first-order term of WA is zero. So the Agarwal Otto cycle
cannot be a heat engine in the short-time limit, which is true
even when τch = τhc. For the Lindbladian Otto engine, WL is
linear in τcyc, so that PL , ηL are nonzero, finite, and positive
when ωc/ωh > (T̃c/T̃h )1/2, which is shown in Fig. 3 as black
dashed lines for the Lindblad case [42] [see Eqs. (S1) and

FIG. 5. The contour plots of ηA (upper left), ηL (upper right),
ηA/ηO (lower left), and ηL/ηO (lower right) are shown as a function
of Tc/Th (temperature ratio, x axis) and ωc/ωh (frequency ratio, y
axis). Here most parameters are the same as before, but we change
ωc = 3, Tc = 100, τc = τh = 2, and τch = τhc = 0.4, which nicely
show how our enumeration results are bounded by the condition
derived in the high-temperature limit. Blue (orange) guided lines are
the boundaries between the heat engine and the others such as the
refrigerator and the useless machine in the short-time (quasistatic)
limit. The short-time limit was obtained from the Lindbladian work
expression of Eq. (25) in the high-temperature limit. When the
frequency of the harmonic oscillator gets higher, the approximation
of the short-time limit cannot be valid anymore. Therefore, ηA and
ηL near the small frequency ratio can be in between the blue lines
and the orange lines. The insets correspond to the quasistatic limit,
where both cases show the same results.
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(S2) in Sec. III of the SM [43] ] for the detailed mathematical
expressions of ηL and QL

h ].
In the high-temperature (classical) limit, such a condition

becomes ωc/ωh > (Tc/Th)1/2 as plotted in Fig. 5 with blue
curved lines. So the valid parameter region in finite-time
Otto cycles gets smaller than that in the quasistatic limit case
(ωc/ωh > Tc/Th), which is drawn by orange diagonal lines to
guide the eye in Fig. 5.

Figure 5 shows wavy patterns because of resonance phe-
nomena, which are the same as Fig. 2, and insets correspond to
ηk in the quasistatic limit. Note that blue lines are derived from
the Lindbladian case, but they fit quite well to the Agarwal
case, too. This implies that the adiabatic process strongly
relates to the boundary condition rather than the isochore.
When the frequency of the working fluid is high, the short-
time approximation (τ < ω−1, γ −1) fails, so that data points
can exist over blue lines. In the region where Tc/Th > ωc/ωh,
both engines can work as a refrigerator with similar wavy
patterns of cooling coefficient (see Fig. S3 in Sec. IV of the
SM [43]).

IV. CONCLUSION

We have investigated the role of friction in quantum Otto
engines with two different types of equilibrium heat baths,
namely, the Agarwal Otto engine and the Lindblad Otto
engine. In the isochore, two master equations governing the
dynamics are different. With the adjoint master equation for
the Wigner function, up to the second moments, they were
exactly derived to solve the performances of the engines with
a specific protocol.

Based on our derivation of resonance conditions for both
engines, it is found that the Agarwal Otto engine can exceed

the quasistatic Otto efficiency in the finite-time mode. This
is remarkably different from the Lindblad Otto engine near
resonance conditions, which is also counterintuitive because
there is positive feedback caused by friction. Moreover, in
the short-cycle-time limit (τcyc → 0), we were also able to
derive the approximate expressions of work, which show that
the Lindbladian can have nonzero power, which differs from
the Agarwal Otto engine. It is because the Lindblad bath can
directly transfer energy to the potential energy, so that the Otto
cycle can directly extract energy from the potential energy in
the short-time limit.

Finally, in the finite-time mode, the power of the Lindblad
engine is higher than that of the Agarwal engine, and its non-
divergent parameter region is larger than that of the Agarwal
engine. Such differences originate from the existence of the
positional heat channel, which alters the relaxation behavior
of the potential energy. Possible realizations of our work and
implications of the frictional effect remain interesting subjects
for future studies.
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