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Monte Carlo simulations of the improved Blume-Capel model

Martin Hasenbusch *

Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, 69120 Heidelberg, Germany

(Received 16 August 2019; revised manuscript received 25 November 2019; accepted 5 February 2020;
published 24 February 2020)

We study purely dissipative relaxational dynamics in the three-dimensional Ising universality class. To this
end, we simulate the improved Blume-Capel model on the simple cubic lattice by using local algorithms. We
perform a finite size scaling analysis of the integrated autocorrelation time of the magnetic susceptibility in
equilibrium at the critical point. We obtain z = 2.0245(15) for the dynamic critical exponent. As a complement,
fully magnetized configurations are suddenly quenched to the critical temperature, giving consistent results for
the dynamic critical exponent. Furthermore, our estimate of z is fully consistent with recent field theoretic results.
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I. INTRODUCTION

In the neighborhood of a second-order phase transition,
thermodynamic quantities diverge, following power laws. For
example, the correlation length ξ diverges as

ξ = f±|t |−ν (1 + a±|t |θ + bt + · · · ), (1)

where t = (T − Tc)/Tc is the reduced temperature and ν is
the critical exponent of the correlation length. The subscript
± of the amplitudes f± and a± indicates the high (+) and
the low (−) temperature phase, respectively. Second-order
phase transitions are grouped into universality classes. For
all transitions within such a class, critical exponents like ν

assume the identical value. These power laws are affected by
corrections. There are nonanalytic or confluent and analytic
ones. Also correction exponents such as θ = ων are universal.
Amplitudes such as f±, a±, and b depend on the microscopic
details of the system. However certain combinations, so-
called amplitude ratios, assume universal values. Universality
classes are characterized by the symmetry properties of the
order parameter at criticality, the range of the interaction,
and the spacial dimension of the system. Currently the most
accurate estimates of static critical exponents for the uni-
versality class of the three-dimensional Ising model are ν =
0.629 970 9(40), η = 0.036 297 8(20), and the exponent of
the leading correction ω = 0.829 68(23), obtained by the con-
formal bootstrap method; see Ref. [1] and references therein.
For reviews on critical phenomena see, for example, [2–5].

The concepts of critical phenomena can be extended to
dynamic processes. For a seminal review see [6]. In addition
to the fundamental characteristics of the static universality
class, a dynamic universality class is characterized by the type
of the dynamics and whether the energy or the order parameter
are conserved. For a detailed discussion of the classification
scheme see Refs. [6,7]. For a review and a book on the

*M.Hasenbusch@thphys.uni-heidelberg.de

related subject of ageing see [8,9]. Here we study purely
dissipative relaxational dynamics without conservation of the
order parameter or the energy, which is denoted as model A in
Ref. [6].

In a numerical study, the dynamics of a lattice model can be
studied in various settings. We might consider autocorrelation
times τ of systems in equilibrium or various off equilibrium
situations. For example the system can be prepared in a low
or high temperature state and then it is, for example, subject
to a sudden quench to the critical temperature. In the case
of damage spreading, the system is prepared in a spatially
inhomogeneous state. The system might also be subject to a
slowly varying external field. Here, we consider equilibrium
dynamics at the critical point and a sudden quench from a fully
magnetized configuration, corresponding to zero temperature,
to the critical one.

Roughly speaking, the autocorrelation time τ is the time
needed to generate a statistically independent configuration in
a stochastic process at equilibrium. More precise definitions
will be given below in Sec. IV. In the neighborhood of a
critical point the autocorrelation time increases with increas-
ing correlation length ξ . This phenomenon is called critical
slowing down. The increase is governed by a power law,

τ � ξ z, (2)

where z is the dynamic critical exponent. It cannot be related
to the static exponents. Similar to Eq. (1), the power law
is subject to corrections. Below we simulate directly at the
critical point, where the linear lattice size L takes over the role
of the characteristic length scale: τ � Lz. The exponent z also
governs nonequilibrium dynamics. For a detailed discussion
see, for example, Refs. [10–12].

Field theoretic results for z relevant to the problem studied
here are discussed in Sec. 9 of Ref. [7]. However one should
notice the considerable progress that has been achieved re-
cently in Refs. [13–15].

In Ref. [16] the dynamic critical exponent z was computed
to two-loop order in the ε expansion. The authors express their

2470-0045/2020/101(2)/022126(14) 022126-1 ©2020 American Physical Society

https://orcid.org/0000-0001-9465-7254
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.022126&domain=pdf&date_stamp=2020-02-24
https://doi.org/10.1103/PhysRevE.101.022126


MARTIN HASENBUSCH PHYSICAL REVIEW E 101, 022126 (2020)

TABLE I. We summarize results for the dynamic critical expo-
nent z obtained by Monte Carlo simulations of lattice models. Note
that in Refs. [27,30,31] the exponent λ = β/νz is computed that we
have converted here by using β/ν = �σ = 0.518 148 9(10) in three
dimensions [1]. In most of the cases, the Ising model on the simple
cubic lattice is simulated. In the case of Ref. [31], the Ising model on
the body centered cubic (bcc) and face centered cubic (fcc) lattice is
studied. The author of Ref. [32] simulates the improved Blume-Capel
(BC) model on the simple cubic lattice. The temperature is denoted
by T and Tc is the critical temperature.

Ref. Year Method z

[24] 1987 Equilibrium dynamic critical behavior 2.03(4)
[25] 1991 Equilibrium dynamic critical behavior 2.03(4)
[26] 1993 Ordered, sudden quench to Tc 2.08(3)
[27] 1993 Ordered, sudden quench to Tc 2.073(16)
[28] 1995 Damage spreading 2.032(4)
[29] 1999 Short time dynamics, various settings 2.042(6)
[30] 2000 Ordered, sudden quench to Tc 2.055(10)
[31] 2007 Bcc, ordered, sudden quench to Tc 2.064(24)
[31] 2007 Fcc, ordered, sudden quench to Tc 2.056(24)
[32] 2010 Improved BC, T = ∞, sudden quench to Tc 2.020(8)

result as

z = 2 + cη, (3)

where c = 6 ln(4/3) − 1 = 0.726 09 . . . and η is the static
critical exponent that governs the decay of the two-point func-
tion at criticality. In Ref. [17] this result was extended to three-
loop order, resulting in c = 0.726 09 (1−0.1885 ε+ · · · ),
where d = 4 − ε is the dimension of the system. Based on
the fact that the coefficient of ε is small, one might hope that
most of the difficulties in analyzing the series are shuffled into
η and the series of c is, in a vague sense, well behaved.

Recently, the ε expansion has been extended to four-loop
[15]. Based on this result, in Appendix C we obtain z =
2.0243 for three dimensions, taking also into account the
accurate estimates z = 2.1665(12) [18] and z = 2.1667(5)
[19] for two dimensions and z = 2 + ε′ − 1

2ε′2 + · · · , where
d = 1 + ε′, given in Ref. [20].

In addition to the ε expansion, the problem has been
attacked by a perturbative expansion in fixed dimension. The
four-loop result for three dimensions [21] had been analyzed
by the authors by using a Padé resummation, resulting in z =
2.017, which is consistent with the resummation of the three-
loop result [22]. However, given the fact that a similar analysis
for two dimensions gives z = 2.093 [21], one might suspect
that also the result for three dimensions is too small. This
is further corroborated by our analysis given in Appendix C.
For the application of different resummation schemes to the
series see also [23].

Finally let us mention the estimates obtained by using func-
tional renormalization group methods [13,14]. In Ref. [13],
towards the end of Sec. VI, the authors give their estimate
z ≈ 2.025 for the case of the three-dimensional Ising uni-
versality class. In Ref. [14] numerical results are presented
in Table I of the paper. Using three different frequency
regulators, the authors get z = 2.024, 2.024, and 2.023, re-
spectively. Without such a regulator z = 2.032 is obtained.

The corresponding results for two dimensions are given in
Table II of Ref. [14]. These are z = 2.16, 2.15, and 2.14 for the
three different frequency regulators. Without such a regulator
z = 2.28 is obtained, which is quite far off from the results of
Refs. [18,19]. This suggests that also in three dimensions, the
estimates obtained with a frequency regulator should be more
reliable than that without.

In summary, Refs. [13,14] and the analysis of the four-loop
ε expansion [15] now suggest

z ≈ 2.024, (4)

which is somewhat larger than z = 2.021 for the three-loop ε

expansion and z = 2.017 for the four-loop expansion in three
dimensions fixed, which are cited in Table 4 of Ref. [7].

Now let us turn to Monte Carlo (MC) simulations of lattice
models. In Table I we summarize results for the exponent z.
In most of the papers, the Ising model on the simple cubic
lattice has been studied [24–30]. In Ref. [31], the Ising model
on the body centered cubic (bcc) and face centered cubic
(fcc) lattice has been simulated. Finally in Ref. [32], similar
to the present work, the improved Blume-Capel model on
the simple cubic lattice is studied. Improved means that the
parameter of the Blume-Capel model is chosen such that
leading corrections to scaling vanish. For the definition of
the Blume-Capel model see Sec. II below. In Refs. [24,25]
equilibrium autocorrelation times are determined. In Ref. [28]
damage spreading is considered. Else short time dynamics is
studied. Mostly the simulations are started with an ordered
configuration, corresponding to T = 0, and a sudden quench
to Tc is performed.

The simulations of the Ising model give results for z that
are larger than the field theoretic ones. In particular all studies
that are performed later than 1991 are not compatible within
the quoted error bars with Eq. (4). None of these simulations
should have a principle flaw. Therefore, assuming the correct-
ness of Eq. (4), one might argue that the discrepancy is due to
the leading correction to scaling that is not properly taken into
account in the analysis of the data.

This was the motivation of Ref. [32] to simulate the im-
proved Blume-Capel model on the simple cubic lattice instead
of the Ising model. Indeed the estimate given in Ref. [32]
is fully consistent with the field theoretic one. Also here
we simulate the improved Blume-Capel model, aiming at a
considerably higher accuracy than that of Ref. [32].

Experimental results are a bit scarce. In a recent experi-
ment [33] νz ≈ 1.3 was found. Using ν = 0.629 970 9(40),
Ref. [1], one gets z ≈ 2.06. Besides uncertainties in the exper-
imental determination of data, leading corrections to scaling
might be an issue in the analysis of the data.

In the following section we discuss the Blume-Capel
model, define the observables that are measured, and discuss
briefly subleading corrections. Next we define the algorithms
that are used. Then we discuss how the autocorrelation time
is defined and how it is determined in the simulation. In
Sec. V we study the equilibrium autocorrelation times of the
local heat bath and the Metropolis algorithm on finite lattices
at the critical temperature. Then in Sec. VI we discuss our
results for a sudden quench to criticality starting from a fully
magnetized configuration. Finally we summarize and give our
conclusions. In Appendix A we discuss our implementation of
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the heat bath algorithm. In Appendix B we report results for
the two-dimensional Ising model. In Appendix C we analyze
the four-loop ε expansion [15]. In Appendix D we analyze
leading corrections to scaling based on simulations of the
Ising model and the Blume-Capel model at D = 1.15.

II. MODEL

The Blume-Capel model is characterized by the reduced
Hamiltonian

H = −β
∑
〈xy〉

sxsy + D
∑

x

s2
x − h

∑
x

sx, (5)

where the spin might assume the values sx ∈ {−1, 0, 1}. x =
(x0, x1, x2) denotes a site of the simple cubic lattice, where
xi ∈ {0, 1, 2, . . . , Li − 1}. We employ periodic boundary con-
ditions in all directions of the lattice. Throughout we shall
consider L0 = L1 = L2 = L and a vanishing external field h =
0. In the limit D → −∞ the “state” s = 0 is completely sup-
pressed, compared with s = ±1, and therefore the spin-1/2
Ising model is recovered. In d � 2 dimensions the model
undergoes a continuous phase transition for −∞ � D � Dtri

at a βc(D). For D > Dtri the model undergoes a first or-
der phase transition. References [34–36] give for the three-
dimensional simple cubic lattice Dtri ≈ 2.006, Dtri ≈ 2.05,
and Dtri = 2.0313(4), respectively. It has been demonstrated
numerically that on the line of second order phase transitions,
there is a point (D∗, βc(D∗)), where the amplitude of the
leading correction to scaling vanishes; see Ref. [37] and
references therein. Following Ref. [37]

D∗ = 0.656(20) (6)

and

βc(D = 0.655) = 0.387 721 735(25). (7)

Here we simulated at (D, β ) = (0.655, 0.387 721 735). At
D = 0.655 leading corrections to scaling should be at least
by a factor of 30 smaller than in the spin-1/2 Ising model on
the simple cubic lattice.

In Ref. [37] we obtained ν = 0.630 02(10), η =
0.036 27(10), and ω = 0.832(6), which were nicely
confirmed by the conformal bootstrap method. Note that
also the accurate estimates of surface critical exponents for
the ordinary and special surface universality classes that we
obtained by simulating the improved Blume-Capel model
in Refs. [38,39] were confirmed by using the conformal
bootstrap method [40].

A. Observables

We focus on the magnetization

m = 1

L3

∑
x

sx (8)

and the estimator of the magnetic susceptibility

χ ≡ 1

L3

(∑
x

sx

)2

(9)

for a vanishing expectation of the magnetization. The Binder
cumulant

U4 = 〈m4〉
〈m2〉2

(10)

is the prototype of a dimensionless quantity and is well suited
to detect leading corrections to scaling.

Furthermore we measured

E = 1

L3

∑
〈xy〉

sxsy, (11)

which is proportional to the energy density.

B. Subleading corrections to scaling

Below we analyze the behavior of the magnetic suscepti-
bility χ and the integrated autocorrelation time τint,χ of χ at
the critical temperature on finite lattices of the linear size L.
For the definition of τint,χ see Sec. IV below. In the case of the
magnetic susceptibility we expect

χ = a(D)L2−η
[
1 + b1(D)L−ω + b2b2

1(D)L−2ω

+ · · · + c(D)L−ω2 + · · · ] + B(D), (12)

where ω2 is the exponent of the subleading correction
and B(D) is the analytic background. The argument D is
the parameter of the Blume-Capel model, Eq. (5). Since
b1(0.655) ≈ 0, in our data for D = 0.655, subleading correc-
tions are actually the numerically dominating ones. Equation
(12) can be obtained for example by taking the second deriva-
tive with respect to the external field of both sides in Eq. (2.14)
of Ref. [5].

In Ref. [37] we assumed ω2 = 1.67(11), obtained by using
the scaling field method [41]. Note however that for even,
rotationally invariant perturbations to the fixed point, the au-
thors of Ref. [42] find, by using the functional renormalization
group method, clearly larger values. In Table 3 of Ref. [42]
estimates ω2 = 2.838 up to 3.6845, depending on the cutoff
scheme that is used, are given. In Table 2 of Ref. [1] the
accurate estimate �ε′′ = 6.8959(43), corresponding to ω2 =
3.8959(43), is given. We conclude that ω2 = 1.67(11) is an
artifact of the scaling field method.

One should notice that the magnetic susceptibility at the
critical point on a finite lattice is affected by the breaking
of the rotational symmetry by the simple cubic lattice. The
analogous fact has been demonstrated very clearly for the
two-dimensional Ising model on the square lattice [43]. See in
particular Sec. 6, where data obtained by using the numerical
transfer matrix method are analyzed. In two dimensions the
corresponding correction exponent is ωNR = 2. It is inter-
esting to note that the correction is related to the interplay
between the torus geometry and the square lattice. For temper-
atures different from the critical one, in the thermodynamic
limit, the correction is absent in the magnetic susceptibility;
see Ref. [43] and references therein.

In the case of the three-dimensional Ising universality
class, ωNR = 2.0208(12), see Table 1 of Ref. [44], or more
recently ωNR = 2.022 665(28) obtained from the scaling di-
mension of the even operator with spin l = 4, given in Table 2
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of Ref. [1]. Note that ωNR = 2.022 665(28) is clearly smaller
than ω2 = 3.8959(43).

For a brief discussion on the breaking of the rotational
symmetry by the lattice and corrections see also Sec. 1.6.4
of Ref. [5].

The analytic background B(D) can be viewed as a correc-
tion with the correction exponent 2 − η. Given the accuracy
of our data it is useless to put two correction terms with
almost degenerate exponents into an Ansatz. Instead we use
a single term proportional to L−ε that effectively takes into
account both corrections. Mostly we set ε = 2. The exponent
is denoted by ε to indicate that it is an effective correction
exponent used in the analysis of the data.

III. ALGORITHMS

We perform two different types of simulations. First we
studied the equilibrium behavior at the critical point for finite
lattices. In this case we used a hybrid of the single cluster
algorithm [45] and local updates to efficiently equilibrate the
system. In the hybrid update, sweeps using the local algorithm
alternate with a certain number of single cluster updates. Our
measurements are organized in bins. These bins are separated
by hybrid updates. While measuring only local updates are
performed. In a second set of simulations we started from fully
magnetized configurations corresponding to zero temperature.
In a sudden quench, the temperature is set to the critical value.
Here, of course, only local updates are used.

As local update we used either the heat bath algorithm or
the particular Metropolis algorithm discussed in Sec. IV of
Ref. [37]. The simulation programs are written in C. The heat
bath algorithm used in the first stage of the study, discussed
in Sec. V A, is implemented in a more or less straightforward
way, storing the spins as char variables. The simulations in
Secs. V B and VI B, which were performed at a later stage,
where performed by using a version of the program that is
partially parallelized by using SSE2 intrinsics. Furthermore,
the random number is used fourfold, as discussed in Sec. VI B
below. Details are discussed in Appendix A. As random num-
ber generator, we have mostly used the SIMD-oriented Fast
Mersenne Twister algorithm [46]. Equilibrium simulations
for a few lattice sizes were partially performed by using
the WELL random number generator [47], giving consistent
results.

In the case of the Metropolis algorithm, we are using multi-
spin coding and 64 systems are simulated in parallel. Here 64
is the number of bits contained in a long integer variable. As
discussed in Ref. [37], we were not able to take advantage of
the multispin coding when using the cluster algorithm. Hence
we update the 64 systems one by one when performing the
cluster update. As random number generator, we have used
the SIMD-oriented Fast Mersenne Twister algorithm [46].

In Sec. V A we compare various orderings of the local
update scheme. In the major simulations, we divide the lattice
in checkerboard fashion and update the sublattices alternately.

Our simulations were performed on various PCs and
servers. In addition to the parallelization discussed above,
several instances of the program were run with different seeds
of the random number generator. As a typical example let
us quote the times needed on a single core of an Intel(R)

Xeon(R) CPU E3-1225 v3 running at 3.20 GHz. In the case
of the heat bath algorithm we need about 5 ns for the update
of a single site. The time needed for the measurement of
the energy and the magnetization is 1.8 ns for one site. The
parallel version of the program, with a fourfold reuse of the
random number, takes 1.8 ns for the update of a single site.
The measurement of the magnetization takes 0.1 ns per site.
In the case of the Metropolis algorithm, implemented by using
multispin coding, 0.9 ns are needed for the update of a single
site. The measurement of the energy and the magnetization,
implemented by using multispin coding, takes about 0.3 ns
per site.

IV. AUTOCORRELATION TIME

In the simulations at equilibrium we determined the in-
tegrated autocorrelation time. Let us briefly recall the basic
definitions. Let us consider a generic estimator A. The auto-
correlation function of A is defined by

ρA(t ) = 〈AiAi+t 〉 − 〈A〉2

〈A2〉 − 〈A〉2
, (13)

where we average over the times i.
If the Markov process fulfills detailed balance the eigen-

values of the transition matrix are real and hence

ρA(t ) =
∑

α

aA,α exp(−t/τexp,α ). (14)

Note that even if the local update fulfills detailed balance, as is
the case for the heat bath and Metropolis algorithm used here,
the composite update, consisting of an ordered sweep over the
lattice, does not. However, often one still finds that Eq. (14) is
a good approximation of the behavior of ρA. For a discussion
see, for example, [48–50].

Our goal is to find a quantity that is proportional to the
exponential autocorrelation time τexp = maxατexp,α and that
can be determined in the simulation with small statistical and
systematical errors.

Our starting point is the integrated autocorrelation time

τint,A = 1

2
+

∞∑
t=1

ρA(t ). (15)

In a numerical study the summation has to be truncated.
In practice the upper bound is taken, self-consistently, as a
few times τint,A. See, for example, [48–50]. Since we intend
to reduce effects of the truncation, we continued the sum,
assuming a single exponential decay:

τint,A = 1

2
+

tmax∑
t=1

ρ(t ) +
∞∑

t=tmax+1

ρ̃(t ), (16)

with

ρ̃(t ) = a(tmax) exp[−t/τeff(tmax)], (17)

where

τeff(t ) = −1/ ln[ρA(t + 1)/ρA(t )] (18)

and

a(t ) = ρ(t ) exp[t/τeff(t )]. (19)
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We determined the autocorrelation function of the energy
density, the magnetization, and the magnetic susceptibility.
Preliminary studies have shown that the scaling of the inte-
grated autocorrelation time of these three quantities with the
linear lattice size L is consistent. Also plotting τeff(t )/τint as
a function of (t + 1/2)/τint we find a collapse of the data for
different lattice sizes.

To keep the study tractable, we focus on the integrated
autocorrelation time τint,χ of the magnetic susceptibility in the
following. Throughout we take tmax ≈ 3τint,χ .

In our simulations, the autocorrelation functions are com-
puted in the following way. We consider distances t up to
tMAX > tmax. The simulations are organized in bins of the size
(nt + 1) tMAX, where tMAX = 2L2 throughout. Here we make
use of the fact that z ≈ 2. Then

A = 1

nt tMAX

nt tMAX∑
i=1

Ai, (20)

A2 = 1

nt tMAX

nt tMAX∑
i=1

A2
i , (21)

and

AiAi+t = 1

nt tMAX

nt tMAX∑
i=1

AiAi+t . (22)

For each bin, these averages are stored in a file for the
subsequent analysis. Statistical errors are computed by using
the jackknife method.

V. EQUILIBRIUM AUTOCORRELATION TIMES
AT THE CRITICAL TEMPERATURE

Since we discuss only the integrated autocorrelation time
of the magnetic susceptibility in the following, we mostly
drop for simplicity the subscript of τint,χ . In a preliminary
study we compared the autocorrelation times of the heat bath
algorithm using different orders of the local update and that of
our Metropolis algorithm with checkerboard decomposition.
To this end we simulated a number of linear lattice sizes up to
L = 28. We conclude that the difference in the behavior of the
autocorrelation times is compatible with an overall factor and
corrections that decay like L−2.

Next we performed simulations with an increased statistics
and larger lattice sizes using the heat bath algorithm and
our Metropolis algorithm, in both cases using a checkerboard
decomposition.

In order to check the effect of leading corrections to scaling
we have simulated the Ising model and the Blume-Capel
model at D = 1.15 by using the heat bath algorithm using
a checkerboard decomposition for linear lattice sizes up to
L = 24. The results are discussed in Appendix D.

A. Comparing various local update schemes at the critical point

As a comparison of the performance, and to check whether
different local updates result in the same exponent z, we did
run simulations for lattice sizes L = 8, 10, 12, 14, 16, 20, 24,
and 28 at D = 0.655 and β = 0.387 721 735. We performed
local heat bath (HB) updates, visiting the sites of the lattice

TABLE II. We give the results for the comparison of different
local update algorithms A1 and A2. r and a are the free parameters of
the Ansatz (23).

A1 A2 r a χ 2/d.o.f.

(HB, R) (HB,C) 1.989 90(43) −0.282(29) 1.06
(HB, T ) (HB,C) 0.999 85(20) −0.106(21) 0.32
(M,C) (HB,C) 1.331 36(19) −2.100(12) 0.98

in different order. In the first case, denoted by C, we divide
the lattice in checkerboard fashion. The two sublattices are
updated alternately. Running through the lattice in typewriter
fashion is denoted by T . Finally, the site that is updated is
selected randomly. This is denoted by R. A unit of time has
passed, when L0L1L2 sites have been updated. The Metropolis
(M) algorithm is only simulated with checkerboard decompo-
sition.

We fitted ratios of integrated autocorrelation times of the
magnetic susceptibility with the Ansatz

τA1 (L)

τA2 (L)
= r (1 + aL−ε ), (23)

where r and a are free parameters. Here, A1 and A2 denote
the two different algorithms that have been used. We fix the
correction exponent ε = 2. In Table II we summarize our
results. In these fits, all lattice sizes 8 � L � 28 are taken into
account.

We conclude that the different local update schemes are
indeed characterized by the same dynamic critical exponent
z. Corrections in the ratios of autocorrelation times vanish
quickly, consistent with a behavior ∝ L−2.

B. Heat bath and Metropolis algorithm
with checkerboard decomposition

We simulated a large number of linear lattice sizes up
to L = 56 and 72 using the Metropolis and the heat bath
algorithm, respectively. In total these simulations took the
equivalent of of about 2.8 and 5.6 years, respectively, of CPU
time on one core of a Intel(R) Xeon(R) CPU E3-1225 v3 CPU.

The numerical estimates for the magnetic susceptibility
and the autocorrelation time are given in the Supplemental
Material [51]. To give the reader an impression of the accu-
racy of the numbers, we quote χ = 2558.23(24) and τint,χ =
964.44(30) for L = 56 obtained from the simulations with
the Metropolis algorithm. The simulation for L = 56 con-
sists of 388 bins. Each bin contains 64 replicas that were
simulated in parallel performing (1001×2×562) full lattice
updates for each replica. Using the heat bath algorithm we
get χ = 4189.1(1.0) and τint,χ = 1206.1(1.1) for L = 72.
The simulation for L = 72 consists of 1359 bins contain-
ing 16 replicas that were simulated in parallel performing
(101×2×722) full lattice updates of each replica and bin.

As a benchmark we first analyze the behavior of the
magnetic susceptibility at the critical point. The result for
the critical exponent η can be compared with the accurate
estimate obtained by the conformal bootstrap method. It fol-
lows the analysis of the autocorrelation times obtained for the
Metropolis and heat bath algorithms.
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FIG. 1. Results for the critical exponent η obtained by fitting our
numerical estimates of the magnetic susceptibility χ at D = 0.655
and β = 0.387 721 735 by using the Ansätze (24) and (25). The
solid line indicates the result obtained from conformal bootstrap
η = 0.036 297 8(20), Ref. [1]. All data with L � Lmin are taken into
account in the fit.

1. Magnetic susceptibility

First we checked that the results obtained for D = 0.655
by using the Metropolis and the heat bath algorithm are
consistent. Below we analyze the merged results. Assuming
that the amplitude of leading corrections to scaling vanishes,
we fitted the data with the Ansätze

χ = aL2−η (24)

and

χ = aL2−η (1 + bL−ε ), (25)

where we have taken ε = 2. We checked that replacing
ε = 2 by ε = 2 − η = 1.963 702 2 or ε = ωNR = 2.022 665
changes the estimate of η by little. Of course, still we cannot
exclude that these two corrections have amplitudes with oppo-
site sign and cancel to a large extent in the range of lattice sizes
considered here. In the fits all data for lattice sizes L � Lmin

are taken into account.
In Fig. 1 we plot the results for η obtained from these

fits as a function of Lmin. In the case of the Ansatz (25) we
find χ2/d.o.f.= 2.31, 1.32, 1.12, 1.16, 1.02, 1.09, 0.75, 0.82,
0.89, and 0.92 for Lmin = 8, 10, 12, 14, 16, 18, 20, 22, 24, and
26, respectively. The large value of χ2/d.o.f. for Lmin = 8
and 10 indicates that corrections, for example ∝ L−ω2 with
ω2 = 3.8959(43), that are not taken into account in the
Ansatz (25) give, at least for L = 8 and 10, contributions to
χ that are larger than the statistical error of our estimate.
Starting from Lmin = 12 the Ansatz (25) is not ruled out by
the χ2/d.o.f., yet corrections that are not contained in the
Ansatz might still cause a systematic error of the estimate of
the exponent η. The estimates of the correction amplitude
are b = −0.4248(25), −0.410(4), −0.393(9), −0.402(15),
−0.368(24), −0.356(40), −0.244(64), −0.253(10),
−0.21(14), and −0.34(21) for Lmin = 8, 10, 12, 14, …,
and 26, respectively. With increasing Lmin the statistical error
of b rapidly increases. For Lmin = 26, the statistical error of b

is almost as large as its absolute value. Therefore fitting the
data for even larger Lmin with the Ansatz (25) is useless. In the
case of the Ansatz (24) we find χ2/d.o.f.= 1.82, 1.32, 1.01,
1.08, 0.96, 1.03, 0.90, 0.82, 0.96, 1.17 and 1.40 for Lmin = 20,
22, 24, 26, 28, 30, 32, 36, 40, 44, and 48, respectively.

While our estimate of η using the Ansatz (25) and Lmin =
12 is compatible with the conformal bootstrap result, the esti-
mate from the Ansatz (24) and Lmin = 24 is by nine times the
error bar too small compared with the conformal bootstrap.
This is a nice reminder of the fact that χ2/d.o.f. ≈1 does not
guarantee that the effects of corrections that are not taken into
account in the Ansatz are small. One might try to estimate
these systematic effects by comparing the results obtained
from different Ansätze. In the present case, the difference
between the estimate of η obtained from the Ansatz (25) for
Lmin = 12 and the Ansatz (24) for Lmin = 24 could serve this
purpose. Since the estimate of η obtained from the Ansatz (25)
for Lmin = 12 is fully consistent with the conformal bootstrap
we will give in the analysis of the autocorrelation time below
some preference to the Ansatz that contains a correction term.

Finally we check the possible effect of residual leading
corrections to scaling at D = 0.655. In Ref. [37], we conclude
that compared with the Ising model on the simple cubic
lattice, leading corrections to scaling are suppressed at least
by a factor 1/30. Based on that we have generated synthetic
data by multiplying our data for D = 0.655 by the factor
(1 ± [0.22/30]L−ω ), where the coefficient 0.22 stems from
the analysis for the Ising model discussed in Appendix D.
Using these synthetic data we have repeated the fits using the
Ansätze (24) and (25). In the case of the Ansatz (25) for Lmin =
16 we find that the estimate of η changes by ±0.000 23. For
the Ansatz (24) and Lmin = 36 we find that the estimate of η

changes by ±0.000 26.
Finally we consider the quantity χimp = U x

4 χ . The con-
struction of such quantities is for example discussed in
Ref. [52]. The exponent x is taken such that leading correc-
tions to scaling in U x

4 and χ cancel. Analyzing our data for
the Ising model and the Blume-Capel model at D = 1.15 we
find x = −1.4, where the error is small enough to ensure a
reduction of the amplitude of the leading correction to scaling
by one order of magnitude. Fitting χimp with the Ansatz (25)
we find η = 0.036 25(17) for Lmin = 16 and with the Ansatz
(24) we find η = 0.035 88(30) for Lmin = 36. Note that in
particular the result obtained with the Ansatz (25) is in very
good agreement with the conformal bootstrap.

2. Scaling behavior of the autocorrelation time

First we fitted the ratio τM,C/τHB,C using the Ansatz (23),
where now the exponent ε is a free parameter. We get
χ2/d.o.f. = 0.97 taking all lattice sizes into account. We
get ε = 2.097(23), 2.167(44), 2.135(80), and 2.04(13), for
Lmin = 8, 10, 12, and 14, respectively, where all linear lattice
sizes L � Lmin are taken into account.

We have fitted our results using the basic Ansätze

τ = aALz (26)

and

τ = aALz (1 + cAL−ε ), (27)
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FIG. 2. Results for the dynamic critical exponent z obtained
from fitting our numerical results for the integrated autocorrelation
time of the magnetic susceptibility τint,χ at D = 0.655 and β =
0.387 721 735 by using the Ansätze (26) and (27). All data with
L � Lmin are taken into account in the fit. In the caption, the
Metropolis and the heat bath algorithm are indicated by M and
HB, respectively. For better readability we have slightly shifted the
values of Lmin. The solid line gives the central value of our estimate
z = 2.0245(15), while the dashed lines indicate the error.

where aA, cA, and z are the free parameters. The subscript
A denotes the algorithm that is used. We have fixed the
correction exponent ε = 2. Replacing the 2 by 2 − η or ωNR

has only little effect on the results for z.
In a first series of fits we analyzed the data for the heat

bath and the Metropolis updates separately. The results for
the exponent z are shown in Fig. 2. In the case of the heat
bath algorithm and the Ansatz (27) we find that χ2/d.o.f. < 1
starting from Lmin = 8. In the case of the Metropolis algorithm
and the Ansatz (27) we get χ2/d.o.f. = 1.46, 1.35, and 1.20
for Lmin = 10, 12, and 14. For larger Lmin it fluctuates at this
level. In the case of the Metropolis algorithm and the Ansatz
(26) we have χ2/d.o.f. = 1.20 for Lmin = 20. This is related
to the fact that fits with the Ansatz (27) give small values
for the correction amplitude cM . In the case of the heat bath
algorithm and the Ansatz (26) we find χ2/d.o.f. = 2.98 for
Lmin = 20, dropping below 1 at Lmin = 28.

Next we check the possible effect of residual leading
corrections to scaling. To this end, we multiply our data for
τ of the heat bath algorithm with 1 ± [0.43/30]L−ω. For
Lmin = 16 and the Ansatz (27) the estimate of z changes by
±0.000 45. For Lmin = 36 and the Ansatz (26) it changes by
±0.000 49. To see what we would get for the Ising model,
we multiplied the data with 1 − 0.43L−ω. Fitting with the
Ansatz (26) we get χ2/d.o.f. <1 starting from Lmin = 30.
For example, for Lmin = 32 we get z = 2.0385(6). Note that
(2.0385 − 2.024)/0.0006 ≈ 24.

We did not simulate the Ising model or the Blume-Capel
model with our Metropolis algorithm, since it seems to be a
safe guess that the effect of leading corrections is much the
same as for the heat bath algorithm.

We also performed a joint fit of the Metropolis and the heat
bath data using the Ansatz (27), where aM , cM , aHB, cHB, and z

are the free parameters. For example we get z = 2.024 24(30)
for Lmin = 16. Note that χ2/d.o.f. < 1 already for Lmin = 12.

Finally we fitted the improved autocorrelation time τimp =
U x

4 τ , where x = −3.1 for the heat bath algorithm. Here we
find z = 2.024 62(46) for Lmin = 16.

Focusing on the fits with the Ansatz (27) and Lmin = 14,
16, and 18 we arrive at the estimate

z = 2.0245(15). (28)

The error bar covers all the fits that we performed with the
Ansatz (27) and Lmin = 14, 16, and 18. Also possible effects of
residual leading corrections to scaling are taken into account.
The error bar also covers the fits of the autocorrelation times
for the Metropolis algorithm using the Ansatz (26). In the case
of the heat bath algorithm and the Ansatz (26) at least the
central values are covered for Lmin � 40. Completely covering
also the error bars of these fits, in particular in the light of the
results for the exponent η in the section above, seems to be
too pessimistic. Since βc was determined in [37] using larger
lattices and higher statistics than here, it seems safe to ignore
the error induced by the uncertainty of the estimate of βc.

VI. SUDDEN QUENCH FROM T = 0 TO CRITICALITY

We have simulated the Blume-Capel model at D = 0.655
by using our Metropolis algorithm and the heat bath algorithm
both with checkerboard ordering. At time t = 0, we start with
a fully magnetized configuration corresponding to zero tem-
perature and perform a sudden quench to β = 0.387 721 735,
which is our estimate of the inverse of the critical tempera-
ture [37]. Updating all sites of the lattice once is taken as
unit of time. In the analysis we focus for simplicity on the
magnetization. In the thermodynamic limit, it behaves as

m(t ) = a(t − t0)−λm , (29)

where λm = β/νz. See Eq. (2) of Ref. [27] and references
therein. Note that β/ν = �σ = 0.518 148 9(10) in three di-
mensions [1]. Equation (29) is subject to leading corrections
of the equilibrium universality class. Since we simulate an
improved model, we ignore these corrections in our analysis.
We only take explicitly into account analytic corrections that
are expressed by t0.

A. Simulations using the Metropolis algorithm

Most of our simulations were performed using lattices of
the linear size L = 300. As a check of finite size effects, we
performed simulation with L = 50 and 100 in addition. In the
case of L = 50 and 100 we performed 2000×64 runs and for
L = 300 we performed 4000×64 runs. For L = 50 we did
run up to t = 1000 and for L = 100 and 300 up to t = 4000.
Statistical errors are computed by using the jackknife method.
Using the multispin coding technique, 64 runs are performed
in parallel, partially sharing the same pseudorandom number
stream, possibly causing a statistical correlation. Therefore
these runs are always put in the same jackknife bin, not to
corrupt the estimate of the statistical error.

In Fig. 3 we plot ratios of the magnetization as a function
of the Monte Carlo time t . We find that for L = 50 the
deviation from L = 300 reaches a 3σ level for t � 840. For
L = 100 this is the case for t � 3500. In both cases we
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FIG. 3. Simulations with the Metropolis algorithm. We plot the
ratios mL1 (t )/mL2 (t ) for L1 = 50 and 100 and L2 = 300 as a function
of t . For the readability of the figure we only give a fraction of the t
values.

regard the magnetization for L = 300 as approximation of the
thermodynamic limit. From scaling we expect that the point of
deviation from the thermodynamic limit by a certain fraction
behaves as t ∝ Lz. Therefore we conclude that for L = 300 up
to t = 4000 deviations from the thermodynamic limit can be
safely ignored at the level of our statistics. In the following
only data obtained for L = 300 are considered. In total, the
simulations for L = 300 took the equivalent of about 440 days
on a single core of a Intel(R) Xeon(R) CPU E3-1225 v3 CPU.

By construction the data for the magnetization at different
values of t are correlated. We tried to avoid fitting a large data
set with correlations and keep the analysis simple. Our starting
point is an effective exponent given by

zm,eff,t0 (t ) = −�σ

ln [(2t − t0)/(t − t0)]

ln [m(2t )/m(t )]
, (30)

where t0 remains a free parameter.
In a first step of the analysis we fix t0 by requiring that

zm,eff,t0 (t ) has a minimal variance in the interval t1 � t < t2:
The average of zm,eff,t0 in the interval is denoted by

z̄m,eff,t0 (t1, t2) = 1

t2 − t1

t2−1∑
t=t1

zm,eff,t0 (t ). (31)

Then we minimize

var(z, t0, t1, t2) =
t2−1∑
t=t1

[zm,eff,t0 (t ) − z̄m,eff,t0 (t1, t2)]2 (32)

with respect to t0. The results of this analysis for t2 = 2t1 and
various values of t1 are given in Table III. With increasing t1,
the estimate of t0 is increasing, while that of z is decreasing.
The corrections are compatible with t−1

1 and t−2
1 , respec-

tively. Fitting the results for t1 � 60, not taking into account
the statistical correlations, we arrive at z = 2.0244(4) and
t0 = −2.13(10). As our preliminary estimate of this section
we take

t0 = −2.1(2), z = 2.0245(10), (33)

TABLE III. Simulations with the Metropolis algorithm for
L = 300. We give the results of minimizing the variance of zm,eff,t0

within the intervals t1 � t < 2t1, Eq. (32), with respect to t0.

t1 t0 z

20 −1.380(5) 2.040 89(20)
30 −1.571(9) 2.033 15(24)
40 −1.679(13) 2.030 06(28)
60 −1.838(25) 2.026 77(36)
80 −1.944(38) 2.025 24(42)
120 −1.95(8) 2.025 23(54)
160 −2.01(12) 2.024 81(65)
240 −2.01(24) 2.024 70(87)

which is compatible with both our extrapolation in t1 and the
result obtained for t1 = 160.

As a check, in Fig. 4, we plot zm,eff,t0 (t ) for t0 = 3.1 for the
full range of t that we have simulated.

B. Simulations using the heat bath algorithm algorithm

In this section we discuss simulations similar to those of
the previous one, replacing the Metropolis by the heat bath
algorithm. Details of the simulation program are discussed
in Appendix A. Based on the results obtained above, we
simulated lattices of the linear size L = 300. We run the
simulations up to t = 2000. We performed 10 000 runs with
32 replicas each. In total, these simulations took the equivalent
of about 370 days on a single core of a Intel(R) Xeon(R) CPU
E3-1225 v3 CPU.

First we compared the relaxation times of the heat
bath and the Metropolis algorithm. We computed the ratio
tM (m)/tHB(m), where tM (m) and tHB(m) are the times needed
by the Metropolis and the heat bath algorithm to reach a cer-
tain value m of the magnetization. Using a linear extrapolation
in t we arrive at the estimate tM/tB = 1.3304(8) for the limit
tB, tM → ∞. This ratio is in good agreement with the ratio of
autocorrelation times, reported in Table II above.

FIG. 4. Simulations with the Metropolis algorithm. The effective
exponent zeff as defined by Eq. (30) for L = 300 and t0 = −2.1.
The dashed line indicates the preliminary result z = 2.0245 of this
section.
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TABLE IV. Same as Table III but for the heat bath instead of the
Metropolis algorithm.

t1 t0 z

15 0.0148(25) 2.023 79(14)
20 0.0219(49) 2.024 21(18)
30 0.031(8) 2.024 59(24)
40 0.010(13) 2.023 95(29)
60 −0.003(27) 2.023 64(40)
80 0.026(44) 2.024 09(49)
120 0.032(89) 2.024 20(66)
160 0.09(15) 2.024 67(82)

In Table IV we report our result for z and t0 obtained
from the minimization procedure discussed above for the
Metropolis algorithm. Compared with the estimates reported
in Table III for the Metropolis algorithm, the estimates for z
and t0 show very little dependence on the range in t . Therefore
we abstain from extrapolating the results. Based on the result
for t1 = 40 we take z = 2.0240(8) and t0 = 0.0(1) as our
preliminary result. The error bars are taken such that they
include all estimates with their error bars up to t1 = 120. As a
check, in Fig. 5 we give zeff, Eq. (30), for t0 = 0.

VII. SUMMARY AND CONCLUSIONS

We have studied a purely dissipative relaxational dynamics
for the improved Blume-Capel model on the simple cubic
lattice. This model shares the universality class of the three-
dimensional Ising model. Improved means that the parameter
D of the model is chosen such that the amplitude of leading
corrections to scaling is strongly suppressed. In particular,
since we have to face critical slowing down when studying a
relaxational process, it is important to use an improved model,
since here already from relatively small lattices reliable results
can be obtained.

The numerical results for the dynamic critical exponent z
given in the literature vary considerably. In particular there is

FIG. 5. Simulations with the heat bath algorithm. The effective
exponent zeff as defined by Eq. (30) for L = 300 and t0 = 0. The
dashed line indicates the preliminary result z = 2.024 of this section.

a clear discrepancy between most of the results obtained by
the simulation of the Ising model and field theoretic results.
Only a previous simulation of the Blume-Capel model gives a
result that is consistent with field theory.

We have computed the dynamic critical exponent by using
two different approaches. As our final estimate we quote
z = 2.0245(15) obtained from the finite size scaling analysis
of equilibrium autocorrelation times at the critical point. The
results that we obtain from the sudden quench of a fully
magnetized configuration to criticality are fully consistent
with this estimate.

Note that our estimate of the dynamic critical exponent
is in nice agreement with recent results obtained with the
functional renormalization group method [13,14]. The same
holds for the analysis of the four-loop ε expansion [15]
presented here in Appendix C.
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APPENDIX A: PARALLEL PROGRAM
USING SSE2 INTRINSICS AND SHARED

USE OF RANDOM NUMBERS

In a second stage of the project we made an effort to speed
up our simulation program for the heat bath algorithm. To
this end we have chosen an approach that is less involved
than the multispin coding technique that builds on bitwise
operations. Here we exploited the SSE2 instruction set of x86
CPUs. These were accessed by using SSE2 intrinsics. SSE2
instructions act on several variables that are packed into 128
bit units in parallel. In our case we store a single spin as a 8
bit char variable, of which 16 are packed into a 128 bit unit.
To this end, we run 16 replicas of the system in parallel. For
each site x we pack the 16 spins s( j)

x , where the upper index
labels the replica, into a −−m128i variable. Computing the
sum of the neighbors for the update and the measurement of
the magnetization are done in parallel for the 16 replicas. The
actual heat bath update is still done one by one.

Since the generation of a pseudorandom number is rela-
tively expensive, it is a natural question whether we can use
the same stream of random numbers for several replicas. One
simple idea is to take a stream r (0)

i of random numbers that are
uniformly distributed in [0,1) and then use the family

r ( j)
i = frac

(
r (0)

i + j
/

N
)
, (A1)

where j = 0, 1, 2, . . . , N − 1 for the simulation of N replicas
and frac is the fractional part of a real number. This way all
replicas are simulated by using a well behaved pseudorandom
number. However a statistical correlation among the replicas
arises. We computed statistical errors by using the jackknife
method. Not to corrupt the estimate of the statistical error,
correlated replicas are always put in the same bin. For the
simplicity of the program, we did not measure the correlation
of the runs that share the family of random numbers. Instead,
for a few lattice sizes we performed runs where each replica
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has its own pseudorandom number. Then we compared the
statistical errors obtained for equal statistics. It turns out that
in the case of the simulations in equilibrium at βc we see
virtually no effect on the statistical error up to about N = 4.
For larger values of N we see a gradual increase of the relative
statistical error with increasing N . In our simulations reported
in Sec. V B we use N = 4 throughout.

In the case of the sudden quench from zero temperature
to the critical one we also experimented with Eq. (A1). For
small N we even find a small reduction of the statistical error
compared with independent random numbers.

However it turns out that an even larger variance reduction
can be obtained by sharing the random number in a different
way. Grassberger [53] pointed out that the heat bath algorithm
applied to the Blume-Capel model fulfills the property of
“monotonicity” [54]; see also the Introduction of Ref. [28].

Two replicas A and B of the system are simulated. At time
t = 0

s(A)
x � s(B)

x (A2)

holds for all sites x, where the upper index denotes the replica.
These two replicas are simulated by running through the
sites in the same order, using exactly the same stream of
random numbers for both systems. Then the condition (A2)
is preserved by the update. This property is actually easy to
prove. Let us start with the precise definition of the heat bath
update: At the site x the new value of the spin sx is chosen
with the probabilities

p(−1) = exp(−D − βSx )/z, p(0) = 1/z,

p(0) = exp(−D + βSx )/z (A3)

with z = exp(−D − βSx ) + 1 + exp(−D + βSx ) and Sx =∑
x.nn.y sy is the sum of the nearest neighbors (nn). This is im-

plemented in the following way: First a uniformly distributed
random number r ∈ [0, 1) is drawn. Then s′

x = −1 is taken if
r < p(−1), s′

x = 0, if p(−1) � r < p(−1) + p(0) and s′
x =

1, if p(−1) + p(0) � r. Since p(−1) is monotonically de-
creasing with increasing Sx, it follows for any given r that if
S(A)

x � S(B)
x then s′(A)

x � s′(B)
x . Hence starting with Eq. (A2) this

property is preserved throughout the simulation. This property
allows for a variance reduction in the measurement of time
dependent magnetization densities and variances thereof. For
details see Ref. [28].

In our case, we run two replicas initialized with positive
and negative magnetization, using the same stream of random
numbers. The estimator of the magnetization is

mI (t ) = m+(t ) − m−(t )

2
, (A4)

where the subscript ± indicates the initialization of the sys-
tem. By construction mI (t ) � 0 for all t . Hence at least for
large t , when the system is close to equilibrium, there should
be a reduction of the variance. The numerical experiment
shows that this is also the case for times t relevant in our
study. We compare with two systems running with indepen-
dent random number streams. We find that initially the gain
increases rapidly from about 1.3 for the first measurement to
about 2.2 at t ≈ 30. Then it slowly increases up to about 2.5
at t = 2000.

We also tried to combine this idea with Eq. (A1). Un-
fortunately we see a counteracting effect. Taking also into
account the CPU time needed to generate a random number,
we have chosen N = 2 for our production runs. In our SSE2
program we have simulated in parallel 16 replica with all spin
up and 16 replica with all spin down initialization using eight
independent streams of pseudorandom numbers.

The general ideas on the reuse of random numbers and
variance reduction are widely used. One can easily convince
oneself by typing the keywords “common random numbers”
or “antithetic variates” in a search engine or have a look at
a text book on Monte Carlo methods such as Ref. [55] for
example.

APPENDIX B: TWO-DIMENSIONAL ISING MODEL

In the analysis of the four-loop ε-expansion result [15]
we shall use the numerical estimate of z for the universality
class of the two-dimensional Ising model as boundary con-
dition. The most precise estimates given in the literature are
z = 2.1665(12) [18] and z = 2.1667(5) [19]. These estimates
were obtained from the analysis of very accurate estimates of
τexp obtained for linear lattices sizes L � 15. The accuracy of
the estimates of z relies on the correctness of the Ansatz for
corrections to scaling. The leading correction is proportional
to L−2. In Refs. [18] and [19] also subleading corrections had
to be taken into account.

Here we performed simulations of the two-dimensional
Ising model on the square lattice exactly at the critical temper-
ature. We determine the integrated autocorrelation time of the
magnetic susceptibility in exactly the same way as in Sec. V.
We performed simulations for 27 different linear lattice sizes
from L = 8 up to 120.

We fitted our data using the Ansätze

τ = cLz, (B1)

τ = aLz (1 + bL−2), (B2)

τ = aLz (1 + bL−2 + cL−4). (B3)

For example using the Ansatz (B3) we get χ2/d.o.f. =1.13,
a = 0.064 17(4), b = 6.42(5), c = −17.4(2.9), and z =
2.1663(2), when including all lattice sizes L � 10 in the
analysis. Using the Ansatz (B2) we get χ2/d.o.f. = 1.00,
a = 0.063 97(9), b = 6.89(20), and z = 2.1670(4) taking into
account all lattice sizes L � 16. Using the Ansatz without
corrections we get χ2/d.o.f. = 0.82, a = 0.0644(2), and
z = 2.1657(7) using all data with L � 56. Assessing all fits
that we performed, we arrive at the estimate z = 2.167(2),
confirming the results of Refs. [18,19].

APPENDIX C: ANALYZING THE FIELD
THEORETIC RESULTS

Here we make an attempt to extract a number for z for three
dimensions by using the four-loop ε-expansion result [15]. For
the Ising universality class the authors give

z = 2 + 0.013 446 156 1ε2 + 0.011 036 273(10)ε3

− 0.005 579 1(5)ε4 + O(ε5). (C1)
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Reexpressing this result by using Eq. (3) we get

c = 0.726 092 43 (1 − 0.188 484ε + 0.225 06ε2 + · · · ).
(C2)

The [1/1] Padé approximation is

c ≈ 0.726 092 43
1 + 1.00 557ε

1 + 1.194 05ε
. (C3)

Inserting ε = 1 and 2, using η = 0.036 297 8(20) [1] and η =
1/4 we get z = 2.0241 and 2.1613, respectively. Enforcing
z = 2.167 in two dimensions, we arrive at

c ≈ 0.726 092 43
1 + 0.827 27ε + 0.033 61ε2

1 + 1.015 75ε
(C4)

resulting in z = 2.0243 for three dimensions.

Bausch et al. [20] studied the dynamics of an interface in
1 + ε′ dimensions. They arrive at z = 2 + ε′ − 1

2ε′2 + · · · for
the dynamic critical exponent. They give an interpolation of
their result and the two-loop ε expansion, Eq. (9) of [20].
Inserting d = 2 and 3, one gets z = 2.126 and 2.019, respec-
tively.

Extending the approach of [20] by using the result of [15]
we arrive at

z − 2 ≈ (0.034 893 2 − 0.007 660 7d ) (d − 1) (4 − d )2

1 − 1.532 616d + 0.910 303d2 − 0.132 595d3
.

(C5)

Inserting d = 2 and 3, one gets z = 2.1519 and 2.0235, re-
spectively. Enforcing z = 2.167 in two dimensions, we arrive
at

z − 2 ≈ (0.041 952 1 − 0.013 138 7d + 0.000 831 83d2) (d − 1) (4 − d )2

1 − 1.443 329d + 0.834 824d2 − 0.124 687d3
(C6)

giving z = 2.0245 in three dimensions.
The four-loop result for the expansion in three dimensions

fixed is [21]

z − 2 = 0.008 399g2 − 0.000 045g3 − 0.020 423g4. (C7)

Following the idea of Ref. [16] we might analyze

z − 2

η
= 0.765 359(1 − 0.088 666g + 2.275 305g2), (C8)

where the series for η is taken from Ref. [56], Eq. (2.4). We
arrive at the [1/1] Padé approximation

z − 2

η
≈ 0.765 359

1 + 25.5729g

1 + 25.6615g
. (C9)

Inserting the fixed point value g∗ = 1.4299, Eq. (22) of
Ref. [21], and η = 0.036 297 8(20), we get z = 2.0277, which
is considerably larger than the value obtained by the Padé
approximation for z − 2 itself.

We find that the estimates obtained by different resumma-
tion schemes scatter less for the four-loop ε expansion than
for the four-loop expansion in three dimensions fixed. As our
final estimate we take

z = 2.0243 (C10)

from Eq. (C4). Assigning an error bar is a difficult task.
Comparing the different estimates Eqs. (C3)–(C6), it should
be at most a one in the third decimal place.

APPENDIX D: LEADING CORRECTIONS TO SCALING

In order to study the effect of leading corrections to scaling
on the autocorrelation times, we simulated the Ising model
and the Blume-Capel model at D = 1.15 at the estimates
of the inverse critical temperature βc = 0.221 654 626(5),
Ref. [57], and 0.475 611 0(2), Ref. [37], respectively. We sim-
ulated the linear lattice sizes L = 8, 10, 12, . . . , 24 by using
the heat bath algorithm with checkerboard decomposition. In
order to demonstrate the size of corrections to scaling, we plot

in Fig. 6 the Binder cumulant U4 = 〈m4〉
〈m2〉2 for the Ising model

and the Blume-Capel model at D = 0.655 and 1.15. At the
critical point it behaves as

U4(L, D) = U ∗
4 + a(D)L−ω + b a2(D)L−2ω

+ · · · + c(D)L−ω′ + · · · , (D1)

where the term c(D)L−ω′
represents subleading correc-

tions. Almost degenerate subleading correction exponents are
2 − η = 1.963 702 2(20) due to the analytic background in
the magnetic susceptibility and ωNR = 2.022 665(28) [1]. Es-
timates of the fixed point value are U ∗

4 = 1.6036(1), Ref. [37]
and 1.603 56(15), Ref. [57].

Fitting the data for U4 at D = 0.655 confirms that the
amplitude of leading corrections vanishes at the level of our

FIG. 6. We plot the Binder cumulant U4 = 〈m4〉
〈m2〉2 at the critical

temperature for the Ising model and the Blume-Capel model at
D = 0.655 and 1.15. Note that the error bars are clearly smaller than
the symbol size. The dashed line gives the estimate U ∗

4 = 1.6036(1)
of the fixed point value [37].
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numerical precision. Next we analyzed the ratios

rU4 (D, L) = U4(D, L)

U4(D = 0.655, L)
(D2)

using the Ansätze

rU4 (D, L) = 1 + aU (D)L−ω (D3)

and

rU4 (D, L) = 1 + aU (D)L−ω + bU (D)L−2, (D4)

where we have fixed ω = 0.829 68.
For the Ising model we find using the Ansatz (D4), includ-

ing all data aU (−∞) = −0.1530(5), bU (−∞) = −0.178(8),
and χ2/d.o.f. = 0.68. Instead using the Ansatz (D3) we get
aU (−∞) = −0.1577(5) and χ2/d.o.f. = 0.8 when including
all lattice sizes with L � 20. We conclude that aU (−∞) =
−0.155(4).

For D = 1.15, using the Ansatz (D4), including all
data with L � 10 we get aU (1.15) = 0.1839(5), bU (1.15) =
−0.328(9), and χ2/d.o.f. = 1.22. Instead, using the Ansatz
(D3) we get aU (1.15) = 0.1760(8) and χ2/d.o.f. = 2.83
when including all lattice sizes with L � 20. We conclude that
aU (1.15) = 0.180(5).

Next we analyzed ratios of susceptibilities,

rχ (D, L) = χ (D, L)

χ (D = 0.655, L)
, (D5)

where the powerlike divergence χ ∝ L2−η cancels. We fitted
these ratios with

rχ (D, L) = cχ (D)[1 + aχ (D)L−ω] (D6)

and as check

rχ (D, L) = cχ (D) [1 + aχ (D)L−ω + bχ (D)L−2], (D7)

where we have fixed ω = 0.829 68. In the case of the Ising
model we get χ2/d.o.f. = 0.84 and aχ (−∞) = −0.2211(7)
including all data with L � 10 using the Ansatz (D6). Instead,
using the Ansatz (D7) we get χ2/d.o.f. = 1.00, aχ (−∞) =
−0.220(6), and bχ (−∞) = −0.01(5), taking into account
L � 10. We take aχ (−∞) = −0.220(6) as our final result.

In the case of D = 1.15 we get by using the Ansatz (D6)
taking into account all data for L � 12 the result χ2/d.o.f. =
1.13 and aχ (1.15) = 0.2483(15). Instead, using the Ansatz
(D7) we get χ2/d.o.f. = 0.70, aχ (1.15) = 0.262(7), and
bχ (1.15) = −0.13(6), taking into account L � 10. As our
final estimate we take aχ (1.15) = 0.255(14) that covers both
fits, including their error bars.

Finally we computed ratios of autocorrelation times

rτ (D, L) = τ (D, L)

τ (D = 0.655, L)
, (D8)

where the power divergence ∝ Lz should cancel and, hope-
fully also corrections due to the breaking of the Galilean
symmetries by the lattice to a large extent. We fitted these
ratios by using the Ansätze

rτ (D, L) = cτ (D) [1 + aτ (D)L−ω] (D9)

and as check

rτ (D, L) = cτ (D) [1 + aτ (D)L−ω + bτ (D)L−2], (D10)

where we have fixed ω = 0.829 68.
In the case of the Ising model we get from (D9), including

all data with L � 10 the estimate aτ (−∞) = −0.452(2) and
χ2/d.o.f. = 1.00. Fitting with the Ansatz (D10), bτ (D) is
compatible with zero and aτ (−∞) = −0.43(2). We conclude
that aτ (−∞) = −0.44(3). For D = 1.15 we get, fitting all
data with L � 14 by using the Ansatz (D9), the estimate
aτ (1.15) = 0.602(10) and χ2/d.o.f. = 1.14. Fitting with the
Ansatz (D10), using all data we get aτ (1.15) = 0.631(13),
bτ (1.15) = −0.49(8), and χ2/d.o.f. = 1.86. We conclude
aτ (1.15) = 0.62(3). These fits support the hypothesis that z
does not depend on D, and the differences can be explained
by corrections.

According to the renormalization group, leading correc-
tions to scaling are caused by a unique scaling field. There-
fore, the ratios of correction amplitudes for different quanti-
ties assume universal values. In particular, for the improved
model the amplitude of leading corrections vanishes for all
quantities.

For the susceptibility and the Binder cumulant we get
aχ (−∞)/aU (−∞) = [−0.220(6)]/[−0.155(4)] = 1.42(7)
and aχ (1.15)/aU (1.15) = [0.255(14)]/[0.180(5)] = 1.42(9).
We conclude that aχ/aU = 1.42(9).

For the autocorrelation time and the Binder cumulant we
get

aτ (−∞)

aU (−∞)
= −0.44(3)

−0.155(4)
= 2.84(30) (D11)

and

aτ (1.15)

aU (1.15)
= 0.61(3)

0.180(5)
= 3.39(25), (D12)

confirming the universality of the ratio of correction ampli-
tudes. As our final result we take aτ /aU = 3.1(6).

Note that the amplitude of the leading correction is rel-
atively large for the autocorrelation time compared with the
Binder cumulant and the magnetic susceptibility. This might
explain the wide spread of the estimates of z obtained from
simulations of the three-dimensional Ising model, when the
leading correction to scaling is not explicitly taken into ac-
count in the analysis.
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