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Statistical analysis of stochastic magnetic fields
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Previous work has introduced scale-split energy density ψl,L (x, t ) = 1
2 Bl · BL for vector field B(x, t ) coarse

grained at scales l and L, in order to quantify the field stochasticity or spatial complexity. In this formalism,
the Lp norms Sp(t ) = 1

2 ||1 − B̂l · B̂L||p, pth-order stochasticity level, and Ep(t ) = 1
2 ||Bl BL||p, pth order mean

cross energy density, are used to analyze the evolution of the stochastic field B(x, t ). Application to turbulent
magnetic fields leads to the prediction that turbulence in general tends to tangle an initially smooth magnetic
field increasing the magnetic stochasticity level, ∂t Sp > 0. An increasing magnetic stochasticity in turn leads to
disalignments of the coarse-grained fields Bd at smaller scales, d � L, thus they average to weaker fields BL

at larger scales upon coarse graining, i.e., ∂t Ep < 0. Magnetic field resists the tangling effect of the turbulence
by means of magnetic tension force. This can lead at some point to a sudden slippage between the field and
fluid, decreasing the stochasticity ∂t Sp < 0 and increasing the energy ∂t Ep > 0 by aligning small-scale fields Bd .
Thus the maxima (minima) of magnetic stochasticity are expected to approximately coincide with the minima
(maxima) of cross energy density, occurrence of which corresponds to slippage of the magnetic field through
the fluid. In this formalism, magnetic reconnection and field-fluid slippage both correspond to Tp = ∂t Sp =
0 and ∂t T2 < 0. Previous work has also linked field-fluid slippage to magnetic reconnection invoking totally
different approaches. In this paper, (a) we test these theoretical predictions numerically using a homogeneous,
incompressible magnetohydrodynamic (MHD) simulation. Apart from expected small-scale deviations, possibly
due to, e.g., intermittency and strong field annihilation, the theoretically predicted global relationship between
stochasticity and cross energy is observed in different subvolumes of the simulation box. This indicate ubiquitous
local field-fluid slippage and reconnection events in MHD turbulence. In addition, (b) we show that the conditions
Tp = ∂t Sp = 0 and ∂t Tp < 0 lead to sudden increases in kinetic stochasticity level, i.e., τp = ∂t sp(t ) > 0 with
sp(t ) = 1

2 ||1 − ûl .ûL||p, which may correspond to fluid jets spontaneously driven by sudden field-fluid slippage-
magnetic reconnection. Otherwise, they may correspond only to field-fluid slippage without energy dissipation.
This picture, therefore, suggests defining reconnection as field-fluid slippage (changes in Sp) accompanied with
magnetic energy dissipation (changes in Ep). All in all, these provide a statistical approach to the reconnection
in terms of the time evolution of magnetic and kinetic stochasticities, Sp and sp, their time derivatives, Tp = ∂t Sp,
τp = ∂t sp, and corresponding cross energies, Ep, ep(t ) = 1

2 ||ul uL||p. Furthermore, (c) we introduce the scale-split
magnetic helicity based on which we discuss the energy or stochasticity relaxation of turbulent magnetic
fields—a generalized Taylor relaxation. Finally, (d) we construct and numerically test a toy model, which
resembles a classical version of quantum mean field Ising model for magnetized fluids, in order to illustrate
how turbulent energy can affect magnetic stochasticity in the weak field regime.
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I. INTRODUCTION

Perhaps the most famous example of unstable solutions for
differential equations in physics is Einstein’s static solution
to the field equations in general relativity. Einstein had to
introduce an extra term, proportional to the metric and a
constant called the cosmological constant, in order to achieve
a static solution describing the whole universe (this was in
the early 1900s and the expansion of universe had not been
discovered yet). His static solution turned out later to be
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unstable like a pen balanced on its tip; a small perturbation
would lead to either an expanding or a contracting universe.1

Similar situations arise in other problems; for example, as

1Observations by Slipher, and later by Hubble, revealed redshift
in the spectrum of cosmologically distant objects implying that the
universe was in fact expanding and not static. Hence there was no
need to introduce the cosmological constant at all, which was why
Einstein regretted adding it to his field equations. But there was a
more serious problem. Quantum fluctuations in vacuum give empty
space energy, the sum of all ground states of quantum fields. This
energy should gravitate according to general relativity. Therefore,
the effective cosmological constant λeff is the sum of all such
zero-point energies of normal modes of quantum fields 〈ρQFT 〉 and
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viscosity tends to zero in a fluid, i.e., the Reynolds number
tends to infinity, the hydrodynamic solutions become unstable.
Physically, this translates into the fact that as viscosity be-
comes smaller and smaller, or the Reynolds number larger and
larger, the flow becomes more sensitive to the development
of turbulence.2 For instance, a cup of coffee (small viscosity)
can easily become turbulent if stirred by a spoon while a
cup of honey, with a much larger viscosity than coffee, will
retain its laminar flow even if stirred forcefully. However,
large amounts of honey (large Reynolds numbers) can still
become turbulent although its viscosity is much larger than
that of coffee. This also explains why lava, which is typically
105 times more viscous than water, can become turbulent as
it flows out of an active volcano. Even if viscosity ν is not
small at all, therefore, a system with a large length scale L or
a large characteristic velocity U can become turbulent since
the corresponding Reynolds number Re = LU/ν can be huge
anyway. Mathematically, any magnetohydrodynamic (MHD)
equation, e.g., Navier-Stokes or the induction equations, can
be written in terms of some dimensionless variables such as

x = x/L, t = t/(L/U ), u = u/U, p = p/U 2,

with position vector x, time t , velocity vector u and pressure
p. The Navier-Stokes equation, for instance, becomes

∂u
∂t

+ u · ∇u = −∇p + 1

Re
∇2

u.

Therefore, the regime of small viscosity ν (resistivity η)
translates into the regime of large kinetic (magnetic) Reynolds
number Re = UL/ν (Rem = UL/η). That is to say, the limit
ν → 0 (η → 0) is equivalent to the limit Re → ∞ (Rem →
∞). In astrophysical systems, L is usually very large, and thus
both kinetic and magnetic Reynolds numbers are huge, e.g.,
of order 1014 in a galaxy. This implies that such systems are
typically turbulent.

The rate at which energy is dissipated by viscosity is
given by ν|∇u|2, thus we might expect that in the limit
when viscosity becomes negligibly small, i.e., ν → 0 or
Re → ∞, the dissipation rate would vanish. Interestingly, it
does not! This means that the velocity gradients should have
blown up |∇u| → ∞, so in the limit ν → 0, the dissipation
rate remains finite limν→0 ν|∇u|2 → ε > 0 (see Ref. [2] and
references therein). Because the limit ν → 0, or Re → ∞,
usually corresponds to turbulent motions, thus we conclude
that in turbulence, the velocity field would in general become

Einstein’s constant λ. According to cosmological observations, these
two constants cancel out to better than 118 decimal places leading
to a very small λeff = λ + 〈ρQFT 〉. This fine-tuning problem is the
modern cosmological constant problem; see Ref. [1] for a classical
review.

2The simple mathematical fact that ν → 0 is totally different
from ν = 0, despite its triviality, is sometimes overlooked raising
confusion and misunderstanding. In asserting that in the limit of
small viscosity ν → 0, or large Reynolds number Re → ∞, the flow
becomes unstable to the development of turbulence, and there is no
need for zero viscosity, which is physically implausible of course.
Instead, what is implied is that one can take the viscosity as small as,
or the Reynolds number as large as, one wishes.

Hölder singular3 and its gradients would blow up |∇u| >

∞. It turns out that in fact particle (Lagrangian) trajectories
become stochastic (random; indeterministic and nonunique)
under these conditions (see, e.g., Refs. [3–5]). This means that
similar to the uncertainty encountered in quantum mechanics,
one cannot predict the exact trajectory of any fluid particle
with certainty. This is a remarkable fact by itself (since it im-
plies that God plays dice even in classical physics), but it also
has extremely important consequences for magnetic fields.

Usually, in particular in astrophysical setups, large ki-
netic Reynolds numbers are accompanied with large magnetic
Reynolds numbers. The ratio of the latter to the former is, in
fact, the ratio of viscosity to resistivity—the magnetic Prandtl
number Prm = ν/η. Analogous to velocity field in the limit
of vanishing viscosity, a magnetic field as well in the limit of
vanishing resistivity η →, i.e., Rem → ∞, becomes Hölder
singular as the magnetic energy dissipation rate does not
vanish either, η|∇B|2 → εm > 0, as experiments and simula-
tions indicate (see, e.g., Refs. [6–8]). Magnetic field gradients
become ill-defined consequently, |∇B| → ∞ when η → 0.
The Alfvén flux freezing theorem [9] indicates that, in the
limit of vanishing resistivity, η → 0, magnetic field lines will
be frozen into the fluid. However, in a turbulent fluid, the ve-
locity field is Hölder singular, and the corresponding particle
trajectories are indeterministic and nonunique: which particle
trajectory will magnetic field lines follow? Magnetic fields
will behave stochastically under such conditions [10–13], and
consequently magnetic field lines will not have any identity
preserved in time; i.e., it is impossible to pick up a field line
and track it in time. Even the definition of magnetic field lines
as parametric curves x(s) whose tangent lines are given by the
magnetic field B(x, t ) at any point (x, t ) breaks down since
the corresponding differential equation dx(s)/ds = B̂(x(s), t )
has nonunique solutions for Hölder singular B̂ = B/|B| [14].
In such situations, the conventional flux freezing would not
apply; instead a stochastic version of the Alfvén theorem,
recently developed by Eyink [10], is required.

The above arguments have been established rigorously and
made mathematically precise over the last few decades (see,
e.g., Refs. [2,14,15] and references therein). In the presence of
turbulence, it is now well understood that the magnetic field
behaves stochastically and its evolution should be studied in a
statistical sense. The key points to keep in mind in particular
include the fact that the magnetic field is not frozen into the
fluid in the conventional sense (rather it holds in a statistical
sense), there is field-fluid slippage on a wide range of scales,
and the fact that magnetic reconnection—magnetically driven
spontaneous, eruptive fluid motions—occurs not only in small
diffusion regions but also on much larger scales in the turbu-
lence inertial range; see Sec. II C). Finally, since neither the
magnetic field nor velocity field is (Lipschitz) continuous in
turbulent flows, as discussed above, thus their spatial deriva-
tives may be ill-defined. These (Hölder) singularities in MHD

3A real valued function g in Rn is Hölder continuous if two non-
negative and real constants C and h exist such that |g(x) − g(y)| �
C‖x − y‖h for all x, y ∈ Domain(g). If the Hölder exponent h is equal
to unity, then g is Lipschitz continuous. If h < 1, g is called Hölder
singular.
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equations, which contain all sorts of such spatial derivatives,
can be removed by, for example, coarse graining, which will
be briefly reviewed in Sec. II.

Stochastic flux freezing [10] (a generalized version of
Alfvén flux freezing applicable also in turbulence) along with
the notion of the stochasticity of field lines [11,13,16] play
crucial roles in the evolution of magnetic fields including the
phenomenon of magnetic reconnection. In recent years, the
problem of magnetic reconnection (for a review of magnetic
reconnection see, e.g., Refs. [17–20]) in turbulence has been
approached taking into account the field stochasticity (see,
e.g., Refs. [21,22]). Yet concepts such as topology change
and weak or strong stochasticity are widely used without
providing concise mathematical definitions. Jafari and
Vishniac [14] have recently provided a rigorous mathematical
definition for magnetic stochasticity, or spatial complexity, in
terms of the renormalized, i.e., coarse-grained, magnetic field
at different scales. Magnetic field B(x, t ) is coarse-grained,
or renormalized, at scale l by multiplying it by a rapidly
decaying function (kernel) G(r) and integrating: Bl (x, t ) =∫

V Gl (r)B(x + r, t ) d3r. This is the average magnetic field of
a parcel of fluid of length scale l at point (x, t ). In general,
Bl (x, t ) will differ from BL(x, t ) for l 
= L. For a stochastic
field B(x, t ) (in turbulence), the angle between Bl (x, t ) and
BL(x, t ) at any arbitrary point x will fluctuate as a stochastic
variable. Therefore, φ(x, t ) = cos θ = B̂l .B̂L is a measure
of local magnetic stochasticity at point (x, t ). The rms
average of (1 − φ)/2 is a time-dependent, volume-averaged
function which measures magnetic stochasticity level in a
volume V : S(t ) = (1 − φ)rms/2. The temporal changes in the
stochasticity level in turn define topological deformations of
the magnetic field and can be related to magnetic topology
change. A short review of these concepts is given in Sec. II A.
A quantitative relationship between magnetic stochasticity or
spatial complexity S(t ) and magnetic diffusion in turbulence
has also established in Ref. [15]. In this paper, we extend
and illustrate this mathematical formalism using physical
arguments and a toy model to show how the topology and
energy content of a turbulent magnetic field are related to its
stochasticity level. In particular, we use an incompressible,
homogenous MHD simulation, archived in an online,
web-accessible database [23–25], to test the predictions
of this model for magnetic reconnection and the slippage of a
magnetic field through the fluid.

We should emphasize that this paper presents only a statis-
tical, rather than a diagnostic, analysis based on the statistical
behavior of turbulent magnetic fields. Thus our approach does
not involve the dynamics governed or affected by different
instabilities, which in fact may accompany or even trigger
magnetic reconnection. It is thus beyond the scope of this pa-
per to study such phenomena including, in particular, tearing
modes instability, which, incidentally, turns out to play a sub-
dominant role in 3D reconnection as already shown by many
authors (e.g., see Refs. [11,21,26] and references therein).

The detailed plan of the present paper is as follows: In
Sec. II we review the method of coarse graining used to re-
move magnetic field singularities and the theoretical approach
to formulate stochasticity level of magnetic fields developed
by Jafari and Vishniac [14]. Also, a brief introduction to
magnetic field-fluid slippage [12] and magnetic reconnection

with a focus on stochastic reconnection [21] is provided in
this section. In Sec. III we consider the field-fluid slippage
and reconnection in MHD turbulence and extend the results
of Ref. [14] by (a) defining the kinetic stochasticity sp and
cross energy ep and relating the time evolution of them to
their magnetic counterparts, (b) constructing a toy model for
weak magnetic fields in analogy with the classic mean field
Ising model for magnetic spins, and finally (c) defining the
scale-split magnetic helicity and applying it to turbulent fields
to study magnetic stochasticity and energy relaxation. These
theoretical results are then tested using an incompressible,
homogeneous MHD simulation stored online in the Johns
Hopkins Turbulence Database ([23–25]). We summarize and
discuss our theoretical and numerical results in Sec. IV.

II. MAGNETIC STOCHASTICITY

It is simple calculus to show that in the limit of vanishing
magnetic diffusivity, the magnetic field becomes frozen into
the fluid. Since diffusivity is indeed very small in most
astrophysical systems, this mathematical result has led to
the physical conclusion that in such situations the magnetic
field is frozen into the fluid as a good approximation. This
phenomenon of “magnetic flux-freezing,” also known as the
Alfvén theorem, is usually applied in the laboratory and
astrophysical fluids, implicitly assuming that MHD equations
remain well-behaved. In the presence of turbulence, however,
the velocity and magnetic fields would be generally singular
and MHD equation ill-defined. Consequently, the Alfvén
flux-freezing theorem does not generally apply in such
environments.

In fact, for a magnetized fluid in the limit ν, η → 0, it
turns out that even the very concept of magnetic field line
encounters mathematical difficulties when the flow becomes
turbulent. The existence and uniqueness of integral curves
(field lines) is guaranteed only for Lipschitz continuous fields.
Therefore, if the Lipschitz continuity condition is not satisfied,
and hence uniqueness theorem cannot be applied, magnetic
(and velocity) field lines would generally become ill-defined.

As discussed in Ref. [14], difficulties similar to the di-
verging velocity and magnetic fields in turbulence were en-
countered in quantum electrodynamics and quantum chro-
modynamics a long time ago. For example, it turned out
that calculating simple quantities such as mass or electric
charge of particles leads to diverging expressions—the so-
called ultraviolet (UV) divergences. This signals the fact that
our theories, for instance, quantum field theory, are only
approximations of nature valid only above a cutoff scale lmin,
which is typically much larger than the Planck scale lP =
(h̄G/c3)1/2 ∼ 10−35 m. As one resolution, lacking a complete
theory describing nature down to very small scales of order,
the Planck length at present, regularization and renormaliza-
tion group (RG) methodologies were developed to resolve
these theoretical difficulties. The general scheme of these
formalisms is also applicable in many other fields including
HD and MHD. Thus, one can remove the singularity of a
given vector field, e.g., a magnetic field, by coarse graining
or renormalizing the field. For a given velocity field u(x, t ),
or magnetic field B(x, t ), for instance, the renormalized field
at scale l is simply the average field in a fluid parcel of size
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l located at point x at time t , denoted by ul (x, t ) or.Bl (x, t )
Mathematically, this kind of averaging is called smoothing,
which can be expressed in terms of generalized functions
called distributions. In practice, to renormalize an arbitrary
vector field B(x, t ) at a length scale l , we can simply multiply
it by a rapidly decaying function G and integrate the result
over the volume of interest:

Bl (x, t ) =
∫

V
Gl (r)B(x + r, t ) d3r, (1)

where

Gl (r) = l−3G
(r

l

)
, (2)

with G as a smooth, non-negative, and rapidly decaying
kernel. In fact, without loss of generality, we may assume

G(r) � 0, (3)

lim
|r|→∞

G(r) → 0, (4)∫
V

d3rG(r) = 1, (5)∫
V

d3r r G(r) = 0, (6)

and ∫
V

d3r|r|2 G(r) = 1. (7)

We may also take G(r) = G(r) with |r| = r, i.e., isotropic
kernel, which leads to

∫
d3rrir jG(r) = δi j/3 [2]. The renor-

malized field ul represents the average field in a parcel of fluid
of length scale l at position x.

A. Stochasticity level

The scale-split energy density, ψ (x, r; t ), is defined [14] in
terms of the renormalized vector field Bl (x, t ) at scale l and
the renormalized field BL(x, t ) at scale L as

ψ (x, r, t ) = 1
2 Bl (x, t ).BL(x + r, t ). (8)

Here we will be concerned only with ψ (x, r = 0, t ) ≡
ψ (x, t ). We write ψ (x, t ) = φ(x, t )χ (x, t ) using the scalar
fields

φ(x, t ) =
{

B̂l (x, t ).B̂L (x, t ) BL 
= 0 and Bl 
= 0,

0 otherwise.
(9)

which is called the topology field, and

χ (x, t ) = 1
2 Bl (x, t )BL(x, t ), (10)

which is called the cross energy field.
The stochasticity level S2, topological deformation T2 =

∂t S2(t ), mean cross energy density E2(t ), and field dissipation
D2 = ∂t E2(t ) are given by (for more general definitions see
Ref. [14])

S2(t ) = 1

2
(1 − φ)rms, (11)

T2(t ) = 1

4S2(t )

∫
V

(φ − 1)
∂φ

∂t

d3x

V
, (12)

E2(t ) = χrms, (13)

and

D2(t ) = 1

E2(t )

∫
V

χ∂tχ
d3x

V
. (14)

It is easy to show [14] that

T2(t ) = 1

4S2(t )

∫
V

[B̂l · B̂L − 1]

[
B̂L ·

(
∂t Bl

Bl

)
⊥Bl

+ B̂l ·
(

∂t BL

BL

)
⊥BL

d3x

V
. (15)

Here (·)⊥B represents the perpendicular component with
respect to B. In a similar way, we find

D2(t ) = 1

E2(t )

∫
V

(
BlBL

2

)2

×
[

∂t
(
B2

L/2
)

B2
L

+ ∂t
(
B2

l /2
)

B2
l

]
d3x

V
. (16)

For the magnetic field B in an electrically conducting fluid,
the time derivative of the field appearing in these equations
obeys the renormalized induction equation:

∂Bl

∂t
= ∇ × (u × B)l − ∇ × Pl , (17)

where we have used the renormalized Ohm’s law:

El + (u × B)l = Pl . (18)

Here P represents any nonideal term in the generalized Ohm’s
law, e.g., the resistive electric field P = ηJ with J = ∇ × B.
This form of renormalized Ohm’s law can also be rewritten as

El = Pl + Rl − ul × Bl . (19)

Therefore, even in the absence of any nonideality P, there is a
nonlinear term which is not necessarily negligible:

Rl = −(u × B)l + ul × Bl ≡ −El . (20)

Here the turbulent electric field (EMF) El ≡ −Rl is the mo-
tional electric field induced by turbulent eddies of scales
smaller than l and plays a crucial role in magnetic dynamo
theories. We find

∂Bl

∂t
= ∇ × (ul × Bl − Rl − Pl ). (21)

We may assume that Pl is negligible in the inertial range of
turbulence, which can basically be taken as the definition of
the inertial range.

The only remaining piece to write Eqs. (15) and (16) is
to note that the derivative of the unit vector B̂ = B/|B| is
associated with the perpendicular component of the induction
equation:

∂t B̂l =
(

∂t Bl

Bl

)
⊥
, (22)

while the evolution of the magnitude of the magnetic field at
scale l is related to the parallel component of the induction
equation:

∂Bl

∂t
=

(
∂Bl

∂t

)
‖
. (23)
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Putting all this together, we find

T2(t ) = 1

4S2(t )

∫
V

d3x

V
[B̂l · B̂L − 1]︸ ︷︷ ︸

self-entanglement (stochasticity)

⎡
⎢⎢⎢⎢⎣

(
B̂L

Bl
· ∇ × (ul × Bl )⊥Bl

+ B̂l

BL
· ∇ × (uL × BL )⊥BL

)
︸ ︷︷ ︸

turbulence (flow)

− (
B̂L · �⊥

l + B̂l · �⊥
L + B̂L · σ⊥

l + B̂l · σ⊥
L

)︸ ︷︷ ︸
slippage (reconnection)

⎤
⎥⎥⎥⎥⎦ (24)

and

D2(t ) = 1

E2(t )

∫
V

(
BlBL

2

)2

⎡
⎢⎢⎢⎣

(∇ × (ul × Bl )‖Bl

Bl
+ ∇ × (uL × BL )‖BL

BL

)
︸ ︷︷ ︸

fluid-field interaction

− (
�

‖
l + σ

‖
l + �

‖
L + σ

‖
L

)︸ ︷︷ ︸
magnetic dissipation

⎤
⎥⎥⎥⎦ d3x

V
.

In these equations, we have used the definitions

�l = (∇ × Rl )

Bl
(25)

and

σ l = (∇ × Pl )

Bl
, (26)

which are, respectively, the velocity-source terms in the tur-
bulent inertial range and dissipative range. It has been already
shown by Eyink [12] that the perpendicular component of
these vector fields (with respect to the magnetic field at the
same scale), i.e., �⊥

l or σ⊥
l at small scales, are also the source

terms driving the relative field-fluid velocity; see Eq. (35) in
the next subsection. Thus magnetic reconnection is intimately
related (see Refs. [12,14]) to �⊥

l 
= 0 (σ⊥
l 
= 0 at small scales).

We will briefly review the slippage between the magnetic field
and the fluid in the next subsection.

In passing, we also note that one can use the identity ∇ ×
(u × B) = B · ∇u − B∇ · u − u · ∇B + u∇ · B to write the
bare induction equation as Dt B = B · ∇u − B∇ · u + λ∇2B
with Lagrangian derivative Dt ≡ (∂t + u · ∇). This is because
in the “ideal MHD.” the magnetic diffusivity λ tends to zero,
λ → 0, while the equations are assumed to be still well-
defined. Using the continuity equation Dtρ + ρ∇ · u = 0, one
finds

Dt

(
B
ρ

)
=

(
B
ρ

)
· ∇u. (27)

This is the conventional flux freezing theorem presuming
that MHD equations remain well-behaved in the limit λ → 0
and the integral curves of B/ρ are advected with the fluid.
For incompressible flow, the above expression become Dt B =
B · ∇u. Now, if one tries to obtain these well-known results
using the coarse-grained induction equation, Eq. (21), one
finds for incompressible flow Dt Bl = Bl · ∇ul − ∇ × (Rl +
Pl ). This expression indicates that flux freezing does not hold
in turbulence even in the limit of vanishing nonidealities Pl →
0 (e.g., for a vanishing resistive electric field Pl = λ∇ ×

Bl → 0) and nonlinearities, Rl → 0. Instead, in addition to
∇ × Pl → 0, magnetic flux freezing would more importantly
also require ∇ × Rl → 0, which generally does not hold in
turbulence. These conditions, of course, can be expressed in
terms of velocity-source terms defined by (25) and (26).

Note that the evolution of the direction vector of a magnetic
field, B̂l = Bl

Bl
, given by Eq. (1), is governed by �⊥

l and σ⊥
l at

small scales:

∂t B̂l = ∇ × (ul × Bl )⊥
Bl

− �⊥
l − σ⊥

l . (28)

Let us summarize the implications of the above arguments
about reconnection. Note that magnetic reconnection is a
multiscale phenomenon, and it occurs on a wide range of
scales in a turbulent system. The renormalized Ohm’s law
has a collection of different terms with different physical
meanings. The nonideal effects in the Ohm’s law, denoted
collectively by Pl at scale l , arise from microscale plasma
effects such as the resistive electric field, Hall effect, etc.
Such mechanisms drive reconnection at small diffusive scales.
Such nonidealities, as discussed before, are mathematically
represented by ∇ × Pl in the induction equation. This term
is also related to the velocity-source term for the magnetic
field lines slipping through the fluid as we showed before. The
width of reconnection zone is set by these small-scales effects,
e.g., by resistivity. On the other hand, the nonlinear term Rl (at
scale l) in the coarse-grained, generalized Ohm’s law which
arises from nonlinear interactions below the arbitrary scale l .
This is the same (with a negative sign) as the turbulent EMF
in dynamo theories. At larger scales in the inertial range, �l

dominates σl , which is negligible. At smaller scales, the resis-
tive electric field drives the reconnection. However, at larger
scales in the inertial range, the turbulent EMF dominates the
resistive electric field in driving reconnection [10–12].

As we go down to smaller scales in the inertial range, �l

decreases and eventually becomes comparable to σl at the
dissipative scale. Below the dissipative scale, σl dominates
�l . Physically, all this translates into the well-known fact
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discussed in many papers in the last decade that reconnection
occurs on all scales [11,12,14]. At smaller dissipative scales,
it is driven by nonidealities denoted by Pl , e.g., resistive
electric field, whereas at larger scales in the inertial range it
is driven by nonlinearities denoted in the Ohm’s law by Rl ,
which are introduced by the turbulence. The explosive nature
of superlinear Richardson diffusion brings distant field lines to
small separations set by resistivity where they may reconnect
while it also causes explosive separations between initially
close field lines. These ideas are the essence of stochastic
reconnection [21], general turbulent reconnection [12], and
stochastic flux freezing [10]. For example, Ref. [13] showed
that the reconnection zone may in fact contain a great many
current sheets instead of just one. This work shows that one
can have a distribution of many current sheets. Also, the
example studied in Figs. (3)–(7) of Ref. [12] presents evidence
for a very large-scale reconnection at the heliospheric current
sheet.

B. Field-fluid slippage

Magnetic field in a turbulent, highly conducting fluid, e.g.,
a plasma, cannot be assumed perfectly frozen into the fluid
as we discussed before. Instead the field may “slip” through
the fluid. In order to quantify this field-fluid slippage mathe-
matically, let us, following Eyink [12], denote by ξ(s; x, t ) an
arbitrary point on the magnetic field line at time t located at a
distance s from a base point x (along the field line), the unit
tangent vector to the curve parametrized by s is

d

ds
ξ(s; x, t ) = B̂[ξ(s; x, t ), t], ξ(s = 0; x, t ) = x, (29)

where B̂ = B/|B|. On the other hand, the position of a fluid
particle, which starts at x0 at time t0 at a later time t is
governed by

d

dt
x(t, x0, t0) = u[x(t, x0, t0)], x(t0, x0, t0) = x0. (30)

If magnetic flux freezing holds, we should be able to
parametrize both field lines and the trajectories of the fluid
particles together using the same function ξ ≡ x. In other
words, in that case, we could find a function s(t, s0, x0)
such that ξ[s(t ; s0, x0); x(t ; x0, t0), t] = x[t ; ξ(s0; x0, t0), t0].
The derivative of this equation reveals that the flux-freezing
condition, (d/dt )ξ = u(ξ, t ) ≡ ũ, holds if and only if

ṡ(t )B̂(ξ, t ) + Dtξ = ũ, (31)

where Dt = ∂t + u · ∇ is the convective derivative. To deter-
mine s(t ), we can write

ṡ(t ) = (ũ − Dtξ) · B̂ = (ũ − Dtξ)‖, s(t0) = s0. (32)

Consequently, the condition dξ/dt = ũ will hold if and only
if for all s, x, and t ,

(Dtξ)⊥(s; x, t ) − u⊥(ξ(s; x, t ), t ) = 0. (33)

This expression is another way to quantify flux freezing.
It states that the relative perpendicular velocity (with respect
to the field line) between the field line and fluid elements
vanishes. Thus when flux freezing condition is not satisfied,

this relative velocity has a nonzero value which we denote by

�w⊥(s; x, t ) = (Dtξ − ũ)⊥(s; x, t ). (34)

Therefore flux-freezing condition translates into �w⊥ ≡ 0. It
is easy to show (for details see Ref. [12]) that

d

ds
�w⊥ − [(∇ξB̂)T − (B̂B̂) · (∇ξB̂)] · �w⊥ = − (∇ × P)⊥

|B| .

(35)

Hence, assuming that the field remains smooth as P → 0,
one might naively conclude that flux freezing holds and the
field lines move with the fluid elements with no slippage. In
fact, the above expression indicates that flux freezing holds
if B̂ × (∇ × P) = 0. This condition has long been known as
the general condition for flux freezing [27]: (∇ × P)‖ = 0.
Note that this conclusion, in the limit P → 0, is based on the
assumption that the magnetic field remains smooth and differ-
entiable. We also emphasize that the source term in Eq. (35)
is the same slip-velocity source term given by Eq. (26), which
is related to the field topology through Eq. (28); for a detailed
mathematical treatment of this relationship see Ref. [14].

C. Magnetic reconnection

In a typical reconnection event, two regions sharing a
boundary with intense magnetic shear (usually called a current
sheet as a large magnetic shear indicates large electric cur-
rents) are pushed toward each other with a reconnection speed
VR. Because of mass conservation, matter is then ejected with
a fraction of the local Alfvén speed VA. In order to estimate the
latter, one can assume that the magnetic energy B2/2 is totally
converted to the kinetic energy of the outflow, which moves
with velocity ux,

ρu2
x � B2/2, (36)

where ρ is the density. This leads to an ejection speed of
order the local Alfvén speed, ux � VA. As for the inflow or
reconnection speed, one can start with the Ohm’s law

E + u × B = ηJ, (37)

where η is the diffusivity, E the electric field, u the velocity
field and J = ∇ × B the electric current. As an order of mag-
nitude scaling, the above result leads to J ∼ VRB/η. Note that
the term ηJ in the Ohm’s law becomes important because a
large current J = ∇ × B forms as a result of a large magnetic
field gradient (shear) while the diffusivity is typically very
small. Thus, energy loss due to Ohmic dissipation, η

∫
J2d3x,

is appreciable only if there are very large magnetic field
gradients in the volume. In general, reconnection requires
only a small, but finite, diffusivity to proceed.

For a current sheet of thickness δ and length �, in the
steady state, one can apply Ampére’s law to estimate the
current, J ∼ B/δ, and thus we get VR ∼ η/δ. In order to use
energy conservation in a reconnection zone of length � and
width δ, we note that the Poynting energy flux into the zone
is VRB2�. This energy is consumed in two ways: Ohmic
dissipation J2ηδ� and the kinetic energy flux of the outflow
ρV 2

A (VAδ) [28]. We find

V 3
A δ = VRV 2

A � − ε�δ, (38)
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where ε = E · J/ρ is the energy dissipation rate. Neglecting
the dissipation, the last term, we would recover the mass
conservation VAδ = VR�. Putting all this together, we obtain
a reconnection speed of order

VR =
(

η
VA

�

)1/2

= VAS−1/2, (39)

where S = VA�/η is the Lundquist number. Note that the
Sweet-Parker [29,30] timescale tR = δ�/η is shorter than the
resistive timescale tη = �2/η by a factor of

√
S, tR = tη/

√
S,

and longer than the Alfvén timescale tA = �/VA by the same
factor: tR = √

StA. In the solar corona, where S is of order
1012, the above expression leads to a reconnection time of
order tR � 106 s. However, the measured timescale is of order
tR ∼ 100 s. For instance, the field topology in the soft-x-ray
pictures changes in a timescale of minutes or at most hours,
which is much shorter than the Sweet-Parker time. Thus, in
spite of the fact that the Sweet-Parker scheme predicts much
faster conversion rate for magnetic energy than the global
diffusion, nevertheless, it is still much too slow compared
with the observations [31]. Also note that with vanishing
diffusivity, the width of the current sheet vanishes as well, and
reconnection may proceed only with an anomalous diffusivity
discussed below (see also Ref. [32]).

It turns out that although Sweet-Parker model is a good
approximation in laminar flows where magnetic flux tubes un-
dergo large-scale Taylor (normal) diffusion, however, it fails
utterly in turbulent systems as expected because it ignores
all turbulent effects on the magnetic field and the flow. In
fact, magnetic flux freezing breaks down in turbulence and
Lagrangian particle trajectories become random. This leads
to stochasticity in magnetic fields in turbulence for which a
generalized version of flux freezing, stochastic flux freezing,
applies instead of the conventional Alfvén theorem. In the
next section, we quantify magnetic stochasticity and briefly
explain its relationship with magnetic topology.

D. Stochastic reconnection

The Sweet-Parker scheme can also be understood in terms
of magnetic field diffusion. On very large scales, magnetic
flux tubes diffuse away as a result of magnetic diffusivity.
In hydrodynamic turbulence, Taylor diffusion (the linear dif-
fusion present also in Brownian motion) indicates that the
average (rms) distance of a particle from a fixed point, y(t ),
increases with time t as

y2(t ) � Dt, (40)

where D is the diffusion coefficient. This is normal (Taylor)
diffusion in which the average square distance between a
particle (a dye molecule in water) and a fixed point increases
linearly with time: y2 ∝ t . The normal diffusion of a magnetic
field follows a mathematically similar relationship between
the rms distance (spreading) between magnetic field lines
instead of particle separation (see, e.g., Refs. [11,20]). In
this case, the diffusion coefficient is the magnetic diffusivity
η. Whether the medium is turbulent or not, this diffusion
scheme, for fluid particles in hydrodynamic turbulence and
magnetic field lines in magnetohydrodynamic turbulence, will
apply but with different diffusion coefficients. In other words,

turbulence will increase the diffusion coefficient, making the
diffusion process faster and more efficient but the nature of
diffusion is linear (in time) at scales much larger than the
turbulent inertial range.

The normal diffusion scheme cannot be used in the inertial
range of turbulence (see below). In the absence of turbulence,
in a reconnection zone with width δ and length � (parallel
to the local magnetic field), substituting the Alfvén timescale
tA = �/VA in Eq. (40), and using mass conservation VAy =
VR�, we recover the Sweet-Parker reconnection speed, given
by Eq. (39). Therefore, Sweet-Parker reconnection can be
valid only in the absence of turbulence.

Reconnection itself, along with other instabilities such as
tearing modes [33], will generate turbulence ([34]; also see,
e.g., Ref. [20] for a review of turbulent and nonturbulent
reconnection models). In the turbulence inertial range, i.e.,
at scales larger than dissipative scale but much smaller than
the larger scales where Taylor (normal) diffusion occurs,
particles undergo superlinear Richardson diffusion: δ2 ∝ t3.
It is important to notice that Richardson diffusion is two-
particle diffusion, i.e., δ is the separation between two par-
ticles undergoing diffusion in the inertial range unlike y(t )
in Eq. (40), which corresponds to (one-particle) Taylor dif-
fusion. If we consider magnetic diffusion in the turbulence
inertial range, we have to consider Richardson diffusion of
the field lines. On these scales, therefore, the Sweet-Parker
model obviously cannot be applied. The Richardson probabil-
ity density for particle separation vector l = x1 − x2, with a
scale-dependent diffusion coefficient K (l ) ∼ K0l4/3, satisfies
∂t P(l, t ) = ∇li [K (l )∇li P(l, t )] with a similarity solution [10],

P(l, t ) = A

(K0t )9/2
exp

(
−9l2/3

4K0t

)
. (41)

Using this probability density to average l2, one finds
〈l2(t )〉 = (1144/81)K3

0 t3. This is intimately related to Kol-
mogorov’s relation

l2(t ) ∼ (g0ε)t3, (42)

which is a solution to the initial value problem dl (t )/dt =
δu(l ) = (3/2)(g0εl )1/3, l (0) = l0 for sufficiently long times
t � t0. Here g0 is Richardson-Obukhov constant and ε the
mean energy dissipation rate.

The results implied by Eq. (42) can also be obtained using
a simple dimensional analysis. In the inertial range of the
turbulent cascade [35], the eddy turnover time is of order t ∼
ε−1/3δ2/3 with δ being the length scale perpendicular to the
mean magnetic field. Here ε � V 2

T VA/l‖ denotes the energy
transfer rate, with turbulent velocity VT and parallel energy
injection length scale l‖. This corresponds to the Richardson
diffusion:

δ2(t ) ∼ εt3, (turbulent medium). (43)

A comparison of this expression with Eq. (40) shows that
the Richardson diffusion broadens the reconnection zone by
faster spreading the field lines as it is a superlinear diffusion,
δ2 ∝ t3. Using mass conservation VAδ = VR�, and substi-
tuting the Alfvén time tA = �/VA, one arrives at the fast
reconnection rate predicted in stochastic model [21,22,26]
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(for a more detailed review see Ref. [20]):

VR ∼ VT Min

[(
�

l‖

)1/2

,

(
l‖
�

)1/2
]
. (44)

Here, depending on the sizes of the current sheet � and
the parallel energy injection scale l‖, the smaller ratio, either
(�/l‖)1/2 or (l‖/�)1/2, is taken. This reconnection speed is
of order the large turbulent eddy velocity, is independent of
diffusivity and is in agreement with numerical simulations to
date [36,37]. The stochastic model of reconnection was also
examined with a large viscosity to diffusivity ratio in a recent
work [22].

III. STOCHASTICITY AND TOPOLOGY CHANGE

Turbulence in general will tend to tangle an initially
smooth magnetic field, locally changing the magnetic field
direction B̂l in a stochastic way. This effect corresponds to
the term ∇ × (ul × Bl )⊥/Bl implicit in the parentheses on the
RHS of Eq. (1), which reads

∂t B̂l =
(

∂t Bl

Bl

)
⊥
.

In terms of the field topology, this corresponds to the turbu-
lence (flow) terms in Eq. (24), which is

T2(t ) = 1

4S2

∫
V

d3x

V
[B̂l · B̂L − 1]︸ ︷︷ ︸

self-entanglement (stochasticity)

⎡
⎢⎢⎢⎢⎣

(
B̂L

Bl
· ∇ × (ul × Bl )⊥Bl

+ B̂l

BL
· ∇ × (uL × BL )⊥BL

)
︸ ︷︷ ︸

turbulence (flow)

− (
B̂L · �⊥

l + B̂l · �⊥
L + B̂L · σ⊥

l + B̂l · σ⊥
L

)︸ ︷︷ ︸
slippage (reconnection)

⎤
⎥⎦,

This effect also makes B̂l deviate from B̂L thus the turbulence
(flow) term in Eq. (24) will increase in magnitude. As a result,
stochasticity level starts to increase, i.e., T2 = ∂t S2 � 0, until
the tangled field starts to resist more tangling and bending by
slipping through the fluid. This effect is already known to be
related to �⊥ 
= 0 (and σ⊥ 
= 0) whose effect is represented
by the slippage (reconnection) term. This can lead to a sudden
motion of the field lines relative to the fluid quickly decreasing
the stochasticity level T2 = ∂t S2 � 0. Therefore, at some point
between these two stages, T2 = ∂t S2 = 0.

How is the field magnitude affected during this process?
We note that the coarse-grained field Bl is in fact the average
field in a spatial volume of scale l . To see this simple fact more
clearly, we first note that pointwise we have

|φ(x, t )| �
∣∣∣∣
∫

V

d3r

l3

∫
V

d3R

L3
B̂(x + r, t ) · B̂(x + R, t )

∣∣∣∣,
which is, by definition, equal to unity for a smooth (non-
tangled) field. To increase an initially vanishing stochasticity
level 1

2 (1 − φ)rms = 0 to a nonzero value, the stochastic vari-
able φ is to deviate from unity, i.e., the unit vector B̂ must
in general take different directions at different points. On the
other hand, it is simple calculus to see that

|Bl (x, t )| =
∣∣∣∣
∫

V

d3r

l3
G(r/l )B(x + r, t )

∣∣∣∣
�

∣∣∣∣
∫

V
G(r/l )

d3r

l3

∣∣∣∣
∣∣∣∣
∫

V
B(x + r, t )

d3r

l3

∣∣∣∣
�

∣∣∣∣∣∑
i

B(x + ri, t )

∣∣∣∣∣
∣∣∣∣∣∑

i

�3ri

l3

∣∣∣∣∣.

Hence, increasing stochasticity at scale l makes local B
fields at scales d � l less aligned with one another, which
in turn partially cancel one another out when we average,
i.e., coarse grain, them to get the field BL at a larger scale
L � l . Thus the average

∫
V B2

L/2 will generally decrease by
increasing stochasticity at smaller scales, that is, T2 = ∂t S2 �
0 leads to

∫
V ∂t (B2

l /2) � 0 and
∫

V ∂t (B2
L/2) � 0. [Also we

note that during a field-fluid slippage at scale l , the kinetic
energy of accelerating particles is extracted from B2

l /2, which
means

∫
V ∂t (B2

l /2) � 0.] From Eq. (16), it is easy to see that∫
V ∂t (B2

l /2) � 0 and
∫

V ∂t (B2
L/2) � 0 indicate D2 = ∂t E2 �

0. Similarly, a decreasing stochasticity, i.e., T2 = ∂t S2 � 0,
is accompanied with

∫
V ∂t B2

l � 0 and
∫

V ∂t (B2
L/2) � 0, hence

D2 = ∂t E2 � 0. At the peak of field-fluid slippage, therefore,
S2 reaches a maximum approximately followed by a minimum
of E2(t ).

In order to test the theoretical predictions discussed in the
previous paragraph, and in the next sections, we use a homo-
geneous, incompressible MHD numerical simulation archived
in an online, web-accessible database [23–25]. This is a
direct numerical simulation (DNS) from the Johns Hopkins
Turbulence Database, using 10243 nodes, which solves in-
compressible MHD equations using a pseudospectral method.
The simulation time is 2.56 in code units, and 1024 time steps
are available (the frames are stored at every 10 time steps
of the DNS). We test our predictions in several randomly
selected subvolumes of the simulation box with different
sizes. This reduces the computation time while it ensures that
the predicted features are prevalent everywhere in the box.

Figure 1 represents magnetic stochasticity, cross energy,
and rms magnetic energy density in three randomly selected
subvolumes each of size 194 × 42 × 33 in grid units, equiv-
alent to 1.2 × 0.26 × 0.20 in code units. Similar results are
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FIG. 1. Magnetic stochasticity S2(t ) (blue, solid curve), cross
energy E2(t ) (red, dotted curve), and mean magnetic energy density
(B2/2)rms (red, dashed curve) for three different subvolumes of
the simulation box. The total magnetic energy change during the
slippage, �E2, is about 0.13 in (a), 0.03 in (b), and 0.08 in (c). This
might help to distinguish slippage from reconnection; see Table I.

obtained by repeating this computation in other, smaller and
larger, randomly selected subvolumes. The observed trends
are typical and do not in general depend on the coordinates
or sizes of the subvolumes. We also note that although the

TABLE I. Categorization of different magnetic phenomena
based on the total variation of stochasticity and magnetic energy as a
large or small fraction of unity.

Reconnection Slippage Annihilation Local reversals

Large �S2(t ) Large �S2(t ) Small �S2(t ) Small �S2(t )
Large �E2(t ) Small �E2(t ) Large �E2(t ) Small �E2(t )

predicted statistical relationship between magnetic stochastic-
ity S2(t ) and cross energy E2(t ) is observed in all subvolumes,
however, the rate of change and the total change in magnetic
energy can be very different in different subvolumes. For
instance, Fig. 2 plots magnetic stochasticity and cross energy
in two subvolumes in which the total change in cross energy
E2(t ) is very small compared to what is observed in Fig. 1.
This might indicate that in the subvolumes corresponding
to Fig. 2, only a simple slippage between the field and
fluid has occurred without much magnetic energy dissipation,

FIG. 2. Stochasticity level S2(t ) (blue, solid curve) and cross
energy E2(t ) (red, dashed curve) for two subvolumes of the simu-
lation box with small magnetic energy dissipation: �E2 � 0.05 (a),
�E2 � 0.01 (b). These events, as well as Fig. 1(b), might indicate
field-fluid slippage rather than reconnection. This also suggests a
method of categorizing different magnetic phenomena; see Table I.

022122-9



JAFARI, VISHNIAC, AND VAIKUNDARAMAN PHYSICAL REVIEW E 101, 022122 (2020)

FIG. 3. Fluid parcels of scale l as a collection of classical spins
of magnetic moment μl ∝ Bl , in the mean field approximation
(classical Ising model).

whereas in Fig. 1 both slippage (change in stochasticity) and
energy dissipation (change in energy) are involved. This might
suggest that reconnection involves both slippage and energy
dissipation. This picture requires more investigation; however,
we present such a hypothetical classification in Table I below.

A. Field-flow interaction: A toy model

We can also make a simple toy model illustrating the points
made above regarding the relationship between magnetic
stochasticity and the kinetic energy of turbulence. Suppose
we divide a given volume of fluid, of size L, into small
subvolumes of size l � L; see Fig. 3. If one ignores all
the fluid surrounding a parcel of fluid of scale l at point x,
focusing only on the parcel itself, the coarse-grained magnetic
field at point x inside the parcel would still be approximately
given by Bl . That is to say, the contribution of outer points
at distances � l is negligible in getting the coarse-grained
field Bl inside the parcel. On the other hand, had we instead
eliminated the fluid parcel of scale ∼l around point x, retaining
the rest of the fluid in the surrounding, the coarse-grained field
at x over a large scale L � l , would be still BL within a good
accuracy.

This is the motivation to divide the total volume V ∼ L3

into regions of scale l � L and consider each region as a
classical spin with magnetic field Bl and magnetic moment
μl ∝ l3Bl embedded in the mean field BL generated by the
neighboring fluid parcels. Hence a typical parcel will possess
a magnetic energy −μl · BL ∝ −l3Bl · BL. We can also define
a “temperature” Tl (x, t ) proportional to the average available
kinetic energy at scale l , which we denote by v2

l,L. Thus the
Boltzmann’s β factor may be defined as4

βl := 1

v2
l,L

. (45)

In terms of the scale-split magnetic energy density,
ψ (x, t, θ (x, t )) = 1

2 Bl · BL = 1
2 BlBL cos θ , the Boltzmann

factor becomes eβ(x,t )ψ (x,t,θi (x,t )), and therefore the partition

4Thermodynamic equilibrium in this context translates into homo-
geneity and isotropy, which is unrealistic in MHD turbulence. We
work in the weak field regime Bl BL � v2

l,L and use this approxima-
tion only as an instructive toy model.

FIG. 4. The ensemble average φ = (B̂l · B̂L ) is given by Eq. (47).
This function also appears in the similar problem of finding the aver-
age magnetic moment in a collection of classical spins in statistical
mechanics (also closely related to a classical version of the Ising
model in weak field approximation). With x = Bl BL/v

2
l,L , defined in

Eq. (45), this is the function g(x) = coth x − 1/x. In the weak field
regime, x � 1, this function is approximated linearly by x/3.

function is Z = ∑
i eβl (x,t )ψ (x,t,θi (x,t )). More generally, we

can attribute a magnetic moment μl = gBl , with a constant
g ∝ l3, to a fluid parcel of scale l , which leads to the partition
function

Z =
∫

d cos θ egβl ψ. (46)

If we absorb the proportionality constant g into the def-
inition of turbulent kinetic energy, i.e., the β factor, the
probability of finding a region of scale l whose magnetic field
Bl makes an angle between θ and θ + dθ with the large-scale
field BL is given by

p(x, t ; θ (x, t )) dθ = eβl Bl BL cos θd cos θ∫ +1
−1 d cos θeβl Bl BL cos θ

.

The “ensemble” average5of φ = B̂l · B̂L = cos θ is given by

φ � coth

(
BlBL

v2
l,L

)
−

(
v2

l,L

BlBL

)
. (47)

This expression in the weak field limit, i.e., BlBL � v2
l,L,

becomes

φ � 1

3

BlBL

v2
l,L

= 1

3

B2
l

v2
l,L

BL

Bl
,

where we have used the approximation coth x � x/3 for small
x; see Fig. 4.

5Throughout this paper, we avoid using ensemble averages, and
instead we rely only on one single realization of the velocity and
magnetic fields. However, we make an exception here since this
simple toy model is best related to paramagnetism using ensemble
averaging.
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FIG. 5. Magnetic stochasticity level S2(t ) (blue, solid curve) and
turbulent kinetic energy (u2/2)rms (red, dashed curve), which is taken
as a substitute for v2

l,L for simplicity. In the numerical simulation used
to obtain this graph and similar other ones in different subvolumes,
the weak-field condition Bl BL � v2

l,L � u2
rms is not satisfied, and thus

we are not certainly in the weak field regime to use Eq. (49). Still, in
several subvolumes of the simulation box, the theoretical expectation
predicted by Eq. (49) is observed: magnetic stochasticity increases
(decreases) as the turbulent kinetic energy increases (decreases).
However, to better understand the relationship between stochasticity
and turbulent kinetic energy requires more numerical studies.

In terms of χ = 1
2 BlBL, therefore, φ � 2

3
χ

〈u2
l 〉

. We have also

1 − φ

2
= 1

2

(
1 − 1

3

B2
l

v2
l,L

BL

Bl

)
. (48)

For small variations in (1 − φ)/2 around its minimum
(1 − φ0)/2 = 0, we can relate the ensemble average in the
LHS of the above equation to the stochasticity level, which is
an rms value, S2(t ) = 1

2 (1 − φ)rms. As expected, therefore, as
the available turbulent kinetic energy at scale l , v2

l,L, increases
(decreases), the stochasticity level increases (decreases). Sim-
ilarly, as magnetic field energy at scale l , i.e., B2

l , increases
(decreases), stochasticity level decreases (increases):6

S2(t )|weakfield → 1

2

(
1 − 2

3

BlBL

v2
l,L

)
rms

. (49)

Thus as mean energy χ = Bl BL increases (decreases),
the stochasticity level decreases (increases). The mean cross
energy density is defined as E2(t ) = 1

2 (BlBL )rms, hence in the
weak field regime of BlBL � v2

l,L, we expect as the stochas-
ticity S2(t ) increases (decreases), the mean energy E2(t ) will
decrease (increase); see Fig. 5.

6Note that our original definition of magnetic stochasticity does not
rely on any ensemble averaging, therefore the expression given by the
RHS of (49) is not exactly the same as S2(t ) but rather we assume
that its behavior resembles magnetic stochasticity in the weak field
regime.

B. Energy and stochasticity relaxation

The above arguments imply that if we imagine a magne-
tized medium of scale L as an ensemble of magnetized fluid
parcels of scale l � L, similar to an ensemble of magnets
embedded in the mean field generated by all neighbor magnets
(a classical version of Ising model in mean field approxima-
tion), each parcel with average local field Bl will tend to align
itself with the large-scale field BL. This translates into the fact
that locally the field tends to increase the scalar field φ =
B̂l · B̂L or lower the stochasticity S2(t ) = (1 − φ)rms/2. The
magnetic field has a tendency to lower its stochasticity level
similar to its tendency to lower its energy level. Because ψ =
1
2 Bl · BL contains information about both the magnetic energy
(through χ = 1

2 BlBL) and magnetic stochasticity (through
φ = B̂l · B̂L); mathematically, this translates into the problem
of finding the extrema of ψ = 1

2 Bl · BL instead of 1
2 B2 as

in Taylor relaxation. This can be done using the Lagrangian
L = ψ (x, t ). However, if the magnetic field B is to satisfy the
induction equation then the coarse-grained field Bl will satisfy
the coarse-grained induction equation, given by Eq. (21). If we
define the scale-split magnetic helicity as

Hl,L = Al · BL,

it follows that the quantity

H[l,L] = 1
2 (Al · BL − AL · Bl ) (50)

is strictly conserved:

∂H[l,L]

∂t
+ ∇ · Jl,L = 0, (51)

with flux Jl,L = AL × (Rl + Pl − ul × Bl ) − Al × (RL +
PL − uL × BL ) − �/LBL + �/lBl where A is the vector poten-
tial and �/ is the scalar potential (not to be confused with
φ = 1

2 B̂l · B̂L or � = 1
2 ûl · ûL extensively used in this paper).

This constraint can be introduced to the Lagrangian using a
Lagrange multiplier λ. We find

L = ψ + λH[l,L] = 1

2
Bl · BL + λ

2
(Al · BL − AL · Bl ). (52)

Variation with respect to Al and AL yields, respectively,
Bl ∝ ∇ × Bl and BL ∝ ∇ × BL. This is a generalization of
Taylor relaxation process [38], in which the magnetic field
becomes force-free, i.e., parallel to the electric current B ∝ j
where j = ∇ × B. Analogously, we see that turbulent mag-
netic fields tend to lower both their stochasticity level and
energy, on all scales, to reach a force-free state.

In passing, we also note that a more familiar way to define
stochasticity may seem to be

s2
φ = [(φ − φrms)2]rms, (53)

which is not incidentally equivalent to

s′2
φ = (φ2)rms − (φrms)2. (54)

These are similar to the definition of variance in probability
theory and statistics except for rms averaging instead of taking
the expectation value:

σ 2
X = [(x − x)2] = x2 − x2,
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FIG. 6. The stochasticity S2(t ) = (1 − φ)rms/2 (blue, solid
curve), the function sφ = [(φ − φrms )2]1/2

rms (red, dashed curve), and
s′
φ = [(φ2)rms − (φrms)2]1/2 (yellow, dotted curve) in two different

subvolumes of the simulation box. Although different in terms of
their absolute values, all three measures show a similar trend. These
similarities are typical in different subvolumes of the simulation box
and indicate that the concept of magnetic stochasticity S2(t ) can be
used as a measure of standard deviation with the field’s RMS value
taken as the mean.

where x = E [X ] is the expected value of random variable
X . In our simulation, φrms � 1, and a comparison of sφ

with S2(t ) = 1
2 (1 − φ)rms in Fig. 6 shows that in fact these

definitions have a very similar behavior. The other reason
that we prefer the definition S2(t ) = 1

2 (1 − φ)rms, besides
its simplicity, is that we are interested in measuring the
deviation of φ = B̂l · B̂L from unity (which corresponds to
a vanishing stochasticity) not its deviation from an average
value φrms.

FIG. 7. Typical behavior of magnetic stochasticity level S2(t )
(blue, solid curve), cross energy E2(t ) (red, dotted curve), and RMS
energy (B2/2)rms (red, dashed curve). This plot also shows that the
cross energy E2(t ) evolves similar to the real magnetic energy density
(B2/2)rms. In turns out that in fact the large-scale, (B2

L/2)rms, as well
as small-scale, (B2

l /2)rms, energy densities show similar trends.

C. Slippage, reconnection, and field annihilation

Let us consider the evolution of magnetic energy in terms
of stochasticity level S2(t ) and mean cross energy E2(t ). It
is easy to show that for 0 < l � L, B2

L(x, t ) � B2
l (x, t ) �

B2(x, t ) and therefore7

χ (x, t ) = |Bl (x, t )||BL(x, t )|
2

� B2(x, t )

2
,

which in turn leads to

E2(t ) = 1
2 (BlBL )rms � 1

2 (B2)rms. (55)

In Fig. 7 we have plotted E2(t ) and (B2/2)rms in one
subvolume of the simulation box. The time evolution of the
cross energy is obviously very similar to that of real mean
energy (B2/2)rms, although it is numerically smaller. Similar
behavior is observed in other subvolumes of the simulation
box. This implies that an increasing (decreasing) stochasticity
level S2(t ) may typically b accompanied with a decreasing
(increasing) mean energy density (B2/2)rms with the minima
(maxima) of each one almost coincident with the maxima
(minima) of the other one.

If (1) local magnetic field reversals are ubiquitous in MHD
turbulence [21] and (2) magnetic reconnection occurs on all
scales and is intimately related to field-fluid slippage (see
Ref. [12]), then the picture outlined above [14] suggests that

7Because for l � L, we have G(r/L) � G(r/l ) for 0 � r < ∞,
remembering that G is by assumption a rapidly decaying, non-
negative function, we find∫

V

d3r

L3
G(r/L)|B(x + r)| �

∫
V

d3r

l3
G(r/l )|B(x + r)|,

which means BL = |BL| � |Bl | = Bl . If we also note that the
bare field is defined as B = liml→0 Bl , it follows that BL (x, t ) �
Bl (x, t ) � B(x, t ).
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the maxima of stochasticity level Sp(t ) should approximately
coincide with minima of mean cross energy density Ep(t ). A
magnetic reconnection event in volume V may be associated
with

{T2 = D2 = 0; ∂t T2 � 0, ∂t D2 � 0}. (56)

We may also define the slippage intensity, for the time τ

during which Sp(t ) changes considerably:

I2(τ ) = |[S2(t0 + τ ) − S2(t0)]|. (57)

Note that generally field-fluid slippage may or may not be
associated with magnetic null points. If it is, and the above
conditions hold, magnetic reconnection may be defined as
field-fluid slippage in which magnetic energy is converted
into kinetic energy and magnetic connectivity between fluid
elements breaks apart. Topological deformation T2 = ∂t S2(t )
then also indicates topology change; see Figs. 1 and 2 and
Table I. These results suggest the following categorization
for magnetic phenomena: (a) magnetic field annihilation, dur-
ing which magnetic energy is dissipated with no significant
change in magnetic topology, might correspond to consider-
able change in cross energy, �E2 � 0, but not in stochastic-
ity, �S2 ∼ 0; (b) during a field-fluid slippage, stochasticity
changes significantly, �S2 � 0, but not cross energy, �E2 ∼
0; (c) during a global magnetic reconnection both stochasticity
and cross energy change significantly, �S2 � 0, �E2 � 0;
and finally (d) for local, small-scale reconnection events ubiq-
uitous in MHD turbulence we expect both stochasticity and
energy change to be small, �S2 ∼ 0, �E2 ∼ 0. In all cases,
we expect cross energy E2 to trace the rms magnetic energy
density with a similar behavior, and the relationship between
S2 and E2 persists almost always; see Table I.

D. Topology change and reconnection

The concepts of stochasticity level and cross energy can
be applied to any other vector field including the velocity
field u(x, t ) in a turbulent fluid. In this case, we can define
kinetic stochasticity sp(t ), and kinetic cross energy ep(t ),
respectively, as

sp(t ) = 1
2 ||1 − �(x, t )||p (58)

and

ep(t ) = ||X (x, t )||p. (59)

Here we have renormalized the velocity field u(x, t ) at two
scales l and L � l to define the scale-split kinetic energy
density

�l,L(x, t ) = 1
2 ul (x, t )·uL(x, t ). (60)

Similar to the magnetic scale-split energy ψ , the kinetic
scale-split energy � too can be divided into two scalar fields:
the kinetic topology field,

�l,L(x, t ) =
{

ûl (x, t ) · ûL(x, t ) uL 
= 0 and ul 
= 0,

0 otherwise,
(61)

and the kinetic energy field,

Xl,L(x, t ) = 1
2 ul (x, t )uL (x, t ). (62)

As before, we may take p = 2 for simplicity, in which
case the kinetic stochasticity level s2, kinetic topological
deformation τ2 = ∂t s2, kinetic cross energy density e2(t ), and
kinetic energy dissipation d2 = ∂t e2 are given by

s2(t ) = 1

2
(1 − �)rms, (63)

τ2(t ) = 1

4s2(t )

∫
V

(� − 1)
∂�

∂t

d3x

V
, (64)

e2(t ) = Xrms, (65)

and

d2(t ) = 1

e2(t )

∫
V
X ∂tX

d3x

V
. (66)

It follows that

τ2(t ) = 1

4s2(t )

∫
V

[ûl · ûL − 1]

[
ûL ·

(
∂t ul

ul

)
⊥ul

+ ûl ·
(

∂t uL

uL

)
⊥uL

]
d3x

V
. (67)

Here (·)⊥u represents the perpendicular component with re-
spect to u. In a similar way, we find

d2(t ) = 1

e2(t )

∫
V

(uluL

2

)2

×
[
∂t (u2

L/2)

u2
L

+ ∂t (u2
l /2)

u2
l

]
d3x

V
. (68)

The time evolution of the topology field φ(x, t ) = B̂l · B̂L

gives us important information about the changes in the
field configuration. More precisely, the time derivative of
φ(x, t ) corresponds to the local topological deformations (or
changes) at point x at time t . The top panel in Fig. 8 shows the
rms value of the time derivative of magnetic topology field,
i.e., (∂φ/∂t )rms, as well as its kinetic counterpart, (∂�/∂t )rms.
There is a clear correlation between the time derivatives of the
magnetic and kinetic topology fields, but, more importantly,
there is some delay, or phase shift, between the two functions:
the kinetic topology change seems to lag behind the magnetic
topology change. See also the top panel in Fig. 9.

The topological deformation T2(t ), given by Eq. (12), is
a weighted average of ∂tφ. On the other hand, it is the
time derivative of the stochasticity level S2(t ), which is in
turn related to the cross energy E2(t ), as discussed in the
previous section. Figure 8(b) shows a typical graph of mag-
netic topological deformation function T2 with its kinetic
counterpart τ2(t ) = ∂t s2(t ). Turbulence tends to increase the
magnetic stochasticity, which reaches a maximum level, when
T2 = ∂t S2 = 0 and ∂t T2 = ∂2

t S2 < 0. As the magnetic field
reconnects to relax to a lower stochasticity, the topological
deformation becomes negative T2 < 0. Reconnecting field
lines push the fluid and increase the kinetic stochasticity s2,
i.e., τ2 = ∂t s2 > 0: see also Fig. 9(b). If magnetic stochastic-
ity reaches a maximum without an appreciable increase in
kinetic stochasticity, on the other hand, it might indicate a
field-fluid slippage (negligible magnetic energy conversion)
instead of reconnection (which by definition involves ap-
preciable magnetic energy conversion). Also note that the

022122-13



JAFARI, VISHNIAC, AND VAIKUNDARAMAN PHYSICAL REVIEW E 101, 022122 (2020)

FIG. 8. (a) The rms values of ∂tφ (blue, solid curve) and its
kinetic counterpart ∂t� (red, dashed curve), where φ = B̂l · B̂L and
� = ûl · ûL are magnetic and kinetic topology fields, respectively.
We have multiplied ∂t� by a numerical factor of ∼4 to make the
comparison easier. Clearly, (∂t�)rms is correlated with but falls
behind (∂tφ)rms with an almost constant time delay. This correlation
translates into a correlation between magnetic and kinetic topological
deformations defined as T2 = ∂t S2 and τ2 = ∂t s2 since they are
weighted volume averages of ∂tφ and ∂t�, respectively. (b) Mag-
netic (blue, solid curve) and kinetic (red, dashed curve) topological
deformations, T2 and τ2, in the same volume. At points where
T2 = ∂t S2 = 0 and ∂t T2 = ∂2

t S2 < 0, i.e., where the solid blue curve
vanishes while having a negative slope, the magnetic stochasticity
reaches a maximum and magnetic reconnection peaks. As magnetic
stochasticity starts to decrease, we have T2 < 0, and the reconnecting
field pushes the fluid and increases the kinetic stochasticity: τ2 =
∂t s2 > 0. A maximum stochasticity with no appreciable increase in
kinetic stochasticity might imply a slippage.

local maxima (minima) of τ2 = ∂t s2, i.e., a rapidly increasing
kinetic complexity (rapidly decreasing kinetic complexity),
are followed, after some delay, by the local maxima (minima)

FIG. 9. Same as Fig. 8 but for a different subvolume of the
simulation box. (a) Typically, we see a phase shift or time delay
between (∂tφ)rms (blue, solid curve) and (∂t�)rms (red, dashed curve),
which may indicate the interaction of reconnecting the magnetic
field and the fluid. This effect is easier to interpret in terms of
the magnetic and kinetic topology deformations, i.e., T2 and τ2.
(b) As magnetic stochasticity S2 (blue, solid curve) increases, i.e.,
T2 = ∂t S2 > 0, by the tangling effect of the turbulence, it reaches a
maximum where T2 = 0 and ∂t T2 < 0. The magnetic field starts to
reconnect and reduce its stochasticity, so T2 < 0, which leads to the
ejection of the fluid of the region. This in turn increases the kinetic
stochasticity (red, dashed curve) of the turbulent velocity field; hence
τ2 = ∂t s2 > 0. These local events correspond to the points where T2

vanishes with a negative slope.

of T2 = ∂t S2, i.e., a rapidly increasing (decreasing) magnetic
complexity.

The local changes in T2, corresponding to local field rever-
sals, may cancel one another out when calculated in a large
volume. In other words, since T2 is a weighted integral of ∂tφ

over an arbitrary volume V = L3, the out-of-phase topological
changes in different regions of scale l < L inside the volume
V = L3 may cancel out when summed over. In that case,
we have local reconnection events occurring locally at small
scales of order l . If, on the other hand, the topological changes
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ongoing in different regions inside V are in phase, they would
give rise to an appreciable total T2 in the whole volume V =
L3. This case may correspond to a global reconnection event
at scale L.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have numerically tested the theoretical
predictions made in previous work on magnetic stochasticity
[14] and extended its arguments by including the kinetic
stochasticity associated with the velocity field. One theoretical
prediction in this formalism is that magnetic field slippage
through the fluid, as well as magnetic reconnection which is
also related to field-fluid slippage, should be accompanied
with increasing stochasticity level and decreasing magnetic
energy followed, after reaching their extrema, by a decreasing
stochasticity level and increasing mean magnetic energy. This
formalism is based on a simple scalar field, the scale-split
magnetic energy density: ψ = 1

2 Bl · BL. We have also pre-
sented a simple toy model in order to illustrate how turbulence
can in principle increase the randomness in the magnetic
field in the weak-field regime. In this model, the scalar field
ψ appears in a partition function as an interaction energy
term. Nevertheless, despite its usefulness in illustration of the
interaction between MHD turbulence and magnetic fields, this
toy model should not be taken too literally.

In order to test the above theoretical arguments, we have
used the data from a homogeneous, incompressible MHD
simulation stored online [23–25]. The predicted pattern is ob-
served in different subvolumes of the simulation box implying
that field-fluid slippage and local reconnections are an insep-
arable aspect of MHD turbulence. The statistical relationship
between magnetic stochasticity and energy, described above,
persists almost for all cases. In addition, the relationship be-
tween magnetic and kinetic topological deformations, defined
as the time derivative of magnetic and kinetic stochastici-
ties respectively, is observed to be in good agreement with
the theory. A fast decrease in magnetic stochasticity after
reaching its maximum value is almost always followed by a
rapid increase in the kinetic stochasticity. This may indicate
local reconnection events in which an initially tangled field
(large stochasticity) decreases its stochasticity by reconnec-
tion, which in turn pushes the fluid and increases its kinetic
stochasticity.

Our numerical findings in this paper in general agree with
the theoretical predictions of Jafari and Vishniac [14], made
by applying their general formulation of stochastic vector
fields to turbulent magnetic fields. Thus this formalism may
be an interesting and fruitful way of studying turbulent mag-
netic fields. However, our results do not prove that magnetic
stochasticity and magnetic energy in MHD turbulence always
evolve consistently following a simple pattern, which, if true,
can be useful in the study of magnetic reconnection and
other magnetic phenomena such as a magnetic dynamo. More
numerical studies are required in order to decide whether the
theoretical formulation of stochasticity and energy presented
in Ref. [14] and this paper is indeed useful in such problems.
Finally, we should also mention an exception observed in our
study of the relationship between S2(t ) and E2(t ). We have
looked at more than 20 randomly selected subvolumes of

the simulation box with different sizes, in all of which the
predicted pattern is observed, although in one small subvol-
ume, this relationship is not so obvious. This might be due to
intermittency or other nonlinear effects. We interpret this as
a small deviation from a general pattern in a statistical sense;
however, further studies might indicate otherwise pointing to
something more serious.

The most important implications of this paper may be
briefed as follows:

(1) Turbulence introduces randomness to magnetic fields.
Magnetic stochasticity can be quantified and related to mag-
netic topology and energy using the scalar field ψ = 1

2 Bl ·
BL = φχ . In particular, the component φ = B̂l · B̂L is related
to magnetic topology and stochasticity, while χ = 1

2 BlBL

introduces a measure of magnetic energy. Magnetic stochas-
ticity, or spatial complexity, is defined then as S2(t ) = (1 −
φ)rms/2 or in general as an Lp norm: Sp(t ) = ||1 − φ||p/2.

(2) Magnetic stochasticity and energy evolve accordingly
following a simple pattern: increasing (decreasing) stochas-
ticity almost always coincides with decreasing (increasing)
magnetic energy. This relationship arises as a consequence
of (a) the persistent slippage of the magnetic field through
the fluid and (b) small-scale, local magnetic reconnection
events in MHD turbulence. These two phenomena, i.e., field-
fluid slippage and local reconnections, are in fact related:
the former has been formulated by Eyink [12] and shown to
be intimately connected to magnetic reconnection, while the
latter, i.e., the phenomenon of local small-scale reconnections
in MHD turbulence, has been formulated as the base of
stochastic reconnection model by Lazarian and Vishniac [21].

(3) Magnetic reconnection seems to correspond to the si-
multaneous extrema of magnetic stochasticity S2(t ) and mag-
netic energy (B2/2)rms (whose evolution typically resembles
that of χ = BlBL/2 with l � L and L, both chosen in the in-
ertial range). This also suggests a hypothetical categorization
of different magnetic phenomena, such as magnetic energy
dissipation, reconnection, and field-fluid slippage, in terms
of the changes in magnetic stochasticity and energy. Hence,
for example, large variations in both stochasticity and energy
will imply reconnection, whereas small variations in energy
accompanied with large changes in stochasticity may imply
field-fluid slippage. Magnetic field annihilation may also cor-
respond to large decreases in energy but negligible changes
in stochasticity. This categorization remains hypothetical
in our work and requires further, more detailed numerical
studies.

(4) The above result suggests a statistical approach to the
kinematics of magnetic reconnection in terms of the magnetic
and kinetic topological deformations, respectively, defined
as T2 = ∂t S2 and τ2 = ∂t s2. Magnetic field is stochastically
frozen into the fluid [10,14]; hence, turbulence will tend in
general to increase magnetic stochasticity by tangling the
field. Since the magnetic field resists bending and tangling by
the turbulence, magnetic stochasticity cannot increase indefi-
nitely, and instead it reaches a maximum level, corresponding
to T2 = ∂t S2 = 0 and ∂t T2 = ∂2

t S2 < 0. Magnetic reconnec-
tion can reduce the stochasticity level and let the field relax
to a lower state. Decreasing stochasticity, in turn, means a
negative topological deformation: T2 < 0. The reconnecting
field pushes the fluid and increases the kinetic stochasticity s2,
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i.e., τ2 = ∂t s2 > 0. Combined with the relationship between
magnetic stochasticity and cross energy discussed before, this
provides a statistical representation of magnetic reconnection
in terms of the magnetic and kinetic stochasticities, their time
derivatives, and also corresponding magnetic and kinetic cross
energies. This picture also suggests that the local maxima
(minima) of τ2 = ∂t s2, i.e., an increasing (decreasing) turbu-
lence intensity, are typically followed by the local maxima
(minima) of T2 = ∂t S2, i.e., an increasing (decreasing) rate of
magnetic complexity change. Overall, our numerical results
are in good agreement with this picture.

(5) Stochasticity S2(t ) and cross energy E2(t ) =
(BlBL/2)rms, used to study reconnection and slippage on
arbitrary scales l < L, are scale dependent functions in the
turbulence inertial range. Application of the renormalization
group (RG) invariance then leads to the conclusion that
magnetic reconnection and field-fluid slippage in fact occur

on a wide range of scales in the inertial range of MHD
turbulence. In particular, it asserts that magnetic reconnection
is not confined into small, dissipative regions. These provide,
of course, another confirmation of the well-known fact that
turbulent reconnection is a multiscale phenomenon which
at larger scales becomes totally independent of microscale
effects like resistivity.

(6) Similar to the scale-split energy ψ = Bl · BL/2, one can
also define a scale-split magnetic helicity as Hl,L = Al · BL

and the corresponding quantity

H[l,L] = 1
2 (Al · BL − AL · Bl ).

This quantity satisfies a continuity-like equation which can
be used to formulate the stochasticity and energy relaxation
of turbulent magnetic fields as a generalization of Taylor
relaxation process.
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