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Aging effects on thermal conductivity of glass-forming liquids

Pranab Jyoti Bhuyan,1,* Rituparno Mandal,1,† Pinaki Chaudhuri,2,‡ Abhishek Dhar,3,§ and Chandan Dasgupta1,3,‖
1Department of Physics, Indian Institute of Science, Bangalore 560012, India

2The Institute of Mathematical Sciences, Chennai 600113, India
3International Centre for Theoretical Sciences, TIFR, Bangalore 560089, India

(Received 4 April 2017; revised manuscript received 30 January 2018; accepted 23 January 2020;
published 21 February 2020)

Thermal conductivity of a model glass-forming system in the liquid and glass states is studied using extensive
numerical simulations. We show that near the glass transition temperature, where the structural relaxation time
becomes very long, the measured thermal conductivity decreases with increasing age. Second, the thermal
conductivity of the disordered solid obtained at low temperatures is found to depend on the cooling rate
with which it was prepared. For the cooling rates accessible in simulations, lower cooling rates lead to lower
thermal conductivity. Our analysis links this decrease of the thermal conductivity with increased exploration of
lower-energy inherent structures of the underlying potential energy landscape. Further, we show that the lowering
of conductivity for lower-energy inherent structures is related to the high-frequency harmonic modes associated
with the inherent structure being less extended. Possible effects of considering relatively small systems and fast
cooling rates in the simulations are discussed.
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I. INTRODUCTION

Thermal conductivity is an important material property,
with wide-ranging applications, and understanding the mech-
anism of heat transport in different materials is crucial from
both theoretical and applied perspectives. It is well known
that crystalline materials transport heat more efficiently than
glassy and disordered materials, for which the thermal con-
ductivity (κ) can be orders of magnitude smaller [1,2].

A well-studied feature of glassy systems is the temperature
(T )-dependence of their thermal conductivity, which is very
distinct from that of crystals. One typically finds κ ∼ T 2 at
very low temperatures, followed by a pronounced plateau
and then an eventual gradual increase with temperature. The
low temperature features are expected to be of quantum-
mechanical origin, and a range of mechanisms have been
proposed to explain them [3–5]. One scenario relates the
plateau to the presence of excess modes, the so-called boson
peak, in the low-frequency regime of the vibrational spectrum
of glasses [6–8], which has thereafter been connected with the
presence of elastic heterogeneities in such materials [9,10].

More recently, a number of studies have looked at higher
temperatures where classical physics dominates. This in-
cludes regimes much below the glass transition temperature
where the system gets stuck in the basin of a low-energy in-
herent structure (IS) (local minimum of the potential energy),
as well as intermediate temperatures where the system evolves
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slowly while undergoing transitions between different basins.
In the former case, the system can be effectively described
by a disordered harmonic model obtained by expanding the
many-body potential about the minimum. Heat transport is
then related to the diffusivity associated with the normal
modes of the harmonic solid [11,12]. In the context of the
jamming transition, the change in the form of the diffusivity
in a soft-sphere packing was studied in [8,13,14], and a
crossover was observed near the boson-peak frequency as the
transition was approached. In Ref. [15], it was shown that
the introduction of polydispersity leads to an amorphization
transition, whereby the thermal conductivity of the system
decreases considerably.

It is well-known that the material properties of glasses
depend on their age and history of preparation, e.g., the
cooling rate by which they were quenched from a fluid phase
[16–18]. This dependence on the history can be seen, for
example, in the transient response of glasses to applied shear
[19–21]. Surprisingly, the question as to whether thermal
transport in glasses depends upon the age of the material,
or on the cooling rate used in its preparation, has not been
explored. There is no systematic study for this question and
this is one of the main issues that is addressed in the present
work. Using extensive equilibrium and nonequilibrium simu-
lations of a model structural glass former, we show that the
thermal conductivity does depend on the age of the glass,
and on the rate of cooling during preparation. Furthermore,
we provide evidence that the decrease of thermal conductivity
in glasses with growing age or slower cooling rate is linked
to the exploration of ISs with lower energy. Apart from direct
numerical simulations to monitor the thermal conductivity, we
also investigate the glassy system in the harmonic approxi-
mation where we study the properties of the Hessian matrix
related to small oscillations around a local minimum (IS).
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By calculating the participation ratio and diffusivity of the
normal modes associated with different ISs, we ask whether
the decrease in κ can be related to an increase in the degree of
localization of the vibrational modes. While some correlation
is found, our results on this are not conclusive.

The paper is organized as follows. In Sec. II we describe
the model system used in our simulation, and the nonequi-
librium and equilibrium simulation schemes. In Sec. III we
present the results of the simulations. We present the discus-
sion of the harmonic approximation in Sec. IV. A concluding
discussion is provided in Sec. V where we summarize the
main results and discuss possible artifacts arising from the use
of small systems and fast cooling rates in the simulations. Re-
sults of a harmonic calculation of the frequency and lifetime
of phonon modes in our finite-size samples are presented in
the Appendices.

II. MODEL AND METHODS

We consider the well-known model glass former—the
Kob-Andersen binary Lennard-Jones mixture [22]. This
model glass former consists of 80:20 proportion of A-type and
B-type particles, all having unit mass, and interacting via the
pair potential of the form

Vi j (r) = 4εi j

[(
σi j

r

)12

−
(

σi j

r

)6
]
, (1)

where r = ri j is the distance between the ith and the jth
particle and the indices i, j can be A or B. The values of
σi j and εi j are chosen to be: σAB = 0.8σAA, σBB = 0.88σAA,
εAB = 1.5εAA, εBB = 0.5εAA. The potential is cut off at rc

i j =
2.5σi j and shifted accordingly using a smoothing function.
The units of length and energy are set by σAA = 1 and εAA = 1.
Our study is done at a number density (ρ = N/(LxLyLz )) of
1.2, where N is the number of particles within the simu-
lation box of dimensions Lx × Ly × Lz. At this density, the
Vogel-Fulcher-Tamman (VFT) transition temperature is T0 ≈
0.3 in reduced Lennard-Jones units. We compute the ther-
mal conductivity at different temperatures above and below
this glass transition temperature. The supercooled liquid and
glassy states we have studied were obtained via a well-defined
cooling protocol [23]. The system is well-equilibrated at
a high temperature (T = 2.50) in its liquid state and then
cooled to a low temperature through a number of intermediate
temperature steps. The number of intermediate steps and the
amount of time spent in each step determine the cooling rate
[23] of preparation. The numerical integration of the equations
of motion are done using the velocity-Verlet algorithm.

A. Measuring thermal conductivity

Denoting the position and the velocity of the lth particle
by �rl = {rα

l } and �vl = {vα
l } respectively (where α = x, y, z),

the energy current density at point �r is given by [24]

J α (�r, t ) =
∑

l

δ(�r − �rl )

[
εlv

α
l + 1

2

∑
n �=l

(
rα

l − rα
n

)
jl,n

]
, (2)

where εl = v2
l /2 + (1/2)

∑
n �=l V (rln) is the energy of

the lth particle, and jl,n = 1
2

∑
ν (vν

l + vν
n ) f ν

ln, with f α
ln =

FIG. 1. (Top) Representative plot of local heat current density
(〈J̃ x

i 〉) and reduced temperature (Ti/Tm) profile along the system,
where Tm is the mean temperature of the sample in NEMD sim-
ulation; data is shown for a system of N = 10 000 particles in a
box with Ly = Lz = 9.41 and Lx = 10 × Lz at Tm = 0.5. (Bottom)
Schematic diagram of the NEMD setup; the color red represents the
hotter regions and blue represents the colder regions.

−∂V (rln)/∂rα
l . We evaluated the thermal conductivity by

several methods, which we now describe.

B. Nonequilibrium method (NEMD)

We consider a rectangular geometry, having the longer
length Lx and cross-sectional lengths Ly = Lz, with periodic
boundary conditions maintained in all directions as shown
in Fig. 1. We consider a system with mean temperature Tm,
impose a small temperature difference 
T in the x direction
across length L′

x < Lx, and measure the average steady-state
heat current density 〈J x〉 = 1

V

∫
V d�r〈J x(�r, t )〉 where V is the

volume of the region in the sample where the measurement is
made. The thermal conductivity is then given by

κ = 〈J x〉 × L′
x


T
. (3)

We first prepare the initial equilibrium states (at mean
temperatures Tm) via the cooling protocol discussed above.
A temperature gradient was then applied by keeping a heat
source at temperature 1.05Tm in a region of width Lx/10 in
the middle of the system, and two heat sinks each of width
Lx/20 at the two ends at 0.95Tm. The thermostating of the
hot and cold reservoirs was done by drawing the velocities of
the particles in each reservoir from a Maxwell-Boltzmann dis-
tribution at the appropriate temperatures, at intervals of time
0.1. After an initial transient period following the imposition
of the thermal gradient, the system reaches a nonequilibrium
steady state. Typically, these timescales are relatively fast.
Nevertheless, to definitely ensure steady-state sampling, we
wait δt ∼ 104 whereafter the typical spatial profiles of local
temperature and heat current density are obtained. The spa-
tial variation of the local temperature Ti and the local heat
current density 〈J̃ x

i 〉 was obtained by binning Lx into 40
segments, labeled i = 1, . . . 40, and doing the averages sep-
arately for each segment over δt ∼ 5 × 104, after the transient
time.

The bulk thermal conductivity (κ) of the system, at tem-
perature Tm, is calculated from Eq. (3), using the average heat
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FIG. 2. (Top) j̃
x

i
and (bottom) reduced temperature (Ti/Tm)

profile in the x direction for different system sizes (increasing size
indicated by arrows) at Tm = 0.5. (Here, Tm is the mean temperature
of the sample in nonequilibrium simulation). The different systems
have an equal length (Lx = 100a = 94.1) along the direction
of temperature gradient, and varying cross-sectional lengths
Ly(= Lz ) =: 3a(N = 900), 4a(N = 1 600), 5a(N = 2 500), 6a(N =
3 600), 7a(N = 4 900), 8a(N = 6 400), 9a(N = 8 100), and 10a
(N = 10 000).

current density 〈Jx〉 measured over the volume (v′ = L′
xLyLz)

of the region of the sample across which the temperature
gradient is imposed. We define the local quantity j̃ x

i in terms
of the local heat current density 〈J̃ x

i 〉 as

j̃ x
i = 〈

J̃ x
i

〉 × L′
x. (4)

We have done averages over 32–160 independent MD trajec-
tories for each state point, depending on temperature. While
calculating the local quantities for a given segment we con-
sider only the particles which are inside it, but the interaction
of them with all other particles are taken into account.

We have investigated the effects of finite size of the system
on κ in nonequilibrium simulations. In the following, we
use a = 0.941 × σAA = 0.941 and express the size of the
simulation boxes in units of a.
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FIG. 3. (Top) j̃
x

i
and (bottom) reduced temperature (Ti/Tm)

profile in the x direction for different system sizes (increasing size
indicated by arrows) at Tm = 0.5. (Here, Tm is the mean temperature
of the sample in nonequilibrium simulation). The different systems
have equal cross-sectional lengths (Ly = Lz = 10a = 9.41), and
varying lengths (Lx) along the direction of temperature gradient.
Lx =: 30a(N = 3 000), 40a(N = 4 000), 50a(N = 5 000), 60a
(N = 6 000), 70a(N = 7 000), 80a(N = 8 000), 90a(N = 9 000),
100a(N = 10 000), 120a(N = 12 000), and 150a(N = 15 000).

1. Varying cross sections

We use simulation boxes with a fixed length (Lx = 100a)
along the direction of temperature gradient and different cross
sections with Ly = Lz. The top panel of Fig. 2 shows j̃ x

i and
in the bottom panel the temperature profile (Ti/Tm) along Lx

is shown. We see that, for systems with Ly(= Lz ) ∼ 6a (N =
3 600), finite-size effects become negligible.

2. Varying lengths

We fix the cross-sectional lengths of the simulation box at
Ly = Lz = 10a and use systems of different length Lx along
the directions of temperature gradient. The top panel of Fig. 3
shows j̃ x

i and the bottom panel shows the temperature profile
in the system. For systems with Lx ∼ 80a (N = 8 000), the
system-size effects become negligible.

022125-3



PRANAB JYOTI BHUYAN et al. PHYSICAL REVIEW E 101, 022125 (2020)

FIG. 4. I (t ) for different system sizes (increasing size indicated
by arrow) at T = 0.5. The long time limit of I (t ) becomes indepen-
dent of system sizes for N � 900.

For all further analysis using this nonequilibrium method,
we choose the system specification of Ly = Lz = 9.41 and
Lx = 10 × Lz, which, thus, avoids any finite-size-related is-
sues.

C. Green-Kubo method (EMD)

Alternatively, κ can be calculated using the Green-Kubo
relation [24]:

κ = 1

3kBT 2
lim

τ→∞ lim
V →∞

ρ

N

∫ τ

0
dt〈 �Jtot(0) · �Jtot(t )〉, (5)

where �Jtot(t ) is the integral of the heat current density �J (�r, t )
over the whole system and the time correlation function is
evaluated at equilibrium.

For the Green-Kubo calculation, we considered a cubic
simulation box. An initial equilibrium state is prepared fol-
lowing the cooling protocol described earlier, and subse-
quently the NVE dynamics is switched on. The fluctuations
of the heat current are then measured over a time-window

of δt ∼ 104 as the system evolves. The estimates of κ were
obtained via averages over 96–384 independent trajectories.

Based on the conductivity formula for κ in Eq. (5), let us
define the following quantity:

I (t ) = 1

3kBT 2

ρ

N

∫ t

0
dt ′〈 �Jtot(0) · �Jtot(t

′)〉. (6)

In Fig. 4, we show the plots of I (t ) for different system sizes.
The values of conductivity κ are calculated by appropriate
averaging in the long time limit of I (t ). For a simulation box
with N � 900, finite-size effects are found to be negligible.
For most part of our analysis, we thus choose a system size of
N = 1 000.

III. SIMULATION RESULTS AND COMPARISON
OF DIFFERENT METHODS

In Fig. 5(a), we compare the values of κ measured via
the two schemes outlined above, for a given cooling rate.
As expected for a disordered system, the magnitude of the
thermal conductivity continuously decreases over the entire
temperature range, before nearly saturating at very low tem-
peratures. We observe very good agreement between the two
different measurements of κ (using NEMD and EMD) over
a very broad range of temperatures. Surprisingly, this is true
even in the glassy regime, where the two methods provide
the same result for states which have the same preparation
history, i.e., produced via the same cooling rate. In the rest of
the work we have used these two methods independently, in
accordance with the question to be addressed. By performing
simulations at various system sizes (keeping ρ constant),
we have verified that the results for κ become essentially
independent of system size for N ∼ 103 (EMD) and N ∼ 104

(NEMD). In the inset of Fig. 5(a) we show the system-size
dependence of κ .

A. Effect of cooling rate

It is known that the cooling rate influences the glassy
state obtained at low temperatures [18]. For example, the

FIG. 5. (a) Comparison of thermal conductivity (κ) values obtained from NEMD simulation and EMD Green-Kubo calculation across
a wide temperature range, using samples prepared with a cooling rate of 3.3 × 10−6. (Inset) N dependence of κ: NEMD with varying Lx

(blue, lower plot), varying Ly(= Lz ) (red, upper plot), and EMD with varying Lx (= Ly = Lz ) (green, middle plot). (For NEMD T ≡ Tm).
(b) Variation of κ with temperature T (≡ Tm ), from NEMD, using samples prepared via two different cooling rates as marked (arrow points to
decreasing cooling rate). (Inset) Mean energy of ISs (E IS) sampled at T for these cooling rates. Data is for N = 10 000 with Ly = Lz = 9.41
and Lx = 10 × Lz. (c) Heat current time auto-correlation function 〈 �Jtot(tw ) · �Jtot(tw + t )〉 with changing age, tw , using N = 1 000 and Lx =
Ly = Lz = 9.41, quenched from T = 2.50 to T = 0.30. (Inset) Variation of κ with tw .
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mean energy of the underlying ISs, E IS, corresponding to any
temperature, depends on the choice of the cooling rate [23],
with slower cooling leading to exploration of lower energy
ISs. Using data from our simulations, this is illustrated in
the inset of Fig. 5(b), where we see that below a certain
temperature, the variation of E IS with T branches out for two
contrasting cooling rates. In the same spirit, we check how
κ (from nonequilibrium measurements) varies with tempera-
tures along the same two cooling branches. This is shown in
Fig. 5(b), and we observe that the slower cooling corresponds
to lower values of κ . However, compared to the data shown
for E IS where the branching occurs at around T = 0.55, in
the case of κ , the branching occurs at around T = 0.40 [see
Fig. 5(b)], typically where the dynamics is known to fall out
of equilibrium [18].

B. Effect of aging

The dependence of thermal conductivity on the history
of preparation of the glassy state, as demonstrated above,
implies that κ would also vary with the age of the glass when
the system evolves after a thermal quench from high tem-
perature to low temperatures. To investigate this, we quench
the system from T = 2.50 to T = 0.30 (which is close to
the VFT transition temperature) and let the system evolve
in a constant temperature environment for a time tw. Once
the system has reached the age tw, the NVE dynamics is
switched on. Under such conditions, we measure the total heat
current and calculate the corresponding autocorrelation func-
tion 〈 �Jtot(tw ) · �Jtot(tw + t )〉. In Fig. 5(c), we show the current
auto-correlation function for increasing age tw. Note that the
correlators relax quickly in time, even though the structural
relaxations are extremely slow at this temperature [25]. The
variation of conductivity κ with changing age tw, calculated
from these correlation functions using the Green-Kubo for-
mula, is shown in the inset of Fig. 5(c): with increasing age,
the thermal conductivity decreases. Now, it is known that,
with increasing age, glassy systems visit deeper minima in the
potential energy landscape [26]. It is also well-known [27] that
low-temperature physical properties of glass-forming liquids
and glasses are closely related to those of the ISs visited by
the system during its time evolution. Therefore, the observed
dependence of κ on tw and our earlier observation regarding
the dependence of κ on cooling rates are expected to be related
to changes in the properties of the ISs visited by the system as
the aging time and the cooling rate are changed.

C. Dependence on EIS

We now explore this possible link between properties of
ISs and the values of κ . We consider a number of ISs with
mean energy E IS and standard deviation ∼10−5 and prepare
low temperature (T = 0.002) initial states for N = 8 000 con-
sistent with small harmonic fluctuations around the potential
minimum. Using these states, MD simulations within the
NVE ensemble are carried out. For the states that remain
confined to the basin of the initial IS during the course of
the simulation, the thermal conductivity is calculated using
the Green-Kubo method. In Fig. 6, we show the dependence
of κ on the energy of the IS; we find tha κ increases linearly

FIG. 6. Conductivity (κ) as a function of mean IS energy (E IS)
from low temperature Green-Kubo simulation starting with IS con-
figurations, for N = 8 000. The dashed line is a linear fit to the
simulation data. (Inset) Dependence of κ on system size, from the
Green-Kubo calculations.

with E IS. In the inset of Fig. 6, we show the dependence of
κ on the system size N . For large N , the values of κ exhibit
large fluctuations about a value that does not show a strong
dependence on N . We do not have a clear explanation of
this behavior. It is possible that these fluctuations reflect the
contribution of new phonon modes that appear as the system
size is increased. As shown in Ref. [28], long-wavelength
phonon modes appear as distinct spikes in the vibrational
density of states. The appearance of a new spike as the system
size is increased may cause a sharp change in the thermal
conductivity. Also, our error bars involve several sources,
such as sample-to-sample fluctuations and the inaccuracies
in evaluation of the Green-Kubo integral, and it is possible
that we have somewhat under-estimated the actual errors.
In particular, the numerical difficulty in equilibrating large
systems at low temperatures prevents us from obtaining good
statistical sampling of inherent structures with low energy,
which makes it difficult to obtain a reliable estimate of error
bars from sample-to-sample fluctuations. However the trend
we observe for the dependence of κ on the IS energy is quite
robust. This result thus relates the observed decrease of the
thermal conductivity with slower cooling, or with increasing
age of the system after the thermal quench, to the exploration
of ISs with lower energy.

IV. THE HARMONIC APPROXIMATION

A. Properties of harmonic excitations

At very low temperatures, the system mostly remains close
to an IS of its potential energy landscape and one can approx-
imate its potential energy to that of a harmonic solid. It is of
interest to relate the thermal conductivity to the properties of
the harmonic excitations, especially the effect of Anderson
localization [29–31]. An expansion of the potential energy
to quadratic order in the displacements from the IS gives
the Hessian matrix which completely describes the properties
of the harmonic solid. We ask how the properties of the
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eigenvalues and eigenfunctions of the Hessian matrix affect
thermal transport and the relation between κ and E IS.

Following the formulation in Ref. [12], the thermal con-
ductivity κ (from the Green-Kubo formula) for a harmonic
system at temperature T can be expressed in terms of the heat
diffusivity d (ω) [13] as

κ = 1

V

∑
m

C(ωm)d (ωm) = 1

V

∫ ∞

0
dωg(ω)C(ω)d (ω), (7)

where V is the volume of the system, g(ω) = ∑
n δ(ω − ωn)

is the density of states, C(ω) = kB(β h̄ω)2eβ h̄ω/(eβ h̄ω − 1)2

is the phonon heat capacity, with β ≡ 1/kBT and kB is the
Boltzmann constant. For the classical case, C(ω) = kB. The
heat diffusivity d (ω), appearing in the above formula, of a
normal mode with frequency ωm and corresponding normal-
ized eigenfunction �ei(m) is given by [8,12,13]

d (ωm, η, N ) ≡ π

12ω2
m

∑
n �=m

(ωm + ωn)2

4ωmωn
| ��mn|2 f (ωn − ωm, η),

(8)

where ��mn is the heat flux matrix

��mn =
∑

i, j,α,β

(�ri − �r j )e
α
i (m)Hi j

αβeβ
j (n), (9)

with Hi j
αβ is the Hessian matrix elements and �ri is the posi-

tion of the ith particle; α, β = {x, y, z} are the components.
The function f (ωm − ωn; η) = η/{π [(ωm − ωn)2 + η2]} is a
finite-width representation of the Dirac-δ function that is
necessary when dealing with finite systems. The width of
the Lorentzian is chosen to be η = γ δω with γ > 1, where
δω is the average spacing between successive modes. Thus,
within the harmonic approximation, the density of states g(ω)
and the thermal diffusivity d (ω) are known completely in
terms of the eigenvalues and eigenfunctions of the Hessian
matrix and using Eq. (7), one can compute the thermal
conductivity.

Participation ratio

We expect the diffusivity of modes to depend on their
degree of delocalization, which can be quantified by the
participation ratio PR(ω). The participation ratio PR(ω) quan-
tifies the localization properties of a normal mode. It is defined
as [29],

PR(ωn) =
{

N
N∑

i=1

[�ei(n) · �ei(n)]2

}−1

. (10)

B. Numerical results

We now present the numerical results on the diffusivity,
density of states, and participation ratios in our system. As
discussed after Eq. (9), for studies of finite systems, we need
to regularize the δ functions appearing in the formulas for
d (ω) and g(ω). With our choice of regularizing function one
is required to choose a value for the parameter γ and, as
discussed at the end of this section, some of our results are

FIG. 7. (a) Reduced density of states g(ω)/ω2, (b) heat diffusiv-
ity d (ω), (c) participation ratio PR(ω) for different system sizes with
the arrow indicating direction of increasing size. Inset of (b) shows
the thermal conductivity κ for three system sizes.

quite sensitive to the choice of the value of γ . For now, we
present results for the choice γ = 2.0.

1. Finite-size effects in the harmonic approximation

We take three ISs of average energy levels E IS (=
−7.00075 ± 0.00005), using a number of different system
sizes, and calculate thermal conductivity within the harmonic
approximation using Eq. (7). In Fig. 7, we show the corre-
sponding plot for (a) density of states, (b) heat diffusivity, and
(c) the participation ratio. In the inset of Fig. 7(b), we show
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FIG. 8. (a) Heat diffusivity d (ω) for three different groups of ISs
with different E IS and (b) density of states g(ω)/ω2 showing the
increase of extra modes near the boson peak with increase in E IS.
Arrows point to data for lower E IS in both plots.

that the finite-size effect on κ is found to be insignificant for
these system sizes.

2. Comparison for three different IS energy levels

In Fig. 8, we consider ISs with three different E IS having
N = 1 000 and compare the results for d (ω) and g(ω) for the
three cases. As seen in Fig. 8(a), d (ω) of the ISs with lower
E IS are smaller over most of the allowed frequency range
except for a small region near the boson peak, as compared
to the ISs with higher E IS. We recall that for amorphous
solids, excess density of states compared to the Debye law,
g(ω) ∼ ω2, appears in the low-frequency region, and this is
known as the boson peak [18]. We find that the boson peak
is more pronounced for ISs with higher E IS than the ISs with
lower E IS, as shown in Fig. 8(b).

However, the thermal conductivity is a combination of
d (ω), g(ω), and C(ω),

κ (ω) = 1

V
g(ω)C(ω)d (ω), (11)

with C(ω) = kB, and V is the volume of the system. We have
calculated κ (ω) for the three groups of ISs with mean energy
E IS. Fig. 9(a) shows the contribution of the different parts
of the vibrational spectrum to the total κ . By performing
the sum of κ (ω) over different frequency ranges, we find
that the largest contribution to κ comes from the vibrational
modes in the middle of the spectrum, where the modes are
the most delocalized. However, the maximum contribution
to the difference in the value of κ between ISs of different
energy is from the modes in the higher end of the vibrational
spectrum, as shown in Fig. 9(b), where we plot the numeri-
cally computed cumulative integral, I (ω) = ∫ ω

0 κ (ω′)dω′ for
the different ISs.

Now, from the participation ratio spectrum PR(ω), shown
in Fig. 10, we see that both the low- and high-frequency
vibrational modes are more extended for the ISs with higher
E IS. We note here that this trend in the low-frequency regime

FIG. 9. (a) κ (ω) = kBg(ω)d (ω)/V for three different ISs. (b) Cu-
mulative integral I (ω) = ∫ ω

0 dω′κ (ω′), showing the contribution of
different frequency regime to the overall conductivity, and the varia-
tion with E IS. Arrows point to data for lower E IS in both plots.

is consistent with recent studies [32,33], where it has been
observed that localization properties of quasilocalized modes
have a similar dependence on preparation history.

Since the main contribution in the difference in κ for dif-
ferent E IS comes mainly from the higher end of the frequency
spectrum, as discussed above, we can conclude that increased
thermal conductivity with increasing E IS is related to the
increased delocalization of these vibrational modes, with the
high-frequency modes playing a more important role.

3. Dependence of d(ω) on the value of γ

The value of heat diffusivity, d (ω), calculated via harmonic
analysis, is sensitive to the choice of γ , the width of the

FIG. 10. Participation ratio showing the presence of more lo-
calized low and high-frequency modes with decreasing E IS (arrow
pointing to data for lower E IS).

022125-7



PRANAB JYOTI BHUYAN et al. PHYSICAL REVIEW E 101, 022125 (2020)

0 5 10 15 20 25 30 35

2

4

6

8

10

d
(

)

EIS=-7.0498
EIS=-6.9881
EIS=-6.9336

=16.0

=8.0

=2.0

FIG. 11. Heat diffusivity d (ω) for three different groups of ISs
with different E IS (arrows pointing to data for lower E IS) for three
different values of γ . For convenience of comparsion the values
of d (ω) for γ = 8.0 and 16.0 has been shifted by 1.5 and 3.0,
respectively.

broadening function. In Fig. 11, we show the dependence of
d (ω) on γ for the three different groups of ISs considered in
Sec. IV B 2. The nature of the dependence of d (ω) on the IS
energy does not change with changing γ for most values of
ω, except at the low-frequency end where numerical artifacts
start appearing because of the overestimation in the density of
states for higher values of γ . All results in this section have
been reported for γ = 2.

4. Comparison of κ values from nonequilibrium simulation
and harmonic calculation

As illustrated in Sec. IV B 3, the values of d (ω) and
consequently the thermal conductivity, κ , calculated from the
harmonic calculation is sensitive to the choice of γ . To obtain
the true κ , one needs to take the N → ∞, η → 0 limit. For
finite systems, the choice of γ leads to some uncertainty in the
calculated κ , and it is not clear what the optimal choice of η

should be, to extract the true thermal conductivity. In Fig. 12,
we compare the values of κ at low temperatures obtained from
nonequilibrium simulation to those obtained from harmonic
calculation performed with three different choices of γ from
ISs derived at few low temperatures. The “correct” value of γ

can not be determined precisely from the results shown in this
figure.

C. Direct numerical verification of the harmonic
approximation at low temperatures

One can ask whether at low temperatures the system ac-
tually stays within the basin of a given IS (a local minimum
of the potential) and also if nonlinear effects are important
for dynamics within the basin of an IS. Here we examine
this question of the validity of the harmonic approximation
at low temperatures. Our first finding is that even at as low
temperatures as T = 0.002, the system can move between
potential energy basins that are characteized by different IS

10-3 10-2 10-1 100

T

8

10

12
Nonequilibrium
=2.0
=8.0
=30.0

FIG. 12. Thermal conductivity (κ) for different temperatures
from nonequilibrium simulation at cooling rate 3.33 × 10−6. The
horizontal dashed lines along with the points show the values of
κ calculated in harmonic approximation, sampling ISs at few low
temperatures, for three different values of γ .

energies. To see this we start with the system in a given
IS (specified by EIS) and then, after evolving it for a fixed
long time interval, we re-computed the EIS. We found that
depending on how low the initial EIS was, a significant fraction
of trajectories moved out to different wells. For the lowest
energies, this was for around 15% of all cases, while for higher
energies, as much as 60% trajectories moved to different
wells. In the former case, the new IS configuration differed
from the starting configuration by displacements of a small
number of particles while in the latter case this involved large
rearrangements.

We now focus on the cases where the system does remain
confined in a given well for the duration of observation.
For these cases, we computed and compared the energy cur-
rent auto-correlation function C(t ) = 〈 �J (0) · �J (t )〉, at T =
0.002, using molecular dynamics with the actual interactions
and within the harmonic approximation for an IS.

In the harmonic theory, the total energy of an equilibrium
state at temperature T is E IS + [(6N − 3)kBT/2]. We prepare
an initial state by choosing positions corresponding to an
IS and giving each particle a random velocity taken from a
Maxwell distribution at a temperature 2T . Within a short span
of time, the equipartioning of energy occurs. With these initial
conditions, we first perform MD simulations with the full
interparticle potential (normal simulation) and, second, with
the interparticle forces replaced by the forces from the Hessian
elements (Hessian simulation). We consider only those low
energy ISs for which the system stays inside the initial basin
during the course of the simulation. The results are shown
in Fig. 13. We see excellent agreement between the two
which implies that the harmonic approximation is indeed quite
accurate at this temperature, for the cases where the system
remains within a given potential well. This then supports the
explanation of Fig. 6 based on the harmonic approximation
given in the previous section.
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FIG. 13. Current autocorrelation function C(t ) and its integral
I (t ), shown in the inset, calculated from normal and Hessian sim-
ulations for a system with N = 1 000, at T = 0.002.

D. Quantum effects

The effects of quantum correction to the thermal conduc-
tivity of a system can be approximated by using the vibrational
density of states [10]. For our simulation system, the physical
units of length, energy and time used are σ = 2.218 Å, ε/kB =
933.26 K and τ = 0.627 ps, respectively [22,34]. The debye
temperature TD is calculated from the relation TD = h̄ωD/kB,
where ωD is the Debye frequency of the system. ωD is esti-
mated from the relation,

3N = V

2π2

ω3
D

3

[
2

v3
T

+ 1

v3
L

]
, (12)

where N is the number of particles, V is the volume of the
system, and vT and vL are the longitudinal and transverse
sound speed respectively, with values of 45.58 × 102 m/s
and 19.08 × 102 m/s. (Details of our estimation of the sound
speeds are given in Appendix 2.)

Temperature dependence

For our system, we have estimated that ωD ∼ 26.89 ×
1012 Hz and TD ∼ 196 K. We have computed the approximate
quantum thermal conductvity of the system for a bunch of ISs
using Eq. (7). Figure 14 shows the values of quantum thermal
conductivity for three different values of γ . It is clear from the
figure that, quantum effects are quite important upto the value
of the Debye temperature, that is estimated above. At high
temperatures, the quantum thermal conductivity saturates to
its classical limit. At low temperatures kQ shows a nearly T 2

rise.

V. CONCLUSIONS AND DISCUSSION

Using numerical simulations, we have studied thermal
transport in a model glass-forming liquid. The values of
the thermal conductivity, obtained from nonequilibrium and
Green-Kubo calculations are found to agree well over a wide
range of temperatures. One of our main findings is that the
phenomenon of aging has a significant effect on thermal

10
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m=2.10
γ=10.00
m=2.10
γ=32.00
m=2.02

FIG. 14. Quantum thermal conductivity κQ as a function of tem-
perature. As discussed in Sec. III due to the uncertainty associated
with γ , κQ depends on the value of γ , nevertheless, it follows a
nearly T 2 rise. The closed circles denote the values of κQ computed
at different temperatures for three different values of γ , and the
associated dashed lines show power-law fits to the low-T data with
m signifying the exponent of the power law.

transport. Near the glass transition temperature, the conduc-
tivity drops considerably with increasing age. Similarly, the
conductivity of the low temperature glasses can vary by about
10% depending on the cooling protocol used to form it.

The lowering of conductivity with growing age or slower
cooling can be rationalised in terms of the system exploring
lower energy minima. Our numerical results demonstrate that
the thermal conductivity increases linearly with the energy
of the IS. We also performed an analysis of the harmonic
solid associated with the ISs, through an examination of the
diffusivity and participation ratio of the normal modes. This
analysis suggests that an explanation, of the dependence of
conductivity on energy of ISs, could be that the extent of
localization of the normal modes is higher for the lower
energy IS. We mostly studied the classical case, but some
interesting features in the quantum regime, obtained from the
harmonic approximation, are briefly discussed.

We close with a discussion of possible problems arising
from the use of relatively small samples and fast cooling rates
in our work. This is an inherent problem of all numerical
work—one can always argue that the use of larger samples
and longer simulation times may give different results. The
important issue here is whether some of the reported numer-
ical results are robust in the sense that they are expected to
remain valid in the limit of long time and large system size.
We believe that some of the important results reported in our
paper are robust in this sense.

The thermal properties of glasses at low temperatures are
affected by several different kinds of excitations. In partic-
ular, quasilocalized soft modes [32] are expected to play an
important role. The system sizes considered in our study
are perfectly adequate [35] for studying the contribution of
these modes to the thermal conductivity. Our results for
this contribution are internally consistent: the results for the
thermal conductivity obtained from two different calculations
(nonequilibrium and Green-Kubo) agree with each other [see
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FIG. 15. (Top) fT (q, ω) as a function of ω at few values of q.
(Bottom) fL (q, ω) as a function of ω. q increases from left to right in
both plots. The filled circles are the data and the filled lines are the
corresponding Lorentzian fit. The data is for N = 10 000.

Fig. 5(a)] and we have checked for convergence with system
size [see inset in Fig. 5(a)]. These results can be understood
from the properties of harmonic excitations of appropriate
ISs. Several qualitative features of our results are robust and
not artifacts of considering very small systems. We note
that indeed we cannot rule out the possibility that long-
wavelength phonons might still affect our results for much
larger systems—however, our results would be applicable to
physical systems with random pinning [36] in which long-
wavelength phonon modes are suppressed. The relatively fast
cooling rates used in our simulations should not be a concern
because the crucial feature responsible for our main conclu-
sion (higher degree of localization of the eigenmodes for ISs
with lower energy) is also found in studies of very low-energy
ISs [33].

Regarding the role of long-wavelength phononlike excita-
tions, phononlike modes are indeed present in the samples
considered in our study (see Fig. 15). Our calculation of
the thermal conductivity in the harmonic approximation does
take into account the contributions of these modes. However,
our calculations also show that the contribution of these
modes does not dominate over those of other modes—the

dependence of the thermal conductivity on the IS energy
actually arises from the localization properties of higher
frequency modes [see Fig. 9(b)]. An important question is
whether this would continue to be true if much larger systems,
in which phonons with longer wavelengths would be present,
are considered.

The question of whether the dependence of the lifetime τ of
phonons on the wavenumber k follows the Rayleigh scattering
form [37], τ (k) ∝ 1/k4 in three dimensions, is important in
this context. The contribution of long-wavelength phonons
to the thermal conductivity in the harmonic approximation
would diverge if the Rayleigh scattering form is valid. This
follows since the low-frequency diffusivity is given by d (ω) ≈
c(ω)�(ω), where c(ω) is the speed of sound and �(ω) is
the mean free path that would diverge as 1/ω4 as ω → 0.
Since the phonon density of states g(ω) in three dimensions is
proportional to ω2, this will cause the integral

∫
dωg(ω)d (ω)

to blow up. Indeed this has been seen in some earlier studies
[13,30,38] but for systems with zero stress, whereas the in-
herent structures used in our harmonic calculation have finite
stresses. Recent numerical studies [39–41] have provided
fairly convincing evidence in support of the validity of the
Rayleigh scattering form. This seems to indicate that the con-
tribution of the long-wavelength phonon modes indeed domi-
nates the thermal conductivity. This argument, however, is not
conclusive because it is based on the validity of the harmonic
approximation. In real glasses at finite temperatures, anhar-
monic effects, arising from interactions among the harmonic
modes and transitions between ISs that differ from each other
by changes in the positions of a few particles, are expected
to change the k-dependence of the phonon lifetime from the
Rayleigh form. As mentioned above, we see transitions to the
basins of other ISs even when the temperature is very low. In a
recent paper [42], it has been argued that localized excitations
that allow the system to access different ISs are present even
deep in the equilibrium glass state. Such excitations, known as
“two-level systems” [3] are believed to play an important role
in the temperature dependence of the specific heat of glasses
at low temperatures. The experimentally measured thermal
conductivity of glasses is, of course, finite (it appears to vanish
as the temperature approaches zero). Therefore, the prediction
of the harmonic theory about the divergent contribution of
long-wavelength phonons to the thermal conductivity should
not be taken seriously and there is no strong argument in
support of the view that the thermal conductivity at low tem-
peratures is dominated by the contribution of long-wavelength
phonons.

In Ref. [39], it was shown that the mean free path in the har-
monic regime at phononic frequencies (extracted from phonon
life times) increases as the level of annealing is increased.
The same behavior is seen also in our simulations [see Fig.
17]. In spite of that, we find that the conductivity κ is lower
for ISs with lower energy. This suggests that low-frequency
phonon contribution to the thermal conductivity does not
dominate over the contributions from all other modes. If this
continues to remain valid for large well-annealed systems,
then the observation of Ref. [39] would not invalidate our
conclusion about the dependence of the thermal conductivity
on the degree of annealing. It should also be noted that there is
no proof of the connection between the thermal diffusivity that
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we compute from the Hessian matrix of the disordered system,
and the mean free path that one extracts from the phonon life
time. Relating the thermal conductivity of the sample to the
phonon life time is a naive kinetic theory expectation, which
needs to be established for the strongly disordered structures
that we are looking at.

To summarize, our results show that the low-temperature
thermal conductivity of systems in which long wavelength
phonon modes are suppressed (e.g., in glasses with random
pinning [36]) decreases as the degree of annealing is in-
creased. A definitive answer to the subtle question of whether
the presence of long wavelength phonon modes would change
this behavior requires an understanding of anharmonic affects
which are difficult to study analytically or numerically. More
work in this direction, especially experimental investigations
of the thermal conductivity of glasses with different levels of
annealing [43], would be most welcome.
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APPENDIX

1. Low-frequency phononlike modes

Within the harmonic approximation, the structure of the
normal modes in a system can be studied via the dynamical
structure factor (transverse and longitudinal) calculated in the
limit of one excitation approximation using the following
expression [44,45],

Sα (q, ω) = kBT

M

q2

ω2

∑
λ

Eλ,α (q)δ(ω − ωλ), (A1)

where α represents transverse or longitudinal modes.
For transverse modes,

Eλ,T (q) = 1

N

∣∣∣∣∣∑
i

[q̂ × �eλ(i)]exp(i�q.�ri )

∣∣∣∣∣
2

, (A2)

and for longitudinal modes,

Eλ,L(q) = 1

N

∣∣∣∣∣∑
i

[q̂ · �eλ(i)]exp(i�q.�ri )

∣∣∣∣∣
2

. (A3)

For simplicity we compute the functions fT (q, ω) =
〈Eλ,T (q)δ(ω − ωλ)〉 and fL(q, ω) = 〈Eλ,T (q)δ(ω − ωλ)〉 [13],
coarse-grained in frequency domain, using frequency-binning
of 0.1. The dispersion and the associated width can be mea-
sured by taking an approximate Lorentzian line shape for
fT (q, ω) and fL(q, ω) [46]. Alternatively, the dynamical struc-
ture factor data can be fitted to a damped harmonic oscillator
model to extract the same quantities. We have verified that
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FIG. 16. N = 1 000. (Top) Reduced density of states g(ω)/ω2

showing presence of boson peak. The peak region has been fitted to
a polynomial to locate the peak frequency, the upward arrow shows
the position of the boson peak frequency ωBP. (Bottom) dispersion
relation �α and π�α (where, α is L or T for longitudinal or transverse
modes respectively). The filled circles show �α while the associated
dashed lines are fits to q. The filled squares show π�α with the
associated dashed curves showing fits to q2. The two horizontal black
lines shows the region where the boson peak frequency lies. It is
observed that, the Ioffe-Regel frequency (where the �α line and π�α

curve intersect) for the transverse waves coincide with the boson
peak frequency, while Ioffe-Regel frequency for the longitudinal
waves is higher than the boson peak frequency.

within the limit of numerical accuracy these two approaches
give similar results for small q values, which was also shown
by Schober [47].

2. Ioffe-Regel frequency

In Fig. 15 we show fT (q, ω) and fL(q, ω) as a function of
ω for few small q values. These can be fitted to a Lorentzian
using the following form [46,48]:

S(q, ω) ∝ �(q)/2

[ω − �(q)]2 + [�(q)/2]2
, (A4)

where �(q) is the position of the peak and �(q) is the width.
From the fits of fT (q, ω) and fL(q, ω), we determine the
phonon-dispersion relation for the transverse and longitudinal
modes. The dispersion [�(q) versus q] can be fitted well to
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straight lines for much of the small q-values, slopes of which
provide the transverse and longitudinal sound speeds (vT and
vL) from their respective dispersion. The width �(q) can be
fitted by q2. This is in agreement with analytic [49], numerical
[39], and experimental [43] results for modes with frequency
near that of the Boson peak.

The Ioffe-Regel limit for phonons is reached when their
mean free path decreases to their wavelength [50]; i.e.,
2π�(q)/2 ≈ �(q) [46,48]. In Fig. 16 (bottom) we show the
dispersion relation and the width for transverse and longitudi-
nal modes. We have estimated the boson peak frequency from
the reduced density of states g(ω)/ω2 as shown in Fig. 16
(top). From the intersection of the dispersion and the π�α

data, the Ioffe-Regel frequency can be located. We find that
the Ioffe-Regel frequency for the transverse modes coincides
with the boson peak frequency. Similar results were reported
in earlier works involving Lennard-Jones [45] and soft-sphere
systems [46], and this finding is different from the observation
of Xu et al. for the jammed Hertzian spheres [13] where
the Ioffe-Regel frequency is smaller than the Boson peak
frequency. In general, it is hypothesized that the relationship
between these two frequencies could depend upon the micro-
scopic structure of the glass [49].

3. Dependence of �(q) and �(q) on EIS

In Fig. 17 the dispersion relation and the associated width
for the three groups of ISs are shown. We find that, within the
limit of numerical accuracy involving fitting, the dispersion
relations for the three groups of ISs give similar values of
speed of sound (transverse and longitudinal). The damping
factor shows a weak dependence on E IS—it decreases as the
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FIG. 17. Dispersion relation and π�T for the transverse waves,
for the three groups of ISs (arrow pointing to data for lower E IS).
The filled circles are �T fitted by q (thick solid line) and the filled
squares are π�T fitted by q2 (dashed-dotted curve). The data is for
the system with N = 1 000 presented in the main text.

IS energy is decreased, indicating that the phonon lifetime
is larger for ISs with lower energy. This is in agreement
with the results reported in Ref. [39]. If interpreted naively,
this result would imply that the thermal conductivity should
increase with the degree of annealing. However, we find that
the conductivity is lower for inherent structures with lower
energy. This observation suggests that the contribution of
low-frequency phonons to the thermal conductivity does not
dominate over the contributions of other modes.

[1] D. G. Cahill and R. O. Pohl, Annu. Rev. Phys. Chem. 39, 93
(1988).

[2] R. C. Zeller and R. O. Pohl, Phys. Rev. B 4, 2029 (1971).
[3] P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag.

25, 1 (1972).
[4] C. C. Yu and J. J. Freeman, Phys. Rev. B 36, 7620 (1987).
[5] U. Buchenau, Y. M. Galperin, V. L. Gurevich, D. A. Parshin,

M. A. Ramos, and H. R. Schober, Phys. Rev. B 46, 2798 (1992).
[6] V. Lubchenko and P. G. Wolynes, Proc. Natl. Acad. Sci. USA

100, 1515 (2003).
[7] W. Schirmacher, Europhys. Lett. 73, 892 (2006).
[8] V. Vitelli, N. Xu, M. Wyart, A. J. Liu, and S. R. Nagel,

Phys. Rev. E 81, 021301 (2010).
[9] A. Marruzzo, W. Schirmacher, A. Fratalocchi, and G. Ruocco,

Sci. Rep. 3, 1407 (2013).
[10] H. Mizuno, S. Mossa, and J. L. Barrat, Phys. Rev. B 94, 144303

(2016).
[11] P. B. Allen and J. L. Feldman, Phys. Rev. Lett. 62, 645 (1989).
[12] P. B. Allen and J. L. Feldman, Phys. Rev. B 48, 12581 (1993).
[13] N. Xu, V. Vitelli, M. Wyart, A. J. Liu, and S. R. Nagel,

Phys. Rev. Lett. 102, 038001 (2009).
[14] M. Wyart, Europhys. Lett. 89, 64001 (2010).
[15] H. Mizuno, S. Mossa, and J. L. Barrat, Europhys. Lett. 104,

56001 (2013)

[16] W. Kob and J. L. Barrat, Phys. Rev. Lett. 78, 4581 (1997).
[17] K. Vollmayr, W. Kob, and K. Binder, J. Chem. Phys. 105, 4714

(1996).
[18] K. Binder and W. Kob, Glassy Materials and Disordered Solids:

An Introduction to Their Statistical Mechanics (World Scientific,
Singapore, 2011).

[19] Y. Shi and M. L. Falk, Phys. Rev. B 73, 214201 (2006).
[20] R. L. Moorcroft, M. E. Cates, and S. M. Fielding, Phys. Rev.

Lett. 106, 055502 (2011).
[21] G. P. Shrivastav, P. Chaudhuri, and J. Horbach, J. Rheol. 60, 835

(2016).
[22] W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994).
[23] S. Sastry, P. G. Debenedetti, and F. H. Stillinger, Nature 393,

554 (1998)
[24] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids,

3rd ed. (Academic Press, London, 2006).
[25] P. Scheidler, W. Kob, A. Latz, J. Horbach, and K. Binder,

Phys. Rev. B 63, 104204 (2001).
[26] F. Sciortino, W. Kob, and P. Tartaglia, Phys. Rev. Lett. 83, 3214

(1999).
[27] T. B. Schröder, S. Sastry, J. C. Dyre, and S. C. Glotzer, J. Chem.

Phys. 112, 9834 (2000).
[28] C. Rainone, A. Moriel, G. Kapteijns, E. Bouchbinder, and

E. Lerner, arXiv:1902.06225.

022125-12

https://doi.org/10.1146/annurev.pc.39.100188.000521
https://doi.org/10.1146/annurev.pc.39.100188.000521
https://doi.org/10.1146/annurev.pc.39.100188.000521
https://doi.org/10.1146/annurev.pc.39.100188.000521
https://doi.org/10.1103/PhysRevB.4.2029
https://doi.org/10.1103/PhysRevB.4.2029
https://doi.org/10.1103/PhysRevB.4.2029
https://doi.org/10.1103/PhysRevB.4.2029
https://doi.org/10.1080/14786437208229210
https://doi.org/10.1080/14786437208229210
https://doi.org/10.1080/14786437208229210
https://doi.org/10.1080/14786437208229210
https://doi.org/10.1103/PhysRevB.36.7620
https://doi.org/10.1103/PhysRevB.36.7620
https://doi.org/10.1103/PhysRevB.36.7620
https://doi.org/10.1103/PhysRevB.36.7620
https://doi.org/10.1103/PhysRevB.46.2798
https://doi.org/10.1103/PhysRevB.46.2798
https://doi.org/10.1103/PhysRevB.46.2798
https://doi.org/10.1103/PhysRevB.46.2798
https://doi.org/10.1073/pnas.252786999
https://doi.org/10.1073/pnas.252786999
https://doi.org/10.1073/pnas.252786999
https://doi.org/10.1073/pnas.252786999
https://doi.org/10.1209/epl/i2005-10471-9
https://doi.org/10.1209/epl/i2005-10471-9
https://doi.org/10.1209/epl/i2005-10471-9
https://doi.org/10.1209/epl/i2005-10471-9
https://doi.org/10.1103/PhysRevE.81.021301
https://doi.org/10.1103/PhysRevE.81.021301
https://doi.org/10.1103/PhysRevE.81.021301
https://doi.org/10.1103/PhysRevE.81.021301
https://doi.org/10.1038/srep01407
https://doi.org/10.1038/srep01407
https://doi.org/10.1038/srep01407
https://doi.org/10.1038/srep01407
https://doi.org/10.1103/PhysRevB.94.144303
https://doi.org/10.1103/PhysRevB.94.144303
https://doi.org/10.1103/PhysRevB.94.144303
https://doi.org/10.1103/PhysRevB.94.144303
https://doi.org/10.1103/PhysRevLett.62.645
https://doi.org/10.1103/PhysRevLett.62.645
https://doi.org/10.1103/PhysRevLett.62.645
https://doi.org/10.1103/PhysRevLett.62.645
https://doi.org/10.1103/PhysRevB.48.12581
https://doi.org/10.1103/PhysRevB.48.12581
https://doi.org/10.1103/PhysRevB.48.12581
https://doi.org/10.1103/PhysRevB.48.12581
https://doi.org/10.1103/PhysRevLett.102.038001
https://doi.org/10.1103/PhysRevLett.102.038001
https://doi.org/10.1103/PhysRevLett.102.038001
https://doi.org/10.1103/PhysRevLett.102.038001
https://doi.org/10.1209/0295-5075/89/64001
https://doi.org/10.1209/0295-5075/89/64001
https://doi.org/10.1209/0295-5075/89/64001
https://doi.org/10.1209/0295-5075/89/64001
https://doi.org/10.1209/0295-5075/104/56001
https://doi.org/10.1209/0295-5075/104/56001
https://doi.org/10.1209/0295-5075/104/56001
https://doi.org/10.1209/0295-5075/104/56001
https://doi.org/10.1103/PhysRevLett.78.4581
https://doi.org/10.1103/PhysRevLett.78.4581
https://doi.org/10.1103/PhysRevLett.78.4581
https://doi.org/10.1103/PhysRevLett.78.4581
https://doi.org/10.1063/1.472326
https://doi.org/10.1063/1.472326
https://doi.org/10.1063/1.472326
https://doi.org/10.1063/1.472326
https://doi.org/10.1103/PhysRevB.73.214201
https://doi.org/10.1103/PhysRevB.73.214201
https://doi.org/10.1103/PhysRevB.73.214201
https://doi.org/10.1103/PhysRevB.73.214201
https://doi.org/10.1103/PhysRevLett.106.055502
https://doi.org/10.1103/PhysRevLett.106.055502
https://doi.org/10.1103/PhysRevLett.106.055502
https://doi.org/10.1103/PhysRevLett.106.055502
https://doi.org/10.1122/1.4959967
https://doi.org/10.1122/1.4959967
https://doi.org/10.1122/1.4959967
https://doi.org/10.1122/1.4959967
https://doi.org/10.1103/PhysRevLett.73.1376
https://doi.org/10.1103/PhysRevLett.73.1376
https://doi.org/10.1103/PhysRevLett.73.1376
https://doi.org/10.1103/PhysRevLett.73.1376
https://doi.org/10.1038/31189
https://doi.org/10.1038/31189
https://doi.org/10.1038/31189
https://doi.org/10.1038/31189
https://doi.org/10.1103/PhysRevB.63.104204
https://doi.org/10.1103/PhysRevB.63.104204
https://doi.org/10.1103/PhysRevB.63.104204
https://doi.org/10.1103/PhysRevB.63.104204
https://doi.org/10.1103/PhysRevLett.83.3214
https://doi.org/10.1103/PhysRevLett.83.3214
https://doi.org/10.1103/PhysRevLett.83.3214
https://doi.org/10.1103/PhysRevLett.83.3214
https://doi.org/10.1063/1.481621
https://doi.org/10.1063/1.481621
https://doi.org/10.1063/1.481621
https://doi.org/10.1063/1.481621
http://arxiv.org/abs/arXiv:1902.06225


AGING EFFECTS ON THERMAL CONDUCTIVITY … PHYSICAL REVIEW E 101, 022125 (2020)

[29] B. B. Laird and H. R. Schober, Phys. Rev. Lett. 66, 636 (1991).
[30] A. Kundu, A. Chaudhuri, D. Roy, A. Dhar, J. L. Lebowitz, and

H. Spohn, Europhys. Lett. 90, 40001 (2010).
[31] S. R. Nagel, G. S. Grest, and A. Rahman, Phys. Rev. Lett. 53,

368 (1984).
[32] E. Lerner, G. Düring, and E. Bouchbinder, Phys. Rev. Lett. 117,

035501 (2016).
[33] L. Wang, A. Ninarello, P. Guan, L. Berthier, G. Szamel, and

E. Flenner, Nat. Commun. 10, 26 (2019).
[34] T. A. Weber and F. H. Stillinger, Phys. Rev. B 31, 1954 (1985).
[35] G. Kapteijns, E. Bouchbinder, and E. Lerner, Phys. Rev. Lett.

121, 055501 (2018).
[36] L. Angelani, M. Paoluzzi, G. Parisi, and G. Ruocco, Proc. Nat.

Acad. Sci. USA 115, 8700 (2018).
[37] J. M. Ziman, Principles of the Theory of Solids (Cambridge

University Press, Cambridge, 1972).
[38] A. Chaudhuri, A. Kundu, D. Roy, A. Dhar, J. L. Lebowitz, and

H. Spohn, Phys. Rev. B 81, 064301 (2010).
[39] L. Wang, L. Berthier, E. Flenner, P. Guan, and G. Szamel, Soft

Matter 15, 7018 (2019).

[40] A. Moriel, G. Kapteijns, C. Rainone, J. Zylberg, E. Lerner, and
E. Bouchbinder, J. Chem. Phys. 151, 104503 (2019).

[41] H. Mizuno and S. Mossa, Condens. Matter Phys. 22, 43604
(2019).

[42] M. Ozawa, A. Ikeda, K. Miyazaki, and W. Kob, Phys. Rev. Lett.
121, 205501 (2018).

[43] E. A. A. Pogna, A. I. Chumakov, C. Ferrante, M. A. Ramos,
and T. Scopigno, J. Phys. Chem. Lett. 10, 427 (2019).

[44] M. Sampoli, P. Benassi, R. Dell’Anna, V. Mazzacurati, and
G. Ruocco, Philos. Mag. 77, 473 (1998).

[45] H. Shintani and H. Tanaka, Nat. Mater. 7, 870 (2008).
[46] H. R. Schober and C. Oligschleger, Phys. Rev. B 53, 11469

(1996).
[47] H. R. Schober, J. Phys. Condens. Matter 16, S2659 (2004).
[48] S. N. Taraskin and S. R. Elliott, Phys. Rev. B 61, 12017

(2000).
[49] E. DeGiuli, A. Laversanne-Finot, G. Düring, E. Lerner, and

M. Wyart, Soft Matter 10, 5628 (2014).
[50] V. L. Gurevich, D. A. Parshin, J. Pelous, and H. R. Schober,

Phys. Rev. B 48, 16318 (1993).

022125-13

https://doi.org/10.1103/PhysRevLett.66.636
https://doi.org/10.1103/PhysRevLett.66.636
https://doi.org/10.1103/PhysRevLett.66.636
https://doi.org/10.1103/PhysRevLett.66.636
https://doi.org/10.1209/0295-5075/90/40001
https://doi.org/10.1209/0295-5075/90/40001
https://doi.org/10.1209/0295-5075/90/40001
https://doi.org/10.1209/0295-5075/90/40001
https://doi.org/10.1103/PhysRevLett.53.368
https://doi.org/10.1103/PhysRevLett.53.368
https://doi.org/10.1103/PhysRevLett.53.368
https://doi.org/10.1103/PhysRevLett.53.368
https://doi.org/10.1103/PhysRevLett.117.035501
https://doi.org/10.1103/PhysRevLett.117.035501
https://doi.org/10.1103/PhysRevLett.117.035501
https://doi.org/10.1103/PhysRevLett.117.035501
https://doi.org/10.1038/s41467-018-07978-1
https://doi.org/10.1038/s41467-018-07978-1
https://doi.org/10.1038/s41467-018-07978-1
https://doi.org/10.1038/s41467-018-07978-1
https://doi.org/10.1103/PhysRevB.31.1954
https://doi.org/10.1103/PhysRevB.31.1954
https://doi.org/10.1103/PhysRevB.31.1954
https://doi.org/10.1103/PhysRevB.31.1954
https://doi.org/10.1103/PhysRevLett.121.055501
https://doi.org/10.1103/PhysRevLett.121.055501
https://doi.org/10.1103/PhysRevLett.121.055501
https://doi.org/10.1103/PhysRevLett.121.055501
https://doi.org/10.1073/pnas.1805024115
https://doi.org/10.1073/pnas.1805024115
https://doi.org/10.1073/pnas.1805024115
https://doi.org/10.1073/pnas.1805024115
https://doi.org/10.1103/PhysRevB.81.064301
https://doi.org/10.1103/PhysRevB.81.064301
https://doi.org/10.1103/PhysRevB.81.064301
https://doi.org/10.1103/PhysRevB.81.064301
https://doi.org/10.1039/c9sm01092k
https://doi.org/10.1039/c9sm01092k
https://doi.org/10.1039/c9sm01092k
https://doi.org/10.1039/c9sm01092k
https://doi.org/10.1063/1.5111192
https://doi.org/10.1063/1.5111192
https://doi.org/10.1063/1.5111192
https://doi.org/10.1063/1.5111192
https://doi.org/10.5488/CMP.22.43604
https://doi.org/10.5488/CMP.22.43604
https://doi.org/10.5488/CMP.22.43604
https://doi.org/10.5488/CMP.22.43604
https://doi.org/10.1103/PhysRevLett.121.205501
https://doi.org/10.1103/PhysRevLett.121.205501
https://doi.org/10.1103/PhysRevLett.121.205501
https://doi.org/10.1103/PhysRevLett.121.205501
https://doi.org/10.1021/acs.jpclett.9b00003
https://doi.org/10.1021/acs.jpclett.9b00003
https://doi.org/10.1021/acs.jpclett.9b00003
https://doi.org/10.1021/acs.jpclett.9b00003
https://doi.org/10.1080/13642819808204975
https://doi.org/10.1080/13642819808204975
https://doi.org/10.1080/13642819808204975
https://doi.org/10.1080/13642819808204975
https://doi.org/10.1038/nmat2293
https://doi.org/10.1038/nmat2293
https://doi.org/10.1038/nmat2293
https://doi.org/10.1038/nmat2293
https://doi.org/10.1103/PhysRevB.53.11469
https://doi.org/10.1103/PhysRevB.53.11469
https://doi.org/10.1103/PhysRevB.53.11469
https://doi.org/10.1103/PhysRevB.53.11469
https://doi.org/10.1088/0953-8984/16/27/005
https://doi.org/10.1088/0953-8984/16/27/005
https://doi.org/10.1088/0953-8984/16/27/005
https://doi.org/10.1088/0953-8984/16/27/005
https://doi.org/10.1103/PhysRevB.61.12017
https://doi.org/10.1103/PhysRevB.61.12017
https://doi.org/10.1103/PhysRevB.61.12017
https://doi.org/10.1103/PhysRevB.61.12017
https://doi.org/10.1039/C4SM00561A
https://doi.org/10.1039/C4SM00561A
https://doi.org/10.1039/C4SM00561A
https://doi.org/10.1039/C4SM00561A
https://doi.org/10.1103/PhysRevB.48.16318
https://doi.org/10.1103/PhysRevB.48.16318
https://doi.org/10.1103/PhysRevB.48.16318
https://doi.org/10.1103/PhysRevB.48.16318

