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The Ising model exhibits qualitatively different properties in hyperbolic space in comparison to its flat space
counterpart. Due to the negative curvature, a finite fraction of the total number of spins reside at the boundary
of a volume in hyperbolic space. As a result, boundary conditions play an important role even when taking the
thermodynamic limit. We investigate the bulk thermodynamic properties of the Ising model in two- and three-
dimensional hyperbolic spaces using Monte Carlo and high- and low-temperature series expansion techniques.
To extract the true bulk properties of the model in the Monte Carlo computations, we consider the Ising
model in hyperbolic space with periodic boundary conditions. We compute the critical exponents and critical
temperatures for different tilings of the hyperbolic plane and show that the results are of mean-field nature. We
compare our results to the “asymptotic” limit of tilings of the hyperbolic plane: the Bethe lattice, explaining
the relationship between the critical properties of the Ising model on Bethe and hyperbolic lattices. Finally,
we analyze the Ising model on three-dimensional hyperbolic space using Monte Carlo and high-temperature
series expansion. In contrast to recent field theory calculations, which predict a non-mean-field fixed point for
the ferromagnetic-paramagnetic phase-transition of the Ising model on three-dimensional hyperbolic space, our
computations reveal a mean-field behavior.
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I. INTRODUCTION

The critical properties of a statistical mechanics model
on curved space can be drastically different from its flat-
space counterpart [1]. In particular, statistical mechanics on
negatively curved hyperbolic space has attracted much at-
tention. First, they are relevant for quantum field theories in
curved space-time [2] and serve as means to separate the roles
of geometric curvature and topological defects [1]. Second,
they arise in condensed matter settings as toy models for
amorphous solids or exotic liquid crystalline structures [3–5].
Third, hyperbolic spaces arise in quantum information theory
as natural candidates for encoding quantum information with
toric codes. This is because a toric code on hyperbolic space
encodes a larger number of logical qubits than a flat-space
counterpart for the same number of physical qubits [6,7].

An essential consequence of negative curvature in a hy-
perbolic space is the exponential growth of the volume with
an associated linear dimension. This leads to the expecta-
tion that the space is effectively infinite-dimensional and the
critical properties of any statistical mechanical model will
be effectively mean-field. At first sight, this might lead to
the impression that the thermodynamical properties of the
hyperbolic-space statistical model can be straightforwardly
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inferred from its flat-space counterpart. However, this is not
true and the physics is qualitatively different due to the
curvature of the embedding space. For instance, in contrast
to the euclidean-space counterpart, the order-disorder phase-
transition of the XY model on a 2D hyperbolic plane is driven
by the fluctuations of topological defects, while the infrared
properties of the spin-wave fluctuations are well-behaved
[1]. Critical statistical mechanical systems show exponential
decay of correlations [8] and new-phases with broken transla-
tional invariance can arise, which are absent in the flat-space
counterparts. Mathematical proofs for the existence of such
phases exist for models describing percolation [9–11] and
ferromagnetic Ising models [12,13].

For the ferromagnetic Ising model on a hyperbolic plane,
high and low-temperature expansion had obtained mean-field
exponents for susceptibility and magnetization [14]. Inter-
estingly, the transition temperature, obtained from the series
expansion calculations for a self-dual lattice was different
from that of the 2D square-lattice Ising model. Since the
Kramers-Wannier duality [15] also holds for self-dual hyper-
bolic lattices, assuming convergence of the series up to the
critical point, this indicates the existence of a second phase-
transition at a temperature related by the duality relation
[see below, Eq. (2)]. Indeed, the existence of this second
phase-transition for a hyperbolic plane with free boundary
condition was later proved [12,13,16]. This phase-transition
separates the low temperature, purely ferromagnetic phase
from an intermediate phase. In this intermediate phase, the
system has broken translational invariance, where there are
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FIG. 1. The self-dual {5, 5} tiling of the hyperbolic plane in the
Poincaré disk model. Ising degrees of freedom reside on the nodes
and any two spins connected by an edge interact.

infinitely many, infinitely large clusters of magnetized spins.
These clusters survive in the thermodynamic limit purely due
to the negative curvature of the embedding space and cannot
arise in ordinary euclidean space [17]. Further increase of
temperature eventually causes the system to transition from
the intermediate phase to the high-temperature, disordered
phase. It is this latter phase-transition that was found using
series expansion methods. Additional evidence of mean-field
behavior of magnetization was shown with corner-transfer-
matrix renormalization group calculations [18]. Monte Carlo
calculations of bulk thermodynamics (throughout the paper,
by bulk thermodynamics, we mean thermodynamics of a
model on a vertex-transitive graph) have so far only been
done on open boundary lattices. To eliminate the effects
of the large fraction of total spins being on the boundary
arising due to the negative curvature, outer layers of these
open lattices are removed, focusing the analysis to the central
region [19]. While the boundary effects can be interesting on
their own [20], they prevent the analysis of bulk behavior of
the hyperbolic plane Ising model.

In the first part of this work, we investigate the bulk critical
properties of the Ising model on a hyperbolic plane. To remove
boundary effects in the Monte Carlo simulations, we perform
these simulations on a hyperbolic plane with periodic bound-
ary conditions [21]. We concentrate on the self-dual {5, 5}
lattice, which is a tiling of the hyperbolic plane with regular
pentagons (see Fig. 1). We concentrate on this lattice since
it captures all the qualitatively different physics of curved
space. We compute the critical exponents and critical tem-
perature as the system transitions to the ferromagnetic phase.
A hyperbolic plane with periodic boundary conditions is a
manifold with genus > 1. As a result, the finite-size scaling is
nontrivial and provides additional insight into the fundamental
differences between statistical mechanical models defined on
spaces with zero and negative curvature. We find that the
universal critical exponents for the different thermodynamic
quantities are close to the mean-field predictions. To lend
additional credence to the above findings, we perform high
and low temperature series expansion of various thermody-
namic quantities. Performing this analysis, we find results
that are close to our Monte Carlo predictions and confirm the
mean-field nature of the phase-transition. Our results for the
{5, 5} lattice are close to the results for the critical temperature

recently obtained by Mone Carlo simulations of the same
model [16].

Subsequently, we also compute the critical temperature and
the critical exponents using Monte Carlo and series expan-
sion for lattices with different curvatures and compare our
results for the different hyperbolic lattices to the Bethe lattice.
We explain the relation between ferromagnetic-paramagnetic
phase-transitions of the Ising model on hyperbolic lattices and
those on the Bethe lattice, the latter being the limit where
the number of edges of the polygons tiling the hyperbolic
lattice is taken to infinity. Although not the point of the paper,
we mention that we provide the high-temperature series for
several lattices not analyzed before, going up to O(v24), where
v = tanh(βJ ). Here, β is inverse temperature and J is the
ferromagnetic coupling.

The last part of this work is devoted to the analysis of
the Ising model in 3D hyperbolic space. Recent field theory
calculations [22,23] using 1/N expansion predict deviations
from mean-field exponents for the Ising model in 3D hy-
perbolic space [8]. This result is remarkable since the basic
intuition for critical properties of a statistical mechanical
model in hyperbolic space being mean-field—that the hy-
perbolic space acts like an infinitely connected lattice—is
even more valid in 3D compared to 2D since the number
of neighbors of each spin is higher. Previous calculations
using series expansion or corner-transfer-matrix renormal-
ization group have all been done for 2D hyperbolic Ising
models. In this part of the work, we calculate the bulk critical
properties of the model in 3D hyperbolic space with Monte
Carlo and high-temperature series expansion technique. Our
results, in contrast to the field theory calculations, reveal a
mean-field nature of the transition. We perform the Monte
Carlo analysis of the Ising model on the {5, 3, 5} lattice with
periodic boundary condition, the latter being a tiling of 3D
space with pentagonal dodecahedrons. Then, we compute the
susceptibility exponents for the {5, 3, 4} and {5, 3, 5} lattices
using high-temperature series expansion. We also consider
a 3D analog of the Bethe lattice which has Schläfli symbol
{5, 3, 6}.

The article is organized as follows. In Sec. II, we an-
alyze the Ising model on a 2D hyperbolic plane. After a
brief summary of the well-known properties of the model,
in Sec. II A, we perform Monte Carlo analysis to compute
the universal critical exponents and infer the phase-transition
point for the {5, 5} lattice. Then, we compute with high
and low-temperature series expansions the susceptibility and
the magnetization in Sec. II B. We find the results of the
series-expansion computations to be close to those obtained
by Monte Carlo. In Sec. III, we describe the variation of
the critical properties with curvature for self-dual lattices and
explain the relationship between the critical properties of the
Ising model in hyperbolic lattices and in the Bethe lattice.
In Sec. IV A, we analyze the properties of the Ising model
in 3D hyperbolic space with {5, 3, 5} tiling using Monte
Carlo. The high-temperature expansion calculations for the
{5, 3, k} lattices, k = 4, 5, 6 are done in Sec. IV B. Finally,
in Sec. V, we provide a concluding summary and outlook. In
Appendix A, we summarize the relevant properties of hyper-
bolic planes and describe how to tessellate them in the pres-
ence of periodic boundary condition. Appendix B provides
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additional details on the high-temperature series expansion.
Appendix C provides a general derivation of the Kramers-
Wannier duality.

II. THE ISING MODEL ON A 2D HYPERBOLIC PLANE

Consider a regular tiling of the hyperbolic plane, denoted
by {r, s}. Here, r denotes the number of sides of the polygon
and s the coordination number of each site (more details in
Appendix A). Note that for r = s the lattice is self-dual; the
case r = s = 5 is shown in Fig. 1. The Hamiltonian for the fer-
romagnetic Ising model on the hyperbolic plane is defined by

H = −J
∑
〈i, j〉

σiσ j, (1)

where the spins (σi = ±1) reside on the vertices of the lattice
and any two spins connected by an edge interact with each
other with a coupling J > 0.

For free, fixed, or periodic boundary conditions, for tem-
peratures T � J , the system is in a disordered, paramagnetic
phase. Upon lowering the temperature, the system undergoes
a phase-transition at a critical temperature, denoted by Tc, to
a magnetically ordered phase. For free boundary conditions,
in contrast to the euclidean space Ising model, this phase
has broken translational invariance and is characterized by
infinitely many clusters of magnetized spins. The survival
of these clusters in the thermodynamic limit is due to the
negative curvature of the hyperbolic plane, which allows an
infinite number of these clusters to be squeezed within the
plane. For free boundary conditions, upon further lowering
of the temperature, at a temperature T̄c, the system undergoes
another phase transition, where a single cluster of magnetized
spins covers the entire hyperbolic plane and translational in-
variance is restored. The two temperatures, Tc, T̄c, are related
to one another by the Kramers-Wanner duality relation:

sinh(2J/Tc) sinh(2J/T̄c) = 1, (2)

(see Appendix C for a proof of the duality for all self-dual
lattices). This qualitative difference between Ising models
in absence of external magnetic field for planes with and
without curvature can be mathematically formulated in a
unified framework using the cluster model, which describes
both percolation and Ising models as special cases. The proof
for free boundary condition is formulated in terms of the
(non)uniqueness of the Gibbs states [12,13] and the intuitive
explanation is given below. Consider the Gibbs states ν±, ν f

for the Ising model with fixed, free boundary conditions. Here,
+(−) refers to the fixed boundary condition case when the
boundary spins are fixed to +1(−1) states. First, consider
planes without curvature. In the high-temperature phase (T �
J), the Gibbs state is unique: ν+ = ν− = ν f . The average
magnetization (m) is zero in this phase and the correlation
function 〈σiσ j〉 f ,± → 0 for |i − j| → ∞, the decay to zero
being exponential due the presence of a gapped spectrum.
However, in the low-temperature phase (T � J), the Gibbs-
state is nonunique ν+ �= ν−; however, these two states remain
extremal, which means that the Gibbs state with free boundary
condition is a symmetric mixture of the two: ν f = (ν+ +
ν−)/2. In this phase, the absolute-value of the magnetization
is nonzero and 〈σiσ j〉 f ,± � m2. The two phases are separated
by a second-order phase-transition. Now, consider the Ising

model on the hyperbolic plane. The high-temperature phase
(T � J) again has unique Gibbs states. The average inter-
nal magnetization is zero and correlations are exponentially
damped. Upon lowering the temperature, at Tc, the system
magnetizes. However, the Gibbs states, ν±, are no-longer
extremal, which leads to ν f �= (ν+ + ν−)/2. As a result, there
exists a finite fraction of uncorrelated spins, which survive
in the thermodynamic limit: 〈σiσ j〉 f → 0, despite there being
a finite overall magnetization. Finally, upon further lowering
of temperature, at T̄c, the system is magnetized as a whole
and the extremal nature of the Gibbs states ν± is restored.
This leads to ν f = (ν+ + ν−)/2 and 〈σiσ j〉 f ,± � m2. This
low-temperature phase is similar to the low-temperature phase
of the euclidean space Ising model.

We emphasize that the phase-diagram of the model de-
pends on the different choice of boundary conditions. The
existence of the intermediate phase has been proven for free
boundary conditions. We do not know if a similar intermediate
phase exists for the case of periodic boundary conditions;
see Sec. III D for further discussion. Note that, despite the
presence of two phase-transitions, the magnetic susceptibility
diverges and the magnetization vanishes only at the higher
phase-transition temperature Tc. These critical properties of
these thermodynamic quantities at this higher temperature
phase-transition are analyzed using Monte Carlo and series
expansion methods below.

A. Monte Carlo analysis of the critical
exponents and temperature

In this subsection, we perform Monte Carlo analysis of the
Ising model on the {5, 5} lattice using the Metropolis algo-
rithm. To perform finite-size scaling we perform the numerical
analysis for perfiodic lattices of different size. We compute
the average magnetization per spin m = M/N and the energy
per spin e = E/N , where M is the total magnetization, E the
total energy and N the number of spins in the lattice. Then, we
compute the average absolute susceptibility per spin χ and the
specific heat per spin c, defined as follows [24]:

χ = β

N
(〈M2〉 − 〈|M|〉2), (3)

c = β2

N
(〈E2〉 − 〈E〉2), (4)

where β = 1/(kBT ) is the inverse temperature and kB is the
Boltzmann constant. The phase-transition point is inferred
form the fourth Binder cumulant [25], given by

U4 = 1 − 〈m4〉
3〈m2〉2

. (5)

Each Monte Carlo simulation was equilibrated with 105

sweeps of the lattice, where one sweep corresponds to the
number of Metropolis updates equal to the number of spins
in the lattice. The measurements were performed over 106

sweeps. The simulations were done for lattices with the
following number of spins: N = 360, 1 024, 1 920, 2 304,
6 888 and 11 760. Figure 2 shows the absolute magnetization
per spin, the average energy per spin, the average absolute
susceptibility per spin, and the specific heat per spin. The error
analysis was performed using the bootstrap method [24]. The
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FIG. 2. Results of the Monte Carlo simulations for the hyper-
bolic space with {5, 5} tiling. The absolute magnetization per spin
(|m|), the energy per spin (〈e〉), average absolute susceptibility per
spin (χ ) and the specific heat per spin (c) are plotted in the top left,
top right, bottom left, and bottom right panels, respectively. We only
show a zoom of the different quantities near the phase-transition
region; but simulations were done from deep in the ferromagnetic
regime to deep in the disordered region.

computed errors in the measured quantities are too small to
show in the plots. The maximum of the absolute susceptibility
occurs at the same temperature at which the magnetization
goes to zero, in this case indicating a transition from a
magnetically ordered phase to a disordered, high-temperature
phase. A crude estimate of the location of this phase-transition
point can be obtained with help of the fourth Binder cumulant
U4, plotted in the top left panel of Fig. 3.

Accurate estimates of the phase-transition temperature and
the critical exponents require finite system size analysis. In
simulations on a finite plane with zero curvature, the diver-
gence of the correlation length is cut off by the linear dimen-
sion of the system. From standard homogeneity arguments
[24,25], one can then obtain the ratio of the critical exponents:
e.g., from a linear fit of ln χ versus ln L, one gets the ratio γ /ν,
where γ and ν are the critical exponents for the susceptibility
and the correlation length and L is the linear system size.
Similarly, the the ratio β/ν is obtained from the linear fit
of ln〈|m|〉 versus ln L, where β is the critical exponent for
magnetization. The exact numerical values of the exponents
and the phase-transition point are extracted by collapsing the
data. This situation is different for a hyperbolic plane for
following reason. To remove boundary effects, we perform the
Monte Carlo simulations on a compactified hyperbolic plane,
which is a manifold with genus larger than one. The size of
the smallest noncontractible loop along different handles this
manifold may vary.1 As a result, the choice of a suitable linear
dimension is ambiguous.

1Note that this is not in contradiction to the space being isotropic,
as several noncontractible loops my run through the same vertex (or
the same edge) and these loops may have different lengths.

FIG. 3. Results of the Monte Carlo simulations: (top left) the
fourth Binder cumulant (top right), data collapse for average absolute
susceptibility and the linear fits are system size scaling for average
absolute magnetization (bottom left), and average absolute suscepti-
bility per spin (bottom right). The vertical line in the top left panel
T/J = 3.93 (see main text for error estimate) indicates the location
of phase-transition temperature obtained from the data collapse. The
linear fits in the bottom panels denote are obtained from the finite-
size analysis with respect to the number of spins. The slope for the
linear fit for average absolute susceptibility (magnetization) per spin
provides an estimate of the ratio γ /μ (β/μ), where γ (β) denote the
exponents for susceptibility (magnetization) and μ is the scaling of
the coherence number. In the bottom panels, the error indicated is
only the fit error, the actual value and the error in the exponent is
provided in the main text.

To combat these difficulties of finite-size scaling, we
choose to perform finite-size scaling with respect to the num-
ber of spins, which was initially proposed for an infinitely
connected lattice [26] and has been used for hyperbolic space
Ising models with open boundaries [19]. We define a correla-
tion number Nc, which plays the role of the correlation length
in flat space, with an assumed scaling: Nc ∝ |T − Tc|−μ,
where μ is the associated critical exponent and Tc is the
critical temperature. The exponent μ is given by νMFdc [26],
where νMF is the mean-field exponent of the divergence of
correlation length for the Ising model (=1/2) and dc is the
upper critical dimension (=4). Thus, μ = 2. As explained in
Ref. [26], the correlation number Nc ∼ ξ dc , where ξ is the
correlation length of the Euclidean space model. The use of
an effective correlation number, which scales with the overall
volume of the space, avoids the ambiguities associated with
the linear dimension. The rest of the finite-size scaling is
similar to that of euclidean space, with the linear dimension
replaced by the number of spins and the correlation length
exponent replaced by μ. Physically, due to the exponential
growth of hyperbolic space volume with linear dimension,
we expect the finite-size scaling analysis used for infinitely
connected lattices to be applicable in our case. Since there is
no proof that such an analysis is indeed valid, in Sec. II B,
we compute the critical exponents and critical temperature
using high- and low-temperature expansions. We do this since
the series expansion computations, by design, do not suffer
from finite-size effects (but have different sources of error,
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see below). We find the results of these two independent
computations to be close to each other, which lends additional
credence to our Monte Carlo findings.

Performing this analysis, we find that the critical transi-
tion temperature occurs at Tc/J = 3.93 ± 0.03. The critical
exponents are β = 0.46 ± 0.05 and γ = 1.03 ± 0.02. The
critical temperature, Tc, is close to the two possible candidates
for critical temperature given in Ref. [16]. The exponents
obtained are close to those for the Ising model within the
mean-field approximation. The divergence of the specific
heat does not develop as the system size is increased and
we expect the critical exponent α to be 0, as expected for
a mean-field theory. We note our Monte Carlo results are
not exactly the mean-field predictions, despite being close
to them. We attribute the deviations to the finite-size scaling
done by considering a divergence of a correlation number.
Additional support for the mean-field behavior is obtained
by high- and low-temperature series expansion computations,
described below.

B. High-temperature expansion analysis of the critical
exponents and temperature

In this section, we perform high-temperature series expan-
sion of the susceptibility on the infinite lattice. We chose to
concentrate on the susceptibility rather than the free energy
density as we found the latter harder to analyze. It turns out
that it is favourable to perform the high-temperature expan-
sion in the inverse susceptibility. The reason for this is that it
can be shown [27] that the only nontrivial contributions come
from graphs which have the property that they stay connected
if any of their vertices (and the edges attached to it) are being
removed. Such graphs are called biconnected graphs and since
it is a more restricted class there are fewer of these graphs
which simplifies the expansion and allows us to go to much
higher orders. Some biconnected graphs contributing to the
magnetization on the {5, 5} lattice up to order u 19 are shown
in Fig. 4.

The inverse susceptibility can be expanded in terms of
these graphs as

χ̃−1 = 1 +
∑

g

c(g)W (g), (6)

where the sum is over all graphs, c(g) is the coefficient of N of
the number of embeddings of the graph g into the lattice and
W is a weight function. For more details and a derivation of
Eq. (6) see Appendix B.

1. Analysis of the series

The coefficients of the susceptibility on the {5, 5}-lattices
are given in Table I. Our results for the high-temperature series
expansion agree with [14] who obtained the series for {5, 5}
up to order 10.

We analyze the series χ̃ (v) using first-order homogeneous
integrated differential approximants (FO-IDAs). One reason
to choose FO-IDAs over simpler methods is that they are
known to be less biased towards the lower-order coefficients
of the expansion [28]. This is important here, as the nontrivial
contributions come from graphs with at least r edges.

FIG. 4. Some small biconnected subgraphs of the {5, 5}-tiling.
Removing a vertex and all its incident edges will leave the
graphs connected. Only biconnected graphs contribute to the series
expansion.

The analysis using FO-IDAs proceeds as follows: We
assume that the series χ̃ is the solution of a first-order dif-
ferential equation of the form

QL(v)
dχ̃ (v)

dv
+ RM (v) χ̃ (v) + ST (v) = 0, (7)

where QL, RM , and ST are polynomials of degree L, M, T ,
respectively. By equating the series order-by-order with the
coefficients of Eq. (7) we obtain a linear system of equations
in the coefficients of the polynomials QL, RM , and ST . It can
be shown that for any root vc of the polynomial QL, a solution
of Eq. (7) has an algebraic singularity of the form (v − vc)−γ

[29]. The exponent of the singularity is given by

γ = RM (vc)

Q′
L(vc)

. (8)

Generally, the results for vc and γ will depend on the choice
of degrees L, M, and T . If we have the series up to order N ,
then we can choose all possible values satisfying L + M +
T � N − 2. Following Ref. [28] we exclude approximants if

(1) a root of RM is close to vc, giving rise to a small estimate
of γ ,

(2) a complex root of QL with small absolute value smaller
than vc is close to the real axis.

We observe that the convergence of the series is very good,
since the approximants for different choices of L, M, and T
are all close. The mean critical value of v obtained by averag-
ing over 45 approximants is vc = 0.25200759 ± 0.00000006.
This is in agreement with the result obtained by Monte Carlo
[tanh(1/3.93) ≈ 0.249]. The critical exponent γ is found via
Eq. (8) and averaged over all approximants. The result of
γ = 1.000001 ± 0.000005 is again close to the Monte Carlo
result and the mean-field value γ = 1.

2. Comparison to low-temperature series

To verify that thermodynamic properties only diverge at
the higher critical temperature Tc, we perform also a low-
temperature series of the magnetization of the model on the
{5, 5} lattice. In the case of the low-temperature expansion,
we use an elementary expansion technique. We write the free
energy in the presence of a field as the sum of configurations
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TABLE I. The coefficients xn of the susceptibility series χ̃ = 1 + ∑∞
n=1 xn vn. Our results for the high-temperature series expansion agree

with [14] who obtained the series for {5, 5} up to order 10 and for and for {3, 7} up to order 11.

n {3, 7} {7, 3} {5, 5} {6, 6} {7, 7} {8, 8}
1 3 7 5 6 7 8
2 6 42 20 30 42 56
3 12 238 80 150 252 392
4 24 1 316 320 750 1 512 2 744
5 48 7 196 1 270 3 750 9 072 19 208
6 96 39 144 5 040 18 738 54 432 134 456
7 186 212 394 20 010 93 630 326 578 941 192
8 360 1 150 968 79 400 467 862 1 959 384 6 588 328
9 702 6 233 150 315 060 2 337 870 11 755 814 46 118 184
10 1 368 33 745 698 1 250 260 11 682 090 70 531 944 322 826 520
11 2 664 182 669 074 4 961 180 58 374 174 423 174 024 2 259 780 264
12 5 148 988 735 958 19 686 500 291 689 754 2 538 938 220 15 818 424 216
13 9 948 5 351 558 814 78 119 090 1 457 543 742 15 232 993 804 110 728 706 088
14 19 308 28 964 952 422 309 987 000 7 283 195 826 91 394 150 092 775 099 098 536
15 3 7434 156 769 556 314 1 230 068 820 548 342 025 112 5 425 680 781 224
16 72 504 848 494 238 298 4 881 081 760 3 289 914 904 549 37 979 675 110 288
17 140 238 19 368 790 490 265 857 093 267 968
18 271 242 1 860 995 225 360 608
19 525 528 13 026 935 584 994 368
20 1 017 726
21 1 969 458
22 3 811 128
23 7 375 278
24 14 279 604

of flipped spins with respect to the ground state, to obtain
an expansion in the temperature u = exp(−2βJ ) and the field
μ = exp(−2βh),

1

N
ln Z = ln(2)

N
+ q

2
βJ + βh +

∑
{g}

c(g)uqnv−2nl μnv , (9)

where q is the coordination number, h is the magnetic field,
and g is any graph on the lattice (including articulated and
disconnected graphs). c(g) here is the part of the number of
embeddings of the graph g into the lattice that is proportional
to N , and nv and nl are the number of vertices and edges
of the graph respectively. We note that setting h = 0 (μ =
1) we obtain the exact same coefficients as for the high-
temperature expansion by exchanging u ↔ v, as predicted by
the Kramers-Wannier duality (cf. Appendix C). From Eq. (9)
the magnetization is obtained via

M = −2μ
∂

∂μ

1

N
ln Z. (10)

All graphs contributing to the magnetization on the {5, 5}
lattice up to order u19 are shown in Fig. 5. Summing up their
contributions yields

M = 1 − 2u5μ − 10u8μ2 + 12u10μ2 − 60u11μ3

+ 150u13μ3 − 400u14μ4 − (92μ3 + 10μ5)u15

+ 1530μ4u16 − 2800μ5u17 − (1920μ4 + 180μ6)u18

+ 14600μ5u19 + O(u20). (11)

The magnetization is expected to vanish at the critical temper-
ature with a power law

M ∼ (Tc − T )β. (12)

We can thus analyze the inverse magnetization using FO-IDAs
as before. This yields a critical point,

uc = 0.608 ± 0.014, (13)

FIG. 5. All the graphs contributing up to order u19 of the magne-
tization of the model on the {5, 5}-tiling.
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FIG. 6. Left: More tilings of the hyperbolic plane. Their Schläfli
symbols from top to bottom and left to right: {3, 7}, {7, 3}, {6, 6},
{7, 7}. The tilings in the upper row are dual to one another, while the
tilings in the bottom row are self-dual. Right: Angles of a triangle in
the lattice.

which corresponds to a upper critical temperature of Tc =
4.01 ± 0.19. This is in agreement with both, the result from
the high-temperature series and the Monte Carlo simulation.
Also, in agreement with the Monte Carlo simulation, we see
that the magnetization does not vanish at the lower critical
temperature T̄c. Finally, we note that our results are commen-
surate with those obtained in Ref. [14].

III. VARIATION OF CRITICAL PROPERTIES
WITH CURVATURE

In this section, we perform Monte Carlo and series ex-
pansion analysis of Ising models on hyperbolic planes with
different (but uniform) curvatures. Before we do so we explain
how the lattice type {r, s} is connected to the magnitude of
curvature of the underlying space.

A. Curvature and lattices

One way to quantify curvature is by considering a circle
centered around a point p with radius r. Let Cp(r) be the
circumference of this circle. The curvature around the point
p is the difference between the circumference Cp(r) and the
circumference of a circle with the same radius in the euclidean
plane,

κp = lim
r→0+

3
2πr − Cp(r)

πr3
. (14)

Intuitively, the curvature at p is negative if there is an excess of
space in a local neighborhood around it. This excess of space
allows for a large variety of lattices in hyperbolic space. In
fact, curvature and the type of regular tiling are intimately
connected. This can be seen as follows. If we normalize the
edge-length to be 1, then the hyperbolic law of cosines states
that for any triangle in the hyperbolic plane with internal
angles (α, β, γ ) and a the side-length opposing α we have

cos(α) = − cos(β ) cos(γ ) + sin(β ) sin(γ ) cosh(κa). (15)

Triangulating a face of the tessellation by drawing lines from
the center of the face to a vertex and the mid-point of an edge
gives a triangle with angles (α, β, γ ) = (π/r, π/2, π/s) and

FIG. 7. Results for self-dual {r, r} lattices from Monte Carlo
(filled blue diamonds) and high-temperature series expansion (filled
orange circles) computations. (Left panel) The obtained transition
temperatures, Tc (in units of J), with the coordination numbers, r,
subtracted to ensure the visibility of the error bars. We note that
the transition temperatures are increase by the same amount as the
coordination number is increased by 1. This behavior is further
indication that the nature of the transition is indeed mean-field (see
main text for further details). (Right panel) The critical exponents
for the susceptibility (γ ) and magnetization (β). We see that the
high-temperature series expansion gives extremely precise mean-
field results, indicating the lack of corrections to scaling behavior.
We believe the deviations from mean-field predictions for the Monte
Carlo are due to finite-size effects, not all of which is taken into
account by our correlation number scaling (see Sec. II A for more
details). Note that high-temperature expansion only gives γ and not
β, for which only Monte Carlo data is provided.

a = 1/2 (see Fig. 6). It now follows that

κ = −4 cosh−1

[
cos(π/r)

sin(π/s)

]
. (16)

B. Monte Carlo and series expansion analysis

Next, we perform Monte Carlo and high-temperature se-
ries expansion analysis of the Ising model for the following
lattices: {r, r}, r = 5, 6, 7, 8. As the coordination number,
r, increases, the curvature of the plane also increases [cf.
Eq. (16)]. This causes the phase-transition temperature to
increase as well. This is because increase in the coordination
number increases the effective strength of the interaction seen
by each spin.

Figure 7 shows the variation of the transition temperature,
Tc (in units of J), and the exponents for susceptibility and
magnetization, γ and β, for the different self-dual lattices
(since we perform only high-temperature expansion for these
lattices, we obtain only the susceptibility exponent). We see
that as the coordination number is increased by 1, the Tc

also increases by approximately the same amount (within
errors in estimating the critical temperature). Intuitively, this
can be understood as a further indication of the mean-field
nature of the phase-transition since in a mean-field setting,
the transition temperature is proportional to the coordination
number [30]: Tc ∝ r. Note that the critical exponents obtained
by the series expansion are extremely close to the mean-
field estimate of 1. This indicates that the series expansions
are extremely well-behaved and there are no appreciable
corrections to scaling. However, the Monte Carlo estimates
are close to the mean-field value. We believe the deviations
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TABLE II. Estimation of vc = tanh(J/Tc ) and the critical expo-
nent γ obtained from the high-temperature series expansion of χ̃ .
The series analysis was done via first-order IDAs.

Lattice vc γ

{3, 7} 0.184764 ± 0.000004 0.9999 ± 0.0004
{7, 3} 0.51 ± 0.04 1.00 ± 0.02
{5, 5} 0.25200759 ± 0.00000006 1.000001 ± 0.000005
{6, 6} 0.200125 ± 0.000001 1.00002 ± 0.00004
{7, 7} 0.166673621 ± 4 × 10−9 1.0000001 ± 2 × 10−7

{8, 8} 0.142857482725 ± 7 × 10−12 0.9999999993 ± 9 × 10−10

from mean-field predictions for the Monte Carlo are due to
finite-size effects, not all of which is taken into account by our
correlation number scaling. The analysis of the Monte Carlo
data is done as in Sec. II A and the detailed plots are not shown
here for brevity.

Table I shows the results of the high-temperature series
expansion for susceptibility for self-dual lattices {r, r}, r =
5, 6, 7, 8. In addition, we have also provided the series for the
{3, 7} and the {7, 3} lattices, the latter two dual of one-another.
The last two lattices will be needed when comparing our
results to the Bethe lattice (see below). The exact values of Tc

and γ obtained by the series expansions are shown in Table II.

C. Comparison to the Bethe lattice

In this section, we compare the critical properties of the
above-analyzed hyperbolic lattices to the Bethe lattice. The
lattice is the infinite s-regular tree, i.e. every vertex has s
neighbours and there are no cycles (closed loops) in the graph.
It can be understood as a hyperbolic tiling where all faces have
an infinite number of sides (see Fig. 8) which means that we
can formally assign it the Schläfli symbol {∞, s}. Intuitively,
for hyperbolic tilings {r, s}, where the number of edges around
each face (r) is large the Bethe lattice should be a good
approximation. Due to its tree-structure it is straightforward
to solve the Ising model defined on the Bethe lattice [31]. The
critical temperature is given by

T B
c = 2

ln s
s−2

(17)

FIG. 8. The Bethe lattice with coordination number s = 3. It can
be interpreted as a hyperbolic tiling with Schläfli symbol {∞, s}.

FIG. 9. (a) Comparison of the results from Table II to the exact
solution of the Ising model on the Bethe lattice {∞, s} given by
Eq. (18). The upper bound is obtained in Ref. [32] where the authors
derive a bound on the coefficients of the series expansion of χ for
self-dual lattices. (b) The relative error when comparing the critical
value vc of the hyperbolic Ising model and the Bethe lattice with the
same coordination number. The tessellations here are {3, 7}, {4, 4}
(euclidean square lattice), {5, 5}, {6, 6}, and {7, 7}.

and hence

vB
c = 1

s − 1
. (18)

In Fig. 9 the exact solution of the Bethe lattice is plotted
together with the results of the high-temperature series expan-
sion (see Table II). Evidently, Eq. (18) provides a good ap-
proximation to the results that we obtained for the hyperbolic
tilings. The relative error between the critical values of the
hyperbolic lattice and the Bethe lattice |vc − vB

c |/vc is shown
in Fig. 9. The relative error decreases exponentially in the
number of sides of a face r. Note that the Ising model on 2D
square-lattice ({4, 4} tiling) shows critical properties that are
furthest from the mean-field behavior of the Bethe lattice.

D. The intermediate phase and the second phase-transition

Recall that in addition to the phase-transition at Tc, the
Ising model on the self-dual hyperbolic lattices undergoes
a second phase-transition at a lower temperature T̄c, where
Tc, T̄c are related by the Kramers-Wannier duality relation
[see discussion below Eq. (2)]. Since the critical properties
of the self-dual hyperbolic lattices are quite close to the Bethe
lattice, in what follows, we describe the fate of this second
phase-transition at T̄c in the case of the Bethe lattice.

In the range of temperatures T̄c < T < Tc, the correlation
function of two far away spins approaches m2 instead of going
to zero (that happens at temperatures T > Tc). Since the mag-
netization changes from zero to nonzero as T changes from
Tc + ε to Tc − ε, ε → 0, it is clear that the critical temperature
T B

c in Eq. (17) (obtained by analyzing the change in magneti-
zation [31]), corresponds to the critical temperature Tc. This
implies that the low-temperature phase of the Bethe lattice
Ising model, in fact, corresponds to the intermediate phase
of the hyperbolic plane Ising models. This begs the question:
What is T̄c for the Bethe lattice when the system transitions to
the pure ferromagnetic phase?

To answer this question, consider the correlation function
of the Ising model on the Bethe lattice. It can be obtained
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exactly [33] [cf. Eq. (C1)]:

〈σ0 σk〉 =
∑

σ e−βH (σ )σ0σk∑
σ e−βH (σ )

=
∑

σ

∏
(i, j)∈E (1 + σiσ jv)σ0σk∑

σ

∏
(i, j)∈E (1 + σiσ jv)

. (19)

Observe that those terms in the product which contain
an odd number of spin variables will cancel when summing
over all spin configurations. As taking the product can be
interpreted as picking subsets of edges, we can interpret the
numerator and the denominator as summing over subgraphs
of the lattice (cf. Appendix C). Together with the previous
observation we see that in the numerator the sum is taken over
all subgraphs for which vertices 0 and k have odd degree and
all other vertices have even degree, while in the denominator
all contributing graphs must have even degree.

For the Bethe lattice, the only contribution in the numerator
is the line graph connecting 0 and k. This graph has dist(0, k)
edges and hence, the numerator is exactly equal to vdist(0,k).
The denominator has only the empty graph as a nontrivial
contribution as the Bethe lattice has no finite subgraphs with
all vertices of even degree. Thus, for the Bethe lattice,

〈σ0σk〉 = vdist(0,k). (20)

The correlation function is exponentially decaying to zero
for k → ∞ at any fixed nonzero temperature (just as for
the hyperbolic Ising model in the intermediate phase) and
is nonanalytic at temperature 0 where it jumps to m2 = 1.
Thus, for the Bethe lattice, T̄c = 0. Note that we assuming the
convergence of the sum to arrive at this conclusion.

We tried to obtain signatures of this intermediate phase for
the different hyperbolic lattices. However, with the system-
sizes that we explored, the signal-to-noise ratio was not good
enough to make any conclusive predictions. We hope to return
to this problem in the future.

IV. THE ISING MODEL IN 3D HYPERBOLIC SPACE

So far, in this work, we analyzed the Ising model in
2D hyperbolic plane with Monte Carlo and high-temperature
series expansion techniques. While our analysis confirms the
mean-field nature of the phase-transition, our results are not
compatible with the conjectured formulas for critical expo-
nents given by the field theory calculations [8]. In this section,
we analyze the Ising model in 3D hyperbolic space with
periodic boundary condition, for which explicit 1/N compu-
tations revealed non-mean-field behavior. For Monte Carlo
simulations, we consider the {5, 3, 5} lattice where the 3D
hyperbolic space is tiled with dodecahedra in a way that there
are 5 dodecahedra around each edge. The high-temperature
analyses of the next section are done for {5, 3, k} lattices,
where k = 4, 5, 6.

A. Monte Carlo analysis

The Monte Carlo simulations were done for three different
lattice sizes of the {5, 3, 5} lattice with number of nodes in
the vertices given by N = 4 428, 14 762 and 390 963. We
were able to perform simulations on only three lattice sizes

FIG. 10. Results of the Monte Carlo simulations for the hyper-
bolic space with {5, 3, 5} tiling. The absolute magnetization per spin
(|m|), the energy per spin (〈e〉), average absolute susceptibility per
spin (χ ) and the specific heat per spin (c) are plotted in the top left,
top right, bottom left and bottom right panels, respectively.

since finding compactifications of 3D hyperbolic space is
computationally even more challenging than for their 2D
counterparts.

The results of the Monte Carlo simulations for the absolute
magnetization per spin, the energy per spin, average absolute
susceptibility per spin and the specific heat per spin are shown
in Fig. 10. The smaller two lattices were equilibrated with 104

sweeps of the lattice and the Monte Carlo measurements were
done over 105 sweeps of the lattice. The finite-size scaling
analysis was done as in Sec. II A using the correlation number
exponent μ = 2, thereby avoiding difficulties associated with
the multiple linear dimensions. Since the connectivity of the
3D lattice is higher (in the case considered, the number of
nearest neighbors is 12 for any given spin), we expect the
correlation number scaling to yield better results than that
obtained for the 2D lattices analyzed in Sec. III.

From the finite-size scaling analysis, (see Fig. 11) we
infer that the critical temperature is Tc = 10.96 ± 0.01 and
γ = 0.97 ± 0.02, β = 0.51 ± 0.04, which are close to the
mean-field predictions. Comparing our results to those ob-
tained by field theory (1/N) computations [8], we see that the
susceptibility exponent is not compatible with the field theory
computations, who obtain γ = 2. However, the magnetization
exponent, inferred from scaling relations, together with the
field theory computations, agree. As in the 2D case, the peak
in the specific heat did not develop upon increase of system
size, which indicates that the specific heat does not diverge
and we expect α = 0 in this case as well.

B. High-temperature series analysis

To verify the results obtained by Monte Carlo simulation,
we also compute the high-temperature series expansion of the
susceptibility for both the {5, 3, 5} and {5, 3, 4} lattices. We
also consider the {5, 3, 6} lattice which is a 3D generalization
of the dual of the Bethe lattice. The Bethe lattice can be
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FIG. 11. Results of the Monte Carlo simulations: (top left) the
fourth Binder cumulant (top right) data collapse for average absolute
susceptibility and the linear fits are system size scaling for average
absolute magnetization (bottom left) and average absolute suscepti-
bility per spin (bottom right). The vertical line in the top left panel at
T/J = 10.96 (see main text for error estimate) indicates the location
of phase-transition temperature obtained from the data collapse. The
linear fits in the bottom panels denote are obtained from the finite-
size analysis with respect to the number of spins. The slope for the
linear fit for average absolute susceptibility (magnetization) per spin
provides the ratio γ /μ (β/μ), where γ (β) denote the exponents for
susceptibility (magnetization) and μ is the scaling of the coherence
number (see Sec. II A for details). In the bottom panels, the error
indicated is only the fit error, the actual value and the error in the
exponent is provided in the main text.

interpreted as a tessellation where the faces are ∞-gons,
i.e., they have the (only possible) tessellation of the infinite
line R at their boundary. The {5, 3, 6} tessellation is dual
to the {6, 3, 5} tessellation which is a space tessellated by
noncompact polyhedra which have a hexagonal tiling {6, 3}
at their boundary.

The first four graphs contributing to those series, together
with their embeddig numbers per site, are given in Table III.
The weights W (g) are the same as in Sec. II B. Summing the
contributions yields the inverse susceptibility χ̄−1. Inverting
that series gives the coefficients in Table IV. For analysis of
the series, we use FO-IDAs. Averaging over eight different

TABLE III. The four smallest graphs (excluding the single bond)
contributing to the susceptibility series of the Ising model in hyper-
bolic space with {5, 3, 4}, {5, 3, 5}, and {5, 3, 6} tiling. The number
of embeddings per site c(g) for each graph g is given explicitly for
all three tilings

g

c{5,3,4}(g) 6 24/5 36 36
c{5,3,5}(g) 6 6 60 60
c{5,3,6}(g) 6 36/5 90 90

TABLE IV. The coefficients xn of the susceptibility series χ̃ =
1 + ∑∞

n=1 xn vn. For the Ising model on hyperbolic tilings in three
dimensions.

n {5, 3, 4} {5, 3, 5} {5, 3, 6}
1 12 12 12
2 132 132 132
3 1 452 1 452 1 452
4 15 972 15 972 15 792
5 175 644 175 632 175 620
6 1 931 556 1 931 292 1 931 028
7 21 241 356 21 237 012 21 232 668
8 233 590 980 233 526 972 233 462 868
9 2 568 797 772 2 567 915 412 2 567 030 988
10 28 249 045 956 28 237 381 152 28 225 683 060

approximants using a minimum number of eight terms yields
an estimate of the critical properties tabulated in Table V.
The results are very close to the mean-field predictions and
the {5, 3, 5} result is close to the result of the Monte Carlo
simulation. The exponents γ are not compatible with the
field-theory (1/N) prediction of γ = 2 [8].

V. CONCLUSION AND PERSPECTIVES

To summarize, we have analyzed the critical properties of
the Ising model in hyperbolic space using Monte Carlo and se-
ries expansion methods. The negative curvature of hyperbolic
space leads to a comparable number of spins on the boundary
as in the bulk of an open hyperbolic space, which leads to
large boundary effects. While these boundary effects can be
interesting in themselves, they obscure the bulk properties
of the model. We analyze the bulk properties of the Ising
model in hyperbolic spaces with periodic boundary condition.
First, we find compactifications of the hyperbolic manifolds,
which are manifolds with genus larger than 1, in contrast
to the euclidean plane with periodic boundary condition, a
torus, with genus 1. Performing Monte Carlo simulations on
these compactified hyperbolic manifolds, we infer the critical
temperature and critical exponents for several two- and three-
dimensional lattices. We obtain results that are close to mean-
field predictions. Subsequently, we perform high-temperature
series analysis for the different lattices which confirm the
mean-field nature of the critical behavior and are close to
our Monte Carlo findings. We analyze the variation of the
critical temperature as a function of curvature and explain
how the properties of the Ising model on the Bethe lattice
can be viewed as an asymptotic case of that on the different
hyperbolic lattices. Recently, 2D mesoscopic superconduct-

TABLE V. Estimation of vc = tanh(J/Tc ) and the critical expo-
nent γ obtained from the high-temperature series expansion of χ̃ for
hyperbolic tilings in three dimensions. The series analysis was done
via first-order IDAs.

Lattice vc γ

{5, 3, 4} 0.09093417 ± 0.00000008 1.000012 ± 0.000003
{5, 3, 5} 0.09094066 ± 0.00000013 1.000023 ± 0.000005
{5, 3, 6} 0.09094723 ± 0.00000018 1.000037 ± 0.000007
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ing circuit lattices have been engineered which implement
spin-systems in hyperbolic lattices [34]. With this remarkable
experimental progress, we are optimistic that statistical me-
chanical models in hyperbolic space will be experimentally
realized in the near future.

Before concluding, we outline several possible research
directions that are of interest. First, the 2D Ising model on the
hyperbolic plane with free boundary conditions is expected
to exhibit an intermediate phase, between the ferromagnetic
and the disordered phases. This intermediate phase, absent in
the euclidean space Ising model, shows broken translational
invariance, where the lattice is covered with infinitely large,
infinitely many magnetized domains. We were unable to find
conclusive evidence of this phase in our Monte Carlo simula-
tions for the case of periodic boundary conditions. This could
be due to the fact that the sizes of the systems analyzed were
not large enough to ensure several magnetized clusters to form
in addition to domains of randomized spins. We emphasize
that the main limitation is not the Monte Carlo aspect of the
simulation, but finding the compactifcations of the hyperbolic
space itself, which is computationally costly. Larger-scale
Monte Carlo simulations on compactified hyperbolic planes
may be able to find evidence for this intermediate phase.
Second, the found compactifications of hyperbolic space are
valuable for analyzing bulk properties of different gauge and
matter spin-systems in these spaces—an interesting problem,
much less explored than its flat-space counterpart. Third, the
high genus compactified hyperbolic manifolds can be used
to implement quantum codes such as toric codes, which are
promising for quantum information processing. In contrast to
their euclidean space counterparts, for toric codes on these
manifolds, the number of encoded logical qubits scales pro-
portionally with the number of actual physical qubits [6,7]. In-
terestingly, the decoding of these hyperbolic space toric codes
can be related to the random-bond Ising model in hyperbolic
space [35], which, to the best of our knowledge, has not been
analyzed before. The ferromagnetic to paramagnetic phase-
transition points provide the threshold for successful decoding
of the error syndrome for the different decoders of the quan-
tum code. We hope to report on properties of the random-bond
Ising model on hyperbolic manifolds in the near future.
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APPENDIX A: REGULAR TILINGS OF THE HYPERBOLIC
PLANE WITH PERIODIC BOUNDARY CONDITIONS

In this Appendix, we provide some technical details for
finding regular tessellations of the hyperbolic plane H2 with
periodic boundary condition.

1. Regular tilings of H2

A tiling is regular if its faces are unilateral, equiangular
and identical and the same number of faces meet at every
vertex. Regular tilings are classified by their Schläfli symbol
{r, s} where r stands for the number of edges in a face and s

stands for the number of faces meeting at a vertex. Familiar
examples of regular tilings are the square tiling {4, 4}, the
hexagonal tiling {6, 3} and the triangular tiling {3, 6}. These
are in fact all possible regular tilings in the euclidean plane.
The hyperbolic plane admits an infinite number of different
regular tilings {r, s} where r and s can be any integers � 3
satisfying 1/r + 1/s < 1/2.

2. Periodic boundaries

To analyze the Ising model with Monte Carlo and in
particular with finite-size scaling it is necessary to have a
family of surfaces of growing area (and with the same tes-
sellation). For the Ising model in euclidean space we can
consider the tessellation of square patches of increasing size
with boundaries. The values of the spins at the boundaries can
either be fixed to a value (fixed boundaries) or by treating them
the same as the bulk spins (free boundaries). Alternatively,
we can identify the two pairs of opposing boundaries of each
of the patches, which effectively creates a family of tori of
increasing area. In euclidian space, both of these approaches
are valid to perform a finite-size scaling analysis as in the limit
of infinite system size the effects of the boundaries will vanish.

However, this is not true in hyperbolic space. It can be
shown that the number of vertices N∂ at the boundary of a tes-
sellated patch in hyperbolic space is a constant fraction of the
total number of vertices N∂ = C N . The asymptotic value for
C can be derived using a recursion relation [36]. It is given by

C = lim
N→∞

N∂

N
= 1 − 2

λ + √
λ2 + 4

, (A1)

where λ = rs − 2r − 2s + 2. Note that for all possible hyper-
bolic tilings, where 1/r + 1/s < 1/2, we have that N∂/N >

1/2. For the Ising model this means that asymptotically
more than half of spins will participate in interaction terms
which are different from the bulk spins. Hence it is expected
that boundaries will change the behavior of the model in a
significant way, regardless of whether the boundary conditions
are free or fixed. We therefore want to stress that taking open
boundary surfaces of increasing size is not the correct limit to
take for finite-size scaling analysis. This has been observed
in Ref. [37] where the authors try to mitigate this effect by
ignoring spins close to the boundary (cf. Sec. II A).

We avoid this problem by performing finite-size scaling on
families of closed surfaces of increasing area. The process of
producing a finite surface is not as trivial as for euclidean
tilings, where it suffices to identify two pairs of opposite
boundaries. The reason for this is that translations in curved
spaces do not commute. This is well known for translations
for the sphere and in fact it can be taken as an alternative
definition of curvature. The details of this construction can
be found in Ref. [38]. For each {r, s}-tiling of the hyperbolic
plane we obtain a family of closed surfaces of growing area
with the same {r, s}-tiling.

These surfaces will necessarily have nontrivial topology
due to the Gauß-Bonnet theorem, which for negatively curved,
orientable surfaces states that the surface area is proportional
to the genus (the number of handles). This is not a cause for
concern as the largest region in which the lattice is identical
to the infinite lattice grows with its total area.
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APPENDIX B: DERIVATION OF THE
HIGH-TEMPERATURE SUSCEPTIBILITY SERIES

The susceptibility is given by

χ = lim
h→0

∂m

∂h
= β

1

N

N∑
i, j=1

〈σi σ j〉 − β m2, (B1)

where m = β−1 ∂ f /∂h is the average magnetization per spin.
We will perform an expansion in the quantity

χ̃ = 1

N

N∑
i, j=1

〈σi σ j〉. (B2)

It was shown in Ref. [27] that all nonzero contributions
in the high-temperature expansion of the inverse of the sum
over two-point correlators χ̃−1 are coming from biconnected
graphs. A biconnected graph is a connected graph which stays
connected if any of its vertices and all edges connected to it are
being removed.2 The restriction to biconnectedness drastically
reduces the number of graphs that we have to generate when
compared to the naive expansion.

The expansion of χ̃−1 is performed as follows: Let us
define a matrix M which contains the values of every two-
point correlator, i.e., Mi, j = 〈σi σ j〉. An elementary calcula-
tion shows that

N χ̃−1 =
N∑

i, j=1

M+
i, j, (B3)

where M+ is the Moore-Penrose pseudoinverse. For an Ising
model on a graph G with vertex-set VG we define the ampli-
tude

ψ (G) =
∑

i, j∈VG

M+
i, j − |VG|. (B4)

Let B(G) be the set of biconnected subgraphs of G induced
by a subset of the edges of G, R(G) the set of representatives
of each isomorphism-class of B(G) and c(g) the number of
embeddings of a subgraph g ⊂ G divided by the number of
vertices of G. It is shown in Ref. [27] that for any graph G
there exists a function W : B(G) → R assigning each bicon-
nected subgraph g of G a weight such that

ψ (G) =
∑

g∈B(G)

W (g) =
∑

g∈R(G)

c′(g)W (g), (B5)

where c′(g) is the embedding constant of g in G. Combining
Eqs. (B3)–(B5) and applying the result to the tiling of the
infinite plane we obtain

χ̃−1 = 1 +
∑

g

c(g)W (g), (B6)

where each g is a representative of a biconnected subgraph of
the infinite tessellation of H2. We can now obtain the expan-
sion of χ̃−1 to any desired order by generating biconnected
subgraphs g of the tessellation, their embedding constants c(g)
and determining their weights W (g) using Eqs. (B4) and (B5).

2Biconnected graphs are sometimes also referred to as “star-
graphs” in the literature.

APPENDIX C: KRAMERS-WANNIER DUALITY

For a finite system with N spins and no external magnetic
field (h = 0) we can rewrite the partition function ZN in two
different ways. We assume for our proof that the system is
defined on a self-dual tiling of a closed surface.

1. High-temperature expansion

Let Z1 be the set of subsets γ ⊂ E such that in the subgraph
induced by one of its elements every vertex has even degree.
The partition function can be rewritten as follows:

Z (K ) =
∑

σ∈{±1}N

∏
(i, j)∈E

exp(Kσiσ j )

= (cosh K )|E | ∑
σ

∏
(i, j)

(1 + σiσ j tanh K )

= 2N (cosh K )|E | ∑
γ∈Z1

(tanh K )|γ |. (C1)

In the last equation we have used that the expansion of
the product

∏
(i, j)∈E (1 + σiσ j tanh K ) gives a sum over all

subsets of edges γ ⊂ E where each term is of the form
(tanh K )|γ | ∏

(i, j)∈S σiσ j . All terms where the subgraph in-
duced by γ has a vertex v with odd degree have to cancel as
states σ with σv = ±1 appear in the sum. Hence, only terms
for which γ induces an even degree subgraph give a nonzero
contribution. These are exactly the elements of Z1.

2. Low-temperature expansion

Let B1 be the set of all subsets of edges γ̄ ⊂ E such that
every face is surrounded by an even number of edges in γ̄ :

Z (K̄ ) =
∑

σ∈{±1}N

∏
(i, j)∈E

exp(K̄σiσ j )

= 2
∑
γ̄∈B1

exp(K̄ )|E |−2|γ̄ |

= 2 exp(K̄ )|E | ∑
γ̄∈B1

exp(−2K̄ )|γ̄ |. (C2)

Note that the first equality directly follows from the definition
of B1.

For all orders smaller than the length of a noncontractible
loop there exists a 1-to-1 mapping from B1 to Z1. In this case
we can choose

exp(−2K̄ ) = tanh(K ), (C3)

and we see that the expressions given in Eqs. (C1) and (C2)
are proportional. This gives Eq. (2).

Under the assumption that the phase-transition point is
unique, as it is the case for the euclidean Ising model, this
suffices to determine the critical temperature by solving for
K = K̄ in Eq. (C3). However, we know that there exist two
different critical temperatures in the hyperbolic Ising model
[12,13] and Eq. (2) allows us to determine the dual tempera-
ture.
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