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Tricritical directed percolation with long-range interaction in one and two dimensions
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Recently, the quantum contact process, in which branching and coagulation processes occur both coherently
and incoherently, was theoretically and experimentally investigated in driven open quantum spin systems. In the
semiclassical approach, the quantum coherence effect was regarded as a process in which two consecutive atoms
are involved in the excitation of a neighboring atom from the inactive (ground) state to the active state (excited
s-state). In this case, both second-order and first-order transitions occur. Therefore, a tricritical point exists at
which the transition belongs to the tricritical directed percolation (TDP) class. On the other hand, when an atom
is excited to the d-state, long-range interaction is induced. Here, to account for this long-range interaction, we
extend the TDP model to one with long-range interaction in the form of ∼1/rd+σ (denoted as LTDP), where r is
the separation, d is the spatial dimension, and σ is a control parameter. In particular, we investigate the properties
of the LTDP class below the upper critical dimension dc = min(3, 1.5σ ). We numerically obtain a set of critical
exponents in the LTDP class and determine the interval of σ for the LTDP class. Finally, we construct a diagram
of universality classes in the space (d, σ ).
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I. INTRODUCTION

In statistical physics, nonequilibrium phase transitions into
an absorbing state are a well-known phenomenon and they
have been widely studied [1–11]. One of the most popular
models is a contact process (CP). In the CP model, the system
contains either an active or an inactive particle at each site
of a d-dimensional lattice. An active particle activates an
inactive particle at the nearest-neighbor site with probability
κ; otherwise, it becomes inactive itself with probability 1 − κ .
By contrast, an inactive particle cannot recover to an active
particle alone. When κ is small, inactive particles become
more abundant with time, and eventually the system is fully
occupied by inactive particles. Then, the system is no longer
dynamic and falls into an absorbing state. When κ is large,
the system remains in an active state with a finite density of
active particles. Thus, the CP model exhibits a phase transition
from an active to an absorbing state as the control parameter
κ is decreased in any spatial dimension. This absorbing tran-
sition is second-order and belongs to the so-called directed
percolation (DP) universality class [7–13]. In the DP class, the
mean-field solution is valid above the upper critical dimension
dc = 4. The CP model can be applied to diverse phenomena
such as the epidemic spread of infectious disease and the
reaction-diffusion process of interacting particles.

The CP model has been modified in various ways to
describe different phenomena. For instance, Lübeck intro-
duced the so-called tricritical CP (TCP) model as follows.
In addition to the ordinary CP, a pair of consecutive ac-
tive particles can activate an inactive particle at a nearest-
neighbor site with probability ω [14–19]. The TCP model
exhibits an absorbing transition, which is either first-order or
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second-order depending on the parameters (κ, ω). The two
types of phase boundaries meet at a tricritical point. The
absorbing transition at the tricritical point is second-order, and
its critical behavior, which is denoted as tricritical DP (TDP),
is distinct from that of the DP class. The TDP class has been
extensively studied, and various features have been identified.
Using the field-theoretical approach [18], the critical expo-
nents of the TDP class were determined, together with the
upper critical dimension, dc = 3 [18–20]. Moreover, extensive
numerical simulations were performed in two dimensions in
Refs. [14–16] using slightly different models. However, the
simulations yielded critical exponents that were inconsistent
with each other, which was attributed to the inaccuracy of
the numerical value of the tricritical point [4]. It was also
argued that the first-order transition does not occur in the
one-dimensional DP-type model [21]. Thus, the lower critical
dimension seems to be 2.

Recently, the TDP class has attracted considerable atten-
tion from the physics community after the quantum contact
process (QCP), which belongs to the TDP universality class
in the mean-field semiclassical limit, was investigated and
realized experimentally in a dissipative quantum system of
Rydberg atoms in the presence of the strong dephasing [22].
An active (inactive) particle is represented by a Rydberg
atom in an excited state (the ground state). An inactive
particle is activated by detuning the excitation energy of
an active particle, in a process called antiblockade [23–25].
This antiblockade dynamics can be implemented incoherently
when strong dephasing noise is applied. In this case, the
quantum coherence becomes negligible, and the dynamics
is reduced to the classical CP process, which generates a
second-order transition. However, when quantum coherence
is essential, this case is called the QCP, and it yields second-
order and first-order transitions [26,27]. Competition between
the two types of processes leads to a tricritical point, which
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FIG. 1. Snapshot of active sites of the LTCP model in one
dimension at a critical point (κc(ω), ω) at a fixed ω = 0.5 < ωc

(a) and (b) and at the tricritical point (κt , ωt ) (c) and (d). For σ > 1,
the tricritical point does not exist.

yields another second-order transition that belongs to the TDP
class.

We remark that if an atom is excited to the s-state by
the QCP, then quantum coherence would occur locally, so
the short-range TCP (STCP) model [Fig. 1(a)] would be
relevant, which is equivalent to ordinary TCP. On the other
hand, if excitation to the d-state occurs, dipole-dipole in-
teractions become effective, and a long-range TCP (LTCP)
model [Figs. 1(b)–1(d)] would be relevant. Although the
STCP model has been extensively investigated not only in the
mean-field limit but also for low-dimensional cases, the LTCP
model has only a mean-field solution [28].

In phase transitions, the interaction range is an essential
factor determining the universality class of phase transitions
in both equilibrium [29–37] and nonequilibrium systems
[38–44]. Thus, the classical CP model with long-range inter-
actions was introduced, motivated by the fact that epidemic
diseases can be spread by, for instance, Lévy flight. In this
model, the activation process is realized by assigning the prob-
ability κPI (r) that each active particle activates an inactive
particle at distance r. Thus, PI (r) represents the probability
that a particle at distance r is chosen. PI (r), which follows the
power-law ∼1/rd+σ , is nontrivial, where σ > 0 is a control
parameter.

This long-range CP (LCP) exhibits σ -dependent critical
behavior, which is relevant within the interval denoted as
[σc1, σc2]. Below σc1, the critical behavior is consistent with
the mean-field solution. Using the field-theoretical approach,
dc is determined as min(4, 2σ ) [38,39]. Thus, for σ < 2
or d < 4, dc = 2σ , and σc1 = d/2 for d < 4. Above σc2, it
belongs to the ordinary DP class. Field-theoretical analysis
revealed that σc2 = d + z(1 − 2δ), where z is a dynamic
exponent, and δ is the critical exponent for the density of
active particles ρa(t ) ∼ t−δ of the ordinary DP class. When
z and δ were replaced with their DP values, σc2 was found to
be 2.0766 in one dimension, 2.1725 in two dimensions, and

2.126 in three dimensions. However, direct simulation data
in one dimension could not reproduce the value σc2 ≈ 2.08,
so further investigation is needed in future work to resolve
this inconsistency [38]. For d > 4, there exists one threshold,
σc = 2, such that for σ < 2, the mean-field solution of the
long-range DP is valid, whereas for σ > 2, the mean-field
solution of the ordinary DP is valid.

We focus on the LTCP model. In our previous work, we
constructed a phase diagram based on the mean-field solution,
which is valid for d > dc = min(3, 1.5σ ) [28]. In this case,
there exists a characteristic value σc= 2 such that for σ < σc,
the mean-field solution of the LTCP is relevant, and for σ >

σc, the LTCP model behaves like the STCP model. We will
show later that when d < 3, the LTCP model exhibits dis-
tinctive behavior (characterized as that of the LTCP class) in
the interval [σc1, σc2], where σc1 = 2d/3 because dc =1.5σ ,
and σc2 is determined by the hyperscaling relation σc2 =
d + z(1 − δ − δ′), where δ′ is the critical exponent for the
survival probability P(t ) ∼ t−δ′

. We need to replace z, δ, and
δ′ in the formula with the numerical values of the short-range
TDP (STDP) to obtain σc2. For σ < σc1 shown in Fig. 1(d),
the mean-field behavior of the LTDP class appears, and for
σ > σc2 shown in Fig. 1(a), the behavior of the STDP class
appears. The universality class diagram will be shown later.
As in the LCP model, the value of σc2 is obtained from the
hyperscaling relation; however, it is not consistent with the
value obtained directly from numerical simulations. Finally,
we determine the critical exponents of the LTCP model in the
interval [σc1, σc2], which vary continuously with σ .

The remainder of this paper is organized as follows. In
Sec. II, we present the rules of the long-range TCP in detail.
In Sec. III, the critical behavior of the absorbing transition
is determined. In Sec. IV, we set up the Langevin equation
to derive the scaling relation. In Sec. V, we report numerical
results for the long-range TCP. In the final section, a summary
and discussion are presented.

II. LTCP MODEL

We perform numerical simulations by extending the algo-
rithm used in Ref. [14] for the STCP model to the long-range
case. Specifically, the model is set up on a d-dimensional
lattice composed of Ld sites, where L is the lateral size of the
system, and each site is in either the active state (denoted as A)
or the inactive state (denoted as 0). We use two different initial
configurations: (i) one site is active, and the others are all inac-
tive, and (ii) all sites are active. Each case will be used for dif-
ferent purposes. We use the periodic boundary condition in the
simulations. At each time step, the following rules are applied:

(i) An active site is chosen randomly from the list of active
sites. Its position is denoted as r0. With probability 1 − ω, a
long-range CP is performed as follows:

(i-a) With probability 1 − κ , the active site chosen in step
(i) is inactivated.

(i-b) With probability κ , a site at a distance r from the
position r0 is selected with probability PI (x). If this target site
is inactive (0), its state is changed to active (A).

(ii) An active site is chosen randomly from the list of active
sites. Its position is denoted as r0. The state of a nearest-
neighbor site is checked with probability ω.
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TABLE I. Reaction schemes of the CP, TCP, and LTCP. A (0) represents the active (inactive) state. TCP∗ denotes the TCP model introduced
in Ref. [14]. When the Lévy exponent σ → ∞ in the LTCP, the LTCP model is reduced to the m-TCP used in Sec. V A. The last column
indicates the processes explained in Sec. II. The notation · · · in the LTCP column represents long-range interactions. PI (|r − r′|) ∼ 1/

|r − r′|d+σ .

CP TCP∗ LTCP

Reaction Probability Reaction Probability Reaction Probability Process

A → 0 1 − κ A → 0 (1 − ω)(1 − κ ) A → 0 (1 − ω)(1 − κ ) (i-a)
A0 → AA κ A0 → AA (1 − ω)κ A· · · 0 → A · · · A (1 − ω)κ PI (|r − r′|) (i-b)

A0 → 00 ω(1 − κ ) A0 → 00 ω(1 − κ ) (ii-a)
A0 → AA ωκ AA· · · 0 → AA · · · A ωκ PI (|r − r′|) (ii-b)

AA0 → AAA ω

(ii-a) If the neighbor is inactive, then the active site at r0 is
inactivated with probability 1 − κ .

(ii-b) If the neighbor is active, then a third site is selected
at a distance r from r0 with probability PI (r). If this target is
inactive, it is activated with probability κ .

(iii) If the number of active sites is zero, the simulation
ends. Otherwise, the time t is advanced by 1/Na, where Na(t )
is the total number of active sites in the system at time t , and
the simulation returns to step (i).

In this rule, PI (r) is given as ∼1/rd+σ . This model is
controlled by three parameters: (i) the Lévy exponent σ > 0
controlling the long-range interaction, (ii) the probability ω

of checking the nearest-neighbor site before the reaction, and
(iii) the probability of the branching process κ . The reactions
are summarized in Table I.

III. CRITICAL BEHAVIOR OF THE ABSORBING
TRANSITION

Here we introduce the basic physical quantities used to
characterize the critical behavior of the absorbing transition.
To proceed, we first consider a system in which a single
active site is located at r = 0 at time t = 0, and the remaining
sites are inactive. The LTCP begins in this configuration. We
measure the following quantities to characterize the critical-
ity of the LTCP: (i) the survival probability P(t ) (i.e., the
probability that the system has not entered in the absorbing
state), (ii) the number of active sites Na(t ), and (iii) the mean
square of the distance from the origin, R2(t ). That is, R2(t ) =
[1/Na(t )]

∑Na
j=1 r2

j , where r j is the position of the jth active
site. When sufficiently long-range interactions are considered,
the arithmetic average of R2(t ) ≡ 〈|r(t )|2〉 may be difficult to
obtain numerically [38,39]. The geometric average R2(t ) =
exp[〈ln |r(t )|2〉] may be a suitable alternative. Second, one
may take as the initial configuration one that is occupied
entirely by active sites. Using this initial configuration, (iv)
the density ρa(t ) of active sites at time t is measured.

At the critical point, these quantities exhibit power-law
behavior as follows:

P(t ) ∝ t−δ′
, Na(t ) ∝ tη, R2(t ) ∝ t2/z, ρa(t ) ∼ t−δ.

(1)

The mean density of surviving active sites behaves as
ρa(t )P(t ) = Na(t )/Rd (t ). Thus, the exponent δ is related to
the other exponents as δ = d/z − η − δ′. In particular, at the
tricritical point, these exponents are denoted as δ′

t , ηt , zt , and

δt . Hereafter, we drop the subscript t indicating the tricritical
case for brevity unless it is necessary for clarity.

In the supercritical region, κ > κc for each given ω < ωt ,
and P(t ) reaches Ps in the steady state, where Ps ∼ (κ − κc)β

′
.

ρa(t ) behaves similarly to ρa(t ) → ρa,s ∼ (κ − κc)β . The ex-
ponents β ′ and β are related to δ′ = β ′/ν‖ and δ = β/ν‖,
where the exponent ν‖ is the mean survival time exponent
defined in terms of the mean survival time τ ∼ (κ − κc)−ν‖ .
At the tricritical point, β = β ′ (equivalently, δ = δ′), whereas
in the DP class, they are the same.

We characterize the critical behavior in finite systems
using the finite-size scaling (FSS) theory. In this approach,
the critical exponents are determined using the data collapse
technique for scaling functions. The data collapse technique
is achieved by a scaling hypothesis in which the large-
scale properties are invariant near the tricritical point (κt =
κc(ωt ), ωt ) under the following scale transformations:

�κ → s−1�κ, ρa → s−βρa, Na → sν‖ηNa, P → s−β ′
P,

ζ → sν⊥ζ , τ → sν‖τ, �ω → s−φ�ω, (2)

where �κ = κ − κt , �ω = ω − ωt , s is a scale factor, and
ν⊥ is the spatial correlation exponent defined in terms of
the spatial correlation ζ ∼ (κ − κc)−ν⊥ . In addition, φ is a
crossover exponent defined as the ratio of the scaling exponent
of �κ and �ω. For instance, at the tricritical point (κt , ωt ),
the average density ρa(t ) of active sites behaves as ρa(t, N ) =
sβρa(sν‖t, sν̄⊥N ) , where ν̄⊥ ≡ dν⊥.

When sν‖t = 1 is chosen, ρa(t ) = t−δ fn(tN−z̄ ). Similarly,
the other quantities are reduced as

P(t ) = t−δ′
fp(tN−z̄ ), Na(t ) = tη fN (tN−z̄ ), (3)

where z̄ = z/d , z = ν‖/ν⊥, and fn, fp, and fN are scaling
functions.

Near the tricritical point, the number of active sites and the
density of active sites scale as

Na(t,�κ,�ω) = s−ν‖ηNa(sν‖t, s−1�κ, s−φ�ω), (4)

ρa(t,�κ,�ω) = sβρa(sν‖t, s−1�κ, s−φ�ω). (5)

At �ω = 0, by choosing sν‖t = 1, we can reduce Eq. (4) to

Na(t ) = tη f1(t1/ν‖�κ ), (6)
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where f1 is a scaling function. Alternatively, in the steady state
t → ∞, by choosing s−φ�ω = 1, we can reduce Eq. (5) to

ρa(t ) = �ωβ/φ f2[(�ω)−1/φ�κ], (7)

where f2 is a scaling function. In a steady-state simulation, the
absorbing state can be reached because of finite-size effects
[45,46]. To overcome this problem, when the system reaches
the absorbing state, we perform a spontaneous creation,
0 → A.

In this section, we briefly reviewed the power-law behavior
and FSS theory of the absorbing state phase transition. These
contexts will be used in Sec. V to perform the numerical
analysis of the critical exponents.

IV. ANALYTIC RESULTS

A. Phase diagram in the mean-field limit

In this section, we recall the analytic result based on the
mean-field approach obtained in a previous work [28]. The
density of active sites at time t averaged over the surviving
sample is denoted as ρa(t ). In the mean-field limit, we ignore
the effect of local density fluctuations and write the dynamic
equation of the LTCP model as

∂tρa(t ) = −u2ρa − u3ρ
2
a − u4ρ

3
a , (8)

where u2 = ωκ + 1 − 2κ , u3 = κ − ω − ωκ , and u4 = ωκ .
These coefficients are derived on the basis of the reactions
listed in Table I.

In the steady state, we set ∂tρa = 0 and obtain the solutions
as

ρ∗
a ≡ 0 and ρ∗

a,± ≡
−u3 ±

√
u2

3 − 4u2u4

2u4
. (9)

Linear stability analysis reveals that the first solution, ρ∗
a = 0,

is stable for u2 > 0 and unstable for u2 < 0. Thus, u2 = ωκ +
1 − 2κ = 0 is the boundary of the stable solution at the fixed
point ρ∗

a = 0, which is equivalent to the boundary of the active
phase in Fig. 2.

FIG. 2. Phase diagram of the TCP model in the mean-field limit.
A tricritical point (red dot) is located at (0.6180, 0.3820). The
white solid (dashed) curve represents a continuous (discontinuous)
transition.

For the second solution, ρ∗
a,±, we analyze the linear stabil-

ity as

δρ̇a,± = −(u2 + 2u3ρ
∗
a,± + 3u4ρ

∗2
a,±)δρa,± (10)

= ρ∗
a,±(−u3 − 2u4ρ

∗
a,±)δρa,±

= ∓ρ∗
a,±

√
u2

3 − 4u2u4δρa,±. (11)

Thus, ρ∗
a,+ and ρ∗

a,− are stable for ρ∗
a,+ > 0 and ρ∗

a,− < 0,
respectively. Because ρa > 0, ρ∗

a,− is ignored. For ρa = ρ∗
a,+,

we obtain two phase boundaries. The first is u2 = 0 and
u3 � 0. Thus, u2

3 − 4u2u4 � 0. These conditions are rewritten
in terms of (κ, ω) as follows:

ωκ + 1 − 2κ = 0 and ω � ωt ≡ 3 − √
5

2
. (12)

Thus, ρ∗
a,+ = 0. The first equation and second inequality

above were used to generate the white solid curve in Fig. 2,
and the red dot indicates ω = ωt .

The second phase boundary is obtained from the conditions
u2

3 − 4u2u4 = 0 and u3 � 0. These conditions lead to

(κ − ω − ωκ )2 − 4ωκ (1 − 2κ + ωκ ) = 0

for ω � ωt and κ � 0.5, (13)

where ρ∗
a,+ � 0. This phase boundary is drawn as a white

dashed curve in Fig. 2.
There exist three phases in the phase diagram (Fig. 2):

(i) the inactive (absorbing) phase with ρa = 0, (ii) the active
phase with ρa = ρ∗

a,+ > 0, and (iii) the bistable phase with
two stable fixed points: ρa = 0 and ρa = ρ∗

a,+ > 0. The phase
boundaries are determined by the conditions derived above.
We will show later that the phase transition across the first
boundary above (indicated by the white solid curve) is second-
order, whereas that across the second boundary (indicated
by the dashed curve) is first-order. Therefore, a tricritical
point is formed at (κt , ωt ). The critical exponent of the order
parameter defined as ρa ∼ (κ − κc)β across the white solid
curve is found to be β = 1 for ω < ωt , and the exponent βt

for ρa ∼ (κ − κt )βt is found to be βt = 1/2 at ω = ωt .
To confirm our analytic result, we numerically verified the

phase diagram on the fully connected lattice. Specifically, us-
ing the FSS theory, we obtained the tricritical point and critical
exponents presented in the next subsection corresponding to
the analytic results.

B. Hyperscaling relation for LTDP

In this section, we recall the field-theoretic analysis per-
formed in the previous work [28] to obtain the exact scaling
relation and mean-field exponents. To account for the spatial
fluctuations and noise induced by active particles occupying
active sites, we set up the Langevin equation as follows:

∂tρa = Dσ∇σ ρa + D∇2ρa − u2ρa − u3ρ
2
a − u4ρ

3
a + ξ,

(14)

where Dσ and D are the diffusion constants obtained
from a small momentum expansion, which are given by
(1 − ω)κ

∫
dr′ P(|r − r′|)ρa(r′) ≈ (1 − ω)κρa + Dσ∇σ ρa +

D∇2ρa. The noise ξ (r, t ) is a multiplicative Gaussian random
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variable with zero mean and a correlation of

〈ξ (r, t )ξ (r, t )〉 = �ρa(r, t )δd (r − r′)δ(t − t ′). (15)

Using the Martin-Siggia-Rose-Janssen–de Dominicis formal-
ism [47–51] for the Langevin equation, we obtain the action
as follows:

S =
∫

dx ρ ′
a

[
∂t − D∇2 − Dσ∇σ + u2 + u3ρa

+ u4ρ
2
a − �

2
ρa

]
ρa, (16)

where ρ ′
a is an auxiliary field, and x = (r, t ).

If u3 is finite, u4 is irrelevant at dc, which implies that the
action described by Eq. (16) belongs to the long-range DP
(LDP) class. It is satisfied by the so-called rapidity-reversal
(or duality) symmetry, which is invariant under the exchange
ρa(r, t ) ↔ −ρ ′

a(r,−t ). Rapidity-reversal symmetry implies
that the critical exponents β and β ′ must be identical. It
was revealed that in the LDP class, Dσ is not renormalized
[38,39]. This means that Dσ is invariant under the scaling
transformation; thus, one obtains the exact scaling relation
d + z − σ − 2zδ = 0 [38–42].

At the tricritical point, u3 = 0, the rapidity-reversal sym-
metry is broken, and β = β ′. Crossover behavior occurs when
more than one fixed point appears in the phase diagram. Scal-
ing theory is used to obtain the mean-field critical exponents:

β = 0.5, β ′ = 1, ν⊥ = 1/σ, ν‖ = 1, z = p, φ = 0.5,

(17)

which are expected to be valid above the upper critical
dimension dc = 1.5σ . For the LDP class, loop corrections
can be represented as an integer power series in momentum
space [39]. This can be applied to LTDP as well, which
means that the coefficient of the fractional Laplacian is not
renormalized (see Appendix A). This implies that the coeffi-
cient of the fractional Laplacian must be invariant under the
renormalization-group (RG) transformation. Hence, one can
obtain the so-called hyperscaling relation,

d + z − σ − z(δ + δ′) = 0, (18)

which is valid below the upper critical dimension, d � dc.
Below dc, the universal features of the LTCP model depend

on σ , which is within the interval [σc1, σc2]. Thus, we consider
the following three domains. First, below σc1, the interaction
range can be superdiffusive; thus, mean-field critical behavior
appears. In other words, above the upper critical dimension
d > dc = 1.5σ , mean-field behavior is expected. Thus, σc1 =
2d/3. Second, σc2 is determined to be 1.360 67 using Eq. (18).
Finally, in the regime σ > σc2, the exponents are reduced to
those of the STDP class.

V. NUMERICAL RESULTS

A. STCP model in two dimensions

We consider an STCP model called the m-TCP model to
distinguish it from other previous models designed as models
of the STCP class. This model is a simple version of the
LTCP model obtained by replacing the long-range interaction

FIG. 3. (a) Scaling plot of Nat−η vs t1/ν‖ (κc − κ ) for different
values of κ . Data points collapse well onto a single curve for η =
0.230 and ν‖ = 1.295. (b) Plot of Na(t ) vs t at and around κc. Inset:
local slopes of Na(t ) vs 1/t for these data points obtained in (a).
ω = 0.6 and κc = 0.673 26.

with short-range interaction, which we will consider next. In
fact, the STCP model was explored in Refs. [14–16] using
slightly different rules, but the numerical values of their
critical exponents differed from each other. The origin of
this difference will be discussed later. Here, we check the
justification for our LTCP model using the simplified version,
the m-TCP model, by comparing our simulation results with

FIG. 4. Phase diagram of the m-TCP model in two dimensions.
A tricritical point is located at (0.660 646 6, 0.879). White (orange)
curve represents a continuous (discontinuous) transition. At ω =
0, the model is reduced to the CP model at κc = 0.622 466. The
data points (white circles and orange triangles) represent numerical
results.
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FIG. 5. Plot of Na(t ) for different values of ω: ω = 0 at the DP
point; ω = 0.879 at the TDP point; ω = 0.82 in the crossover region
between these two points; and ω = 0.9 in the first-order transition
domain. Dashed lines are guidelines with slope 0.230, 0.102, and
−0.353 for ω = 0, 0.82, 0.879, from the top, respectively. The
system size is taken as N = 108.

those obtained in Refs. [14–16]. This m-TCP model contains
two control parameters, κ and ω. In (κ, ω) space, there exist
second-order and first-order phase transition curves and a
tricritical point at which the two transition curves meet.

To determine the second-order curve, we find a critical
point κc for each value of ω in the region ω < ωt as follows.
First, we use the FSS method based on Eq. (6). We take
the scale factor s as s = κc − κ and plot Na(t )t−η versus
(κc − κ )t1/ν‖ . If we choose κc correctly, then the data points

for different κ values would collapse onto a single curve.
Indeed, we obtain this result, for instance, for ω = 0.6 with
κc = 0.673 26 [Fig. 3(a)]. In the second method, we check
the local slope of the curve of Na(t ) as a function of t . If
we choose κc correctly, then Na(t ) would exhibit power-law
behavior as a function of t with the exponent η(ω) [Fig. 3(b)].
Using these two methods, we determine the critical points κc

for each value of ω.
We obtain the phase diagram shown in Fig. 4. When ω = 0,

the absorbing transition belongs to the DP class, and thus
η ≈ 0.230. We trace the value of the exponent η as a function
of ω in Fig. 5. The ω values are chosen as follows: (i) ω = 0
(DP class); (ii) ω = 0.82 (in the crossover region from DP
to TDP); (iii) ω = 0.879 (TDP class); and (iv) ω = 0.9 (in
the region of the first-order transition). In Fig. 5, there are
two generic power-law lines at ω = 0 and 0.879. At the
tricritical point, we obtain the tricritical exponents as η =
−0.35 ± 0.008, δ′ = 1.22 ± 0.008, z = 2.11 ± 0.01, and δ =
0.09 ± 0.01 in Fig. 6. When we perform the data collapse, the
error bars are measured by controlling the exponents until the
data collapse breaks down. The exponent ν‖ is obtained from
the rescaling plot of Na(t )t−η versus t1/ν‖ (κt − κ ) for different
κ values in Fig. 7(a). In Fig. 7(b), the crossover exponent
φ is obtained from the rescaling plot of ρa,s(ωt − ω)−β/φ

versus (κ − κc)(ωt − ω)−1/φ . In this case, φ = 0.52 ± 0.02 is
obtained, in agreement with the result in Ref. [14]. We remark
that the authors of Refs. [14–16] considered TCP models
with slightly different reaction rules. Further, they obtained
slightly different critical exponent values. It was argued that
this discrepancy results from the different methodologies used

FIG. 6. Plots of four physical quantities used to characterize the absorbing transition of the m-TCP model in two dimensions at a tricritical
point: (a) Na(t ) versus t , (b) P(t ) versus t , (c) R2(t ) versus t , and (d) ρa(t ) versus t . The exponent values are estimated as follows: (a) η =
−0.35 ± 0.008, (b) δ′ = 1.22 ± 0.008, (c) 2/z = 0.947 ± 0.004, and (d) δ = 0.09 ± 0.01. Insets: Local slopes of each quantity versus 1/t to
confirm the estimated slopes.
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FIG. 7. FSS analysis of the m-TCP model. (a) Scaling plot of
Nat−η vs t1/ν‖ (κt − κ ) for different values of κ . Data points collapse
well onto a single curve for κt = 0.660 646 6, η = −0.353, and ν‖ =
1.16. (b) Scaling plot of ρa,s(ωt − ω)−β/φ vs (κ − κc )(ωt − ω)−1/φ

for different values of ω, where ρa,s represents ρa in the steady state.
Dotted (dashed) line is a guideline with slope βDP = 0.584 (βt =
0.101). Data points collapse well onto a single curve for φ = 0.52.

to determine the tricritical point in Ref. [14]. The author of
Ref. [14] used FSS of the order parameter in the steady state.
It is difficult to find a tricritical point correctly using this
method, because FSS in the steady state is not sensitive to
κt . On the basis of our two criteria, we obtain ωt = 0.9190
instead of the value of 0.9055 in Ref. [14]. At our tricritical
point, we obtain critical exponent values similar to those in
Ref. [15]. In Table II, we list the three sets of critical exponent
values of the STCP model obtained using three different
rules.

For ω > ωt , as represented by the orange curve in Fig. 4,
a first-order transition occurs. One of the features of the
first-order transition is the presence of a hysteresis curve.
Thus, we check whether a hysteresis curve is indeed gener-
ated. After taking an ω value larger than ωt , say ω = 0.95,
we calculate the LTDP dynamics for a given κ and obtain

FIG. 8. Plot of ρa,s vs κ for the m-TCP model at a fixed
ω = 0.95 > ωt . A hysteresis curve is obtained. The system size is
N = 106.

ρa(κ ) in the steady state. Next, we increase κ slightly and
simulate the LTDP dynamics again; we obtain ρa in the
steady state. We repeat this process in the forward direction,
in which κ is increased, and in the backward direction, in
which κ is decreased. Indeed, we obtain a hysteresis curve,
as shown for ω = 0.95 in Fig. 8. Here, we determine the
critical point of the first-order transition following the method
used in Refs. [14,52]. For fixed ω and κ , we set up an initial
configuration in which half of the sites are assigned to the
active state and the remaining sites are assigned to the inac-
tive state, and the LTDP dynamics is simulated. The system
reaches either the absorbing state (ρa = 0) or the active state
(ρa > 0) depending on the initial configuration and given κ .
We measure the fraction of initial configurations that reach
the absorbing state as a function of κ . The transition point
κc is determined as the one at which the fraction becomes
half.

B. LTCP model in two dimensions

We perform numerical simulations of the LTCP model in
two dimensions, in which the long-range interaction exponent
σ is varied in the range [0.1,3.0] in steps of �σ = 0.1. For
each value of σ , we determine both the critical points (κc, ωc)
and the tricritical point (κt , ωt ) using the two methods em-
ployed in the previous subsection. As in the phase diagram
of the m-TCP model, a second-order (first-order) transition
occurs for ω < ωt (σ ) [ω > ωt (σ )]. Thus, a tricritical point
appears for each value of σ , as shown in Fig. 9(a). The second-
order transition belongs to the long-range DP class when
ω � ωt (σ ) for the given σ values. However, as ω approaches
ωt , the critical exponents exhibit crossover behavior.

TABLE II. 2d TDP universality at tricritical point (κt , ωt ) for various models. Here, we determine the tricritical point of Lübeck’s TCP
model by finding the power-law behavior of the number of active sites Na(t ).

Model (κt , ωt ) ν‖ z δ δ′ η

Generalized Domany-Kinzel [15] (0.1813672, 2.795) 1.156(4) 2.110(6) 0.087(3) 1.218(7) −0.353(9)
Ordinary TCP [14] (0.286237, 0.919) 1.15 ± 0.005 2.11 ± 0.01 0.09 ± 0.01 1.22 ± 0.008 −0.35 ± 0.008
Modified TCP (0.6606466, 0.879) 1.15 ± 0.005 2.11 ± 0.01 0.09 ± 0.01 1.22 ± 0.008 −0.35 ± 0.008
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FIG. 9. For the LTCP model in two dimensions, (a) plot of the
tricritical points in (κ, ω) space for different σ values in [0.1,3.0].
(b) Plots of the critical exponents z/d , δ, δ′, and η as a function of σ .
σc1 and σc2 are indicated by vertical dotted lines. The thin solid lines
in the regions σ < σc1 and σ > σc2 are guidelines showing that the
curves converge to constant values.

At the tricritical point, the critical exponent values of δ′, η,
z, and δ are obtained for each value of σ in the range [0.1,3]
in steps of �σ = 0.1, as shown in Fig. 9(b). The obtained
critical values are listed in Table III. Each critical exponent
value exhibits crossover behavior across σc1 and σc2. The
value of σc1 is determined to be 4/3 in two dimensions, be-
cause dc = 1.5σc1. For σ < σc1, mean-field behavior occurs,
whereas for σ > σc1, a significant low-dimensional fluctua-
tion effect appears. The upper bound σc2, across which the
universality class changes from the two-dimensional LTDP
class to the two-dimensional STDP class, was determined
using the hyperscaling relation (18). We remark that whereas
in the regions σ < σc1 and σ > σc2 the exponents are constant
regardless of σ , in the interval [σc1, σc2] the critical exponents
vary constantly as a function of σ , which is a prototypical
pattern that appears in the long-range CP model.

Indeed, we find numerically that the critical exponent
values for σ between [σc1 = 4/3, σc2 ≈ 2.2] vary depend-
ing on σ , as listed in Table III. For instance, for σ =
2.0, we obtain the critical exponents directly by measuring
the slopes as η = −0.129 ± 0.010, δ′ = 1.073 ± 0.010, z =
1.840 ± 0.015, and δ = 0.212 ± 0.010, as shown in Fig. 10.
We also obtain the critical exponents using the FSS method.
We plot Nat−η versus tN−z̄ for different system sizes N
in Fig. 11(a), the rescaled quantity P(t )t δ′

versus tN−z̄ in
Fig. 11(b). The exponent ν‖ is obtained from the scaling plot
of Na(t )t−η versus t1/ν‖ (κt − κ ) for different values of κ in
Fig. 12(a). The data points for different κ values collapse
well onto the curve for ν‖ = 1.07 ± 0.005. In Fig. 12(b), the
crossover exponent φ is obtained from the scaling plot of
ρa,s(ωt − ω)−β/φ versus (κ − κc)(ωt − ω)−1/φ for different
values of ω. The data points for different values of ω also

TABLE III. Critical exponents for the LTDP model in two dimensions.

σ (κt , ωt ) δ δ′ z̄ ≡ z/d ν‖ η φ Universality

0.2 (0.609401, 0.378) 0.500 ± 0.005 1.00 ± 0.02 0.666 ± 0.01 1.00 ± 0.01 0.000 ± 0.005 0.50 ± 0.01
0.4 (0.612271, 0.400) 0.500 ± 0.005 1.00 ± 0.02 0.666 ± 0.01 1.00 ± 0.01 0.000 ± 0.005 0.50 ± 0.01
0.6 (0.616819, 0.424) 0.500 ± 0.005 1.00 ± 0.02 0.666 ± 0.01 1.00 ± 0.01 0.000 ± 0.005 0.50 ± 0.01 Mean-field

long-range TDP
0.8 (0.622538, 0.450) 0.500 ± 0.005 1.00 ± 0.02 0.666 ± 0.01 1.00 ± 0.01 0.000 ± 0.005 0.50 ± 0.01
1.0 (0.628244, 0.475) 0.500 ± 0.01 0.99 ± 0.02 0.666 ± 0.01 1.00 ± 0.01 0.000 ± 0.005 0.50 ± 0.01
1.2 (0.635410, 0.506) 0.485 ± 0.01 1.00 ± 0.02 0.678 ± 0.01 1.02 ± 0.01 −0.010 ± 0.005 0.50 ± 0.01

1.4 (0.643351, 0.543) 0.397 ± 0.01 1.01 ± 0.02 0.725 ± 0.01 1.03 ± 0.01 −0.022 ± 0.005 0.50 ± 0.01
1.5 (0.647071, 0.562) 0.345 ± 0.01 1.013 ± 0.02 0.758 ± 0.01 1.03 ± 0.01 −0.029 ± 0.005 0.51 ± 0.01
1.6 (0.650679, 0.582) 0.309 ± 0.01 1.021 ± 0.02 0.784 ± 0.01 1.04 ± 0.01 −0.032 ± 0.005 0.51 ± 0.01
1.7 (0.653822, 0.601) 0.281 ± 0.01 1.031 ± 0.02 0.819 ± 0.01 1.04 ± 0.01 −0.052 ± 0.005 0.51 ± 0.01
1.8 (0.656771, 0.621) 0.253 ± 0.01 1.041 ± 0.02 0.849 ± 0.01 1.05 ± 0.01 −0.071 ± 0.01 0.51 ± 0.02 Long-range TDP
1.9 (0.659371, 0.641) 0.223 ± 0.01 1.050 ± 0.01 0.881 ± 0.01 1.06 ± 0.01 −0.091 ± 0.01 0.52 ± 0.02
2.0 (0.661659, 0.662) 0.212 ± 0.01 1.073 ± 0.01 0.922 ± 0.01 1.07 ± 0.01 −0.129 ± 0.01 0.52 ± 0.02
2.1 (0.663511, 0.683) 0.184 ± 0.01 1.100 ± 0.01 0.961 ± 0.01 1.08 ± 0.01 −0.180 ± 0.01 0.52 ± 0.02
2.2 (0.664880, 0.703) 0.172 ± 0.01 1.150 ± 0.01 0.992 ± 0.01 1.09 ± 0.01 −0.211 ± 0.01 0.52 ± 0.02

2.4 (0.666269, 0.742) 0.123 ± 0.01 1.211 ± 0.01 1.045 ± 0.01 1.12 ± 0.01 −0.288 ± 0.01 0.52 ± 0.02
2.6 (0.666487, 0.769) 0.105 ± 0.01 1.22 ± 0.01 1.055 ± 0.01 1.14 ± 0.01 −0.334 ± 0.01 0.52 ± 0.02 Short-range TDP
2.8 (0.666001, 0.792) 0.098 ± 0.01 1.22 ± 0.01 1.055 ± 0.01 1.15 ± 0.01 −0.353 ± 0.01 0.52 ± 0.02
3.0 (0.665661, 0.806) 0.089 ± 0.01 1.22 ± 0.01 1.055 ± 0.01 1.15 ± 0.01 −0.353 ± 0.01 0.52 ± 0.02
∞ (0.6606466, 0.879) 0.09 ± 0.01 1.22 ± 0.008 1.055 ± 0.005 1.15 ± 0.005 −0.35 ± 0.008 0.52 ± 0.02
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FIG. 10. For the LTDP model with σ = 2.0 in two dimensions, plots of (a) Na(t ), (b) P(t ), (c) R2(t ), and (d) ρa(t ) vs t . We obtain the
exponent values as η = −0.129 ± 0.010, δ′ = 1.073 ± 0.010, 2/z = 1.087 ± 0.010, and δ = 0.212 ± 0.010, respectively. Insets: local slopes
of each quantity vs 1/t .

FIG. 11. For the LTDP model with σ = 2.0 in two dimensions,
(a) scaling plot of Nat−η vs tN−z̄ for η = −0.129 and z̄ = 0.922.
(b) Scaling plot of P(t )t δ′

vs tN−z̄ for δ′ = 1.073 and z̄ = 0.922.

collapse well onto a curve for φ = 0.52 ± 0.02. The critical
exponent values for other σ values are listed in Table III.

Using the field-theory approach, the upper critical dimen-
sion was determined to be dc = 1.5σ [28]. Thus, when σ <

4/3, dc is smaller than d = 2. In this case, when we perform
dimensional analysis, we need to use dc rather than d = 2. For
instance, for hyperscaling analysis, we need to use ν̄ = dcν,
i.e., ν̄ = (1.5σ )ν for σ < 4/3 and ν̄ = 2ν for σ > 4/3 in two
dimensions. To confirm this scaling theory, for σ = 2.0 >

4/3, we obtain the dynamic exponent z by directly measuring
the local slope of the plot of R2(t ) versus t in Fig. 10(c) and the
exponent z̄ from the scaling plots in Figs. 11(a) and 11(b). For
σ < 4/3, we also obtain the dynamic exponent z in Fig. 13(a)
and the exponent z̄ from the scaling plots in Fig. 13(b). Thus,
we confirm that z/z̄ is close to 2 for σ = 2 and 1.204 for
σ = 0.8. The hysteresis of the first-order transition for ω > ωt

is shown in Fig. 14.

C. LTCP model in one dimension

We perform numerical simulations in one dimension, in
which the exponent σ was taken from the interval [0.1,1.1]
in steps of �σ = 0.1 (Fig. 15). For each value of σ , we deter-
mine a critical point (κc, ωc) and a tricritical point (κt , ωt )
using the same method as in the previous subsections. As
in the phase diagram of the m-TCP model, a second-order
(first-order) transition occurs for ω < ωt (σ ) [ω > ωt (σ )].

Next, we determine an interval [σc1, σc2] within which
the dynamics of the LTCP model becomes nontrivial. We
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FIG. 12. For the LTDP model with σ = 2.0 in two dimensions,
(a) scaling plot of Nat−η vs t1/ν‖ (κt − κ ) for different values of κ .
Data points collapse well onto a single curve for κt = 0.661 663, η =
−0.129, and ν‖ = 1.07. (b) Scaling plot of ρa,s(ωt − ω)−β/φ vs (κ −
κc )(ωt − ω)−1/φ for different values of ω. The dotted (dashed) line
is a guideline with slope βLDP = 0.7316 (βt = 0.2236). Data points
collapse well onto a single curve for φ = 0.52.

first determine that σc1 = 2/3 using the criterion d = 1.5σc1

at d = 1. For σ < σc1, the mean-field solution is valid, and
the upper critical dimension is determined as dc = (3/2)σ .
For σ > σc1, the upper critical dimension is larger than the
dimension d = 1. Accordingly, when we use ν̄ = dν, we need
to take ν̄ = (1.5σ )ν for σ < 2/3 and ν̄ = ν for σ > 2/3 in
one dimension. We confirm this property by measuring the
ratio z̄/z for different σ values smaller than and larger than
σc1. To confirm this scaling theory, for σ = 0.7 > 2/3, we
obtain the dynamic exponent z by directly measuring the
local slope in the plot of R2(t ) versus t in Fig. 16(c) and the
exponent z̄ from the scaling plots in Figs. 17(a) and 17(b). For
σ < 2/3, we also obtain the dynamic exponent z in Fig. 18(a)
and the exponent z̄ from the scaling plots in Fig. 18(b). Thus,
we confirm that z/z̄ is close to 1 for σ = 0.7 and 0.749 for
σ = 0.5.

To determine σc2, we recall the previous result that for a
short-range DP-type CP model, a first-order transition does
not occur in one dimension [21]. Thus, an STDP class does
not appear in the region σ > σc2 [17]. On the basis of this
background, we need to determine the σ range in which the
LTCP universality class exists in one dimension. Thus, we
need to check whether a tricritical point exists in the interval
σc1 < σ < σc2.

FIG. 13. Plots of LTCP in two dimensions for σ = 0.8. (a) Plot
of R2(t ) vs t . The inset represents local slopes of each quantity vs
1/t . (b) Scaling plot of Nat−η vs tN−z̄ for η = 0 and z̄ = 0.666. We
obtain the exponent values as (a) 2/z = 2.491 ± 0.010 and (b) z̄ =
0.666 ± 0.003.

The numerical simulation results show that a tricritical
point still exists in the region σ > σc1, but it disappears
near σ � 1.0, as a discontinuous transition does not occur
(Fig. 19). Thus, we take σc2 � 1.0. The tricritical points for
given σ values less than σc2 are determined and shown in
Fig. 15(a). As σ approaches 1.0 in the phase diagram, ωt

also approaches 1.0 [Fig. 15(a)]. By contrast, when ω = 1,
the LTDP dynamics is frozen because the absorbing state is
reached immediately after the dynamics starts from an initial
configuration in which either all the sites are fully active or

FIG. 14. For the LTCP model with σ = 1.0 in two dimensions at
ω = 0.55 > ωt , plot of ρa,s vs κ . A hysteresis curve is obtained. The
system size is N = 106.
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FIG. 15. For the LTCP model in one dimension, (a) plot of the
tricritical points in (κ, ω) space for different σ values in [0.1,1.0].
(b) Plots of the critical exponent values z, δ, δ′, and η as a function of
σ at the tricritical point. σc1 and σc2 are indicated by vertical dotted
lines.

FIG. 17. For the LTDP model with σ = 0.7 in one dimension,
(a) scaling plot of Nat−η vs tN−z̄ for η = 0.000 and z̄ = 0.701.
(b) Scaling plot of Pt δ′

vs tN−z̄ for δ′ = 0.912 and z̄ = 0.701.

FIG. 16. For the LTDP model with σ = 0.7 in one dimension at the tricritical point, plots of (a) Na(t ), (b) P(t ), (c) R2(t ), and (d) ρa(t ) vs
t . We estimate the exponent values to be η = 0.000 ± 0.005, δ′ = 0.912 ± 0.01, z = 0.701 ± 0.01, and δ = 0.34 ± 0.01, respectively. Insets:
local slopes of each quantity vs 1/t .
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FIG. 18. For the LTCP model with σ = 0.5 in one dimension,
(a) plot of R2(t ) vs t . We obtain the exponent 2/z = 4.004 ± 0.010.
The inset represents local slopes at each t as a function of 1/t .
(b) Scaling plot of Nat−η vs tN−z̄ for η = 0 and z̄ = 0.666.

only one site is active (see Table I). Thus, the dynamics near
σ ≈ 1.0 is so sensitive that precise numerical measurement of
the critical exponents is almost impossible.

At the tricritical point, the critical exponent values of δ′,
η, z, and δ are obtained for each value of σ in the range
[0.1,1.0] in steps of �σ = 0.1, as shown in Fig. 15(b). The
obtained critical values are listed in Table IV. For σ > σc2,
all the transition lines belongs to the DP class. We remark
that whereas in the region σ < σc1 the exponents are constant
regardless of σ , they vary constantly as a function of σ in the
interval [σc1, σc2], which is a prototypical pattern that appears
in the long-range CP model. Indeed, we find numerically that
the critical exponent values for σ between [σc1 = 2/3, σc2 ≈
1.0] vary depending on σ , as shown in Table IV. For instance,
for σ = 0.7, we obtain the critical exponents directly by slope

FIG. 19. Plot of ρa,s vs κ for the LTCP model in one dimension.
(a) With σ = 0.7 at ω = 0.9 > ωt , a hysteresis curve is obtained.
(b) With σ = 1.0 at ω = 0.97, a hysteresis curve does not occur. The
system size is taken as N = 106.

FIG. 20. For the LTCP model with σ = 0.7 in one dimension,
(a) scaling plot of Nat−η vs t1/ν‖ (κt − κ ) for different values of κ .
Data points collapse well onto a single curve for κt = 0.637 508,
η = 0.00, and ν‖ = 1.05. (b) Scaling plot of ρa,s(ωt − ω)−β/φ vs
(κ − κc )(ωt − ω)−1/φ for different values of ω. The dotted (dashed)
line is a guideline with slope βLDP = 0.800 (βt = 0.321). Data points
collapse well onto a single curve with φ = 0.52.

measurements as η = 0.000 ± 0.005, δ′ = 0.912 ± 0.01, z =
0.701 ± 0.01, and δ = 0.34 ± 0.01, as shown in Fig. 16. We
also obtain the critical exponents using the FSS method.
We plot Nat−η versus tN−z̄ for different system sizes N in
Fig. 17(a), and the rescaled quantity P(t )t δ′

versus tN−z̄ in
Fig. 17(b). The exponent ν‖ is obtained from the scaling plot
of Na(t )t−η versus t1/ν‖ (κt − κ ) for different values of κ in
Fig. 20(a). The data points for different κ values collapse
well onto a curve for ν‖ = 1.05 ± 0.005. In Fig. 20(b), the
crossover exponent φ is obtained from the scaling plot of
ρa,s(ωt − ω)−β/φ versus (κ − κc)(ωt − ω)−1/φ for different
values of ω. The data points for different values of ω also
collapse well onto a curve for φ = 0.52 ± 0.02. The critical
exponent values for other σ values are listed in Table IV. The
hysteresis of the first-order transition for ω > ωt is shown in
Fig. 19.

VI. CONCLUSION AND DISCUSSION

In this paper, we investigated the critical behavior of the
LTCP model, i.e., the TCP with long-range interaction in
the form of 1/rd+σ at a tricritical point, in one and two
dimensions. First, we determined the domain of the LTDP
universality class in the parameter space (d, σ ), as shown
in Fig. 21. The domain is surrounded by the domains of
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TABLE IV. Critical exponents for the LTDP model in one dimension.

σ (κt , ωt ) δ δ′ z̄ ≡ z/d ν‖ η φ Universality

0.2 (0.603919, 0.388) 0.50 ± 0.005 1.000 ± 0.01 0.666 ± 0.005 1.00 ± 0.01 0.00 ± 0.005 0.50 ± 0.02
0.4 (0.616681, 0.471) 0.50 ± 0.005 0.99 ± 0.01 0.666 ± 0.005 1.00 ± 0.01 0.00 ± 0.005 0.50 ± 0.02 Mean-field long-range TDP
0.6 (0.631031, 0.576) 0.49 ± 0.01 0.96 ± 0.01 0.670 ± 0.005 1.01 ± 0.01 0.00 ± 0.005 0.50 ± 0.02

0.7 (0.637510, 0.654) 0.34 ± 0.01 0.91 ± 0.01 0.701 ± 0.01 1.05 ± 0.01 0.00 ± 0.005 0.52 ± 0.02
0.8 (0.637551, 0.744) 0.25 ± 0.01 0.88 ± 0.01 0.878 ± 0.01 1.09 ± 0.01 −0.013 ± 0.01 0.54 ± 0.02
0.9 (0.622539, 0.846) 0.14 ± 0.01 0.83 ± 0.01 1.05 ± 0.01 1.18 ± 0.01 −0.04 ± 0.01 0.56 ± 0.02 Long-range TDP
1.0 (0.556705, 0.960) 0.04 ± 0.01 0.76 ± 0.01 1.43 ± 0.01 1.34 ± 0.01 −0.09 ± 0.01 0.58 ± 0.02

1.05 Tricritical point does not exist

the low-dimensional STDP class, the mean-field STDP class,
and the mean-field LTDP class. These four domains meet at
the point (d, σ ) = (3, 2). Below the upper critical dimension
dc = 3, the domain of the LTDP class is sandwiched between
those of the low-dimensional STDP and the mean-field LTDP
class, denoted as the shaded area bounded by σc1(d ) < σ <

σc2(d ) for each d . Analytically, σc1(d ) was determined using
the formula σc1 = (2/3)d , which was derived by dimensional
analysis in the mean-field limit. σc2(d ) was determined using
d + z(1 − δ − δ′), where z, δ, and δ′ are the exponents of the
STDP class. Near the point (3,2), using the ε expansion of
the RG approach for the STDP class [18,20], we obtained
σ = 2 − 0.0304ε + O(ε2) in d = 3 − ε spatial dimensions.
Therefore, we obtained the tangent of the phase boundary
between the STDP and LTDP domains as �σ/�d ≈ 0.0304
near the point (3,2) in Fig. 21.

Second, we numerically determined the critical exponent
values at the tricritical point for d = 1 and 2. The numer-
ical results showed that although the critical exponents are
independent of the control parameter σ for σ < σc1 and
σ > σc2, they vary continuously with σ between [σc1, σc2].
The numerical values of the critical exponents are listed in
Tables III and IV (Appendix B).

We unexpectedly obtained the following noteworthy be-
havior. First, in two dimensions, the numerically obtained
value of σc2 was not consistent with the theoretical value based
on the STDP class; rather, it was close to the value obtained
using the DP class. Second, in one dimension, the boundary
σc2 could not be determined from the STDP class, because
the first-order transition does not occur in one dimension
for the ordinary CP model. Thus, we determined σc2 only
numerically.

The LTCP model in one dimension is particularly notable.
For each given σ in the range [0.1,1.0] in steps of �σ = 0.1,
as shown in Fig. 15(a), there exists a tricritical point (κt , ωt ).
This figure shows that ωt increases with increasing σ . We
also found that the gap in the discontinuous transition near the
tricritical point at σ = 0.7 [Fig. 20(a)] is supposed to be de-
creasing with increasing σ and eventually the gap diminishes
at a characteristic value of σ , denoted as σc2 and estimated
to be σc2 ≈ 1.0 [Fig. 20(b)]. This implies that ωt approaches
ωt → 1, the upper bound of the pair-branching probability ω.
In the semiclassical approach, the quantum coherence effect
was regarded as the classical effect of a pair-branching process
with the control parameter ω. Thus when ω = 1, the LTCP
model most highly reflects the quantum coherence effect. On

the other hand, the previous studies [53–55] of QCP in one
dimension revealed that the tricritical point does not occur.
This previous result seems to be associated with the current
result that the tricritical point disappears beyond ω = 1 as
σ > 1. This is also consistent with another previous result
that the STCP model, corresponding to the limit σ → ∞ of
the LTCP model, does not exhibit any discontinuous transition
[21] in one dimension due to the strong fluctuation effect.

In this respect, although a discontinuous transition was not
observed in short-range QCP in one dimension [54,55], we
guess that it could occur in long-range QCP in one dimension.
In this case, a tricritical point and a new emerging behavior
could be observed. An experiment of Rydberg atoms exciting
to a d-state is a potential candidate. Due to dipole interactions,
long-range interaction is intrinsically generated.

In summary, we obtained the diagram of universality
classes based on the analytical and numerical results in
Tables III and IV (Fig. 21). The local slope at d = 3 was
determined by inserting the results of ε expansion for the
STDP class [18,20] into Eq. (18). The values of σc2 in one and
two dimensions were numerically obtained. In Ref. [56], the
discrepancy between the simulated and field-theoretical σc2

FIG. 21. Diagram of universality classes of the LTCP model in
the parameter space (d, σ ). Mean-field solution is valid beyond the
upper critical dimension line (bold line), min(3, 1.5σ ). The slope of
the dashed line near (d, σ ) = (3, 2) is 0.0304, according to Eq. (18),
and is indicated by a short solid line. The dot at (2, 2.2) indicates the
σc2 value obtained from numerical simulations of the LTCP model in
two dimensions. The dot at (1, 1.0) was numerically estimated for
d = 1 and indicates σc2. The dashed curves connecting these three
points separate the STDP region from the LTDP region. Along the
thin solid line above the point (1,1) in one dimension, a tricritical
point is absent, so this thin line is excluded from the STDP region.
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values is reported for other models such as the Ising [57,58]
and percolation models [59]. Here, although we obtained the
Monte Carlo simulation results, the ε expansion of the LTCP
model is still missing. Thus, further studies are needed from
the perspective of RG theory.
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APPENDIX A: CALCULATION OF PROPAGATOR

Let us evaluate the propagator loop integral to determine
why the fractional Laplacian is not renormalized. This can be
done using the propagator loop integral in Ref. [18]. The only
difference between the ordinary TDP and the LTDP lies in
the Green function, which changes slightly from G(k, ω) =
(Dk2 − iωτ + u2)−1 to G(k, ω) = (Dσ kσ − iωτ + u2)−1. Be-
cause the cubic terms remain the same, the relevant diagrams
do not change, as shown in Ref. [18]. I0(k, ω) is given by

I0(k, ω) =

=
∫

dd q1

(2π )d

∫
dd q2

(2π )d

∫
dω1

(2π )

∫
dω2

(2π )
G(−k − q1,−ω − ω1)G(q1, ω1)G(q1 + q2, ω1 + ω2)G(−q2,−ω2)

=
∫

dd q1

(2π )d

∫
dd q2

(2π )d

∫
dω1

(2π )

1

Dσ |k + q1|σ + i(ω + ω1)τ + u2

1

Dσ qσ
1 − iω1τ + u2

× 1

Dσ qσ + Dσ |q1 + q2|σ − iω1τ + 2u2

=
∫

dd q1

(2π )d

∫
dd q2

(2π )d

1

(iω + Dσ qσ
1 + Dσ |q1 + k|σ + 2u2)(iω + Dσ |q1 + q2|σ + Dσ qσ + Dσ |q1 + k|σ + 3u2)

, (A1)

where we set τ = 1 and D = 1 without loss of generality. After ω1 and ω2 in Eq. (A1) are integrated out using the Cauchy
integral, I0 is given by

I0(k, ω) =
∫

dd q1

(2π )d

∫
dd q2

(2π )d

1(
iω + qσ

1 + |q1 + k|σ + 2u2
)(

iω + |q1 + q2|σ + qσ
2 + |q1 + k|σ + 3u2

)

=
∫

dd q1

(2π )d

∫
dd q2

(2π )d

1

iω + qσ
1 + |q1 + k|σ + 2u2

∫ i∞

−i∞
dz1�(1 + z1)�(−z1)

(
iω + qσ

2 + |q1 + k|σ + 3u2
)z1

|q1 + q2|σ (1+z1 )

=
∫

dd q1

(2π )d

∫
dd q2

(2π )d

1

iω + qσ
1 + |q1 + k|σ + 2u2

∫ i∞

−i∞
dz1

×
∫ i∞

−i∞
dz2�(1 + z1)�(−z1)�(z2 − z1)�(−z2)

(iω + |q1 + k|σ + 3u2)z2

|q1 + q2|σ (1+z1 )qσ (z2−z1 )
2

, (A2)

where we used the Mellin-Barnes representation

1

(X + Y )λ
=

∫ i∞

−i∞
dz

Y z

X λ+z

�(λ + z)�(−z)

�(λ)
.

Now, the integral over q2 in Eq. (A2) becomes

∫
dd q2

(2π )d

1

qa
2|q1 + q2|b

= qd−(a+b)
1 �

(
a+b−d

2

)
�

(
d−a

2

)
�

(
d−b

2

)
(4π )d/2�

(
a
2

)
�

(
b
2

)
�

(
d − a+b

2

) . (A3)

After Eq. (A3) is inserted into Eq. (A2), I0 is given by

I0 =
∫

dd q1

(16π3)d/2

∫ i∞

−i∞
dz1

∫ i∞

−i∞
dz2�(1 + z1)�(−z1)�(z2 − z1)�(−z2)

× �
(

σ
2 (z2 + 1) − d

2

)
�

(
d
2 − σ

2 (z1 + 1)
)
�

(
d
2 − σ

2 (z2 − z1)
)

�
(

σ
2 (1 + z1)

)
�

(
σ
2 (z2 − z1)

)
�

(
d − σ

2 (1 + z2)
)

qd−σ (z2+1)
1 (iω + |q1 + k|σ + 3u2)z2

iω + qσ
1 + |q1 + k|σ + 2u2

. (A4)
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Then, let us expand the last term in Eq. (A4) with respect to k and ω,

∫
dd q1

(16π3)d/2

qd−σ (z2+1)
1 (iω + |q1 + k|σ + 3u2)z2

iω + qσ
1 + |q1 + k|σ + 2u2

=
∫

dd q1

(16π3)d/2
qd−σ (z2+1)

1

(
qσ

1 + 3u2 + iω + σqσ−1
1 k cos(θ ) + σ

2 k2qσ−2
1 + σ

4 ( σ
2 − 1)qσ−2

1 k2 cos2(θ ) + O(k3)
)z2

2qσ
1 + 2u2 + iω + σqσ−1

1 k cos(θ ) + σ
2 k2qσ−2

1 + σ
4 ( σ

2 − 1)qσ−2
1 k2 cos2(θ ) + O(k3)

=
∫

dd q1

(16π3)d/2

qd−σ (z2+1)
1 (3u2 + qσ

1 )z2

2qσ
1 + 2u2

(
1 + iω + σqσ−1

1 k cos(θ ) + σ
2 k2qσ−2

1 + σ
4

(
σ
2 − 1

)
qσ−2

1 k2 cos2(θ ) + O(k3)

3u2 + qσ
1

)z2

×
(

1 + iω + σqσ−1
1 k cos(θ ) + σ

2 k2qσ−2
1 + σ

4

(
σ
2 − 1

)
qσ−2

1 k2 cos2(θ ) + O(k3)

2qσ
1 + 2u2

)−1

=
∫

dd q1

(16π3)d/2

qd−σ (z2+1)
1 (3u2 + qσ

1 )z2

2qσ
1 + 2u2

[
1 + iω

(
z2

3u2 + qσ
1

− 1

2u2 + 2qσ
1

)
+ k

(
z2σqσ−1

1 cos(θ )

3u2 + qσ
1

− σqσ−1
1 cos(θ )

2u2 + 2qσ
1

)

+ k2

( z2

(
σ
2 qσ−2

1 + σ
4

(
σ
2 − 1

)
cos2(θ )

)
3u2 + qσ

1

−
σ
2 qσ−2

1 + σ
4

(
σ
2 − 1

)
cos2(θ )

2u2 + 2qσ
1

+ z2(z2 − 1)σ 2q2σ−2
1 cos2(θ )

2
(
3u2 + qσ

1

)2

+ σ 2q2σ−2
1 cos2(θ )(

2u2 + 2qσ
1

)2 + z2σ
2q2σ−2

1 cos2(θ )(
3u2 + qσ

1

)(
2u2 + 2qσ

1

)
)

+ O(k3, ω2, kω)

]
. (A5)

We used the following relation, because k is very small in the long-wavelength limit:

(q1 + k)σ = [(q1 + k)2]σ/2

= qσ
1 + σqσ−2

1 q1 · k + σ

2
k2qσ−2

1 + σ

4

(
σ

2
− 1

)
qσ−4

1 (2q1 · k)2 + O(k3)

= qσ
1 + σqσ−1

1 k cos(θ ) + σ

2
k2qσ−2

1 + σ

(
σ

2
− 1

)
qσ−2

1 k2 cos2(θ ) + O(k3), (A6)

where θ is the angle between q1 and k. To evaluate Eq. (A5), it is often helpful to use the formulas

∫
dd q1

(2π )d
f (q1) = Sd−1

(2π )d

∫ ∞

0
dq1

∫ π

0
dθ f (q1) sind−2(θ ) = Sd

(2π )d

∫ ∞

0
dq1 f (q1) ,

∫
dd q1

(2π )d
f (q1) cos(θ ) = Sd−1

(2π )d

∫ ∞

0
dq1

∫ π

0
dθ f (q1) sind−2(θ ) cos(θ ) = 0 ,

∫
dd q1

(2π )d
f (q1) cos2(θ ) = Sd−1

(2π )d

∫ ∞

0
dq1

∫ π

0
dθ f (q1) sind−2(θ ) cos2(θ ) = Sd

d (2π )d

∫ ∞

0
dq1 f (q1) , (A7)

where the surface area is defined as Sd = 2πd/2

�(d/2) . Then, Eq. (A4) is given as follows:

I0(k, ω) =
∫ i∞

−i∞
dz1

∫ i∞

−i∞
dz2�(1 + z1)�(−z1)�(z2 − z1)�(−z2)

× �
(

σ
2 (z2 + 1) − d

2

)
�

( d
2 − σ

2 (z1 + 1)
)
�

( d
2 − σ

2 (z2 − z1)
)

�
(

σ
2 (1 + z1)

)
�

(
σ
2 (z2 − z1)

)
�

(
d − σ

2 (1 + z2)
) Sd

∫ ∞

0

dq1

(16π3)d/2

qd−σ (z2+1)
1

(
3u2 + qσ

1

)z2

2qσ
1 + 2u2

×
[

1 + iω

Dσ

(
z2

3u2 + qσ
1

− 1

2u2 + 2qσ
1

)
+ k2

(
z2

(
σ
2 qσ−2

1 + σ
4d

(
σ
2 − 1

))
3u2 + qσ

1

−
σ
2 qσ−2

1 + σ
4d

(
σ
2 − 1

)
2u2 + 2qσ

1

+ z2(z2 − 1)σ 2q2σ−2
1

2d
(
3u2 + qσ

1

)2 + σ 2q2σ−2
1

d
(
2u2 + 2qσ

1

)2 + z2σ
2q2σ−2

1

d
(
3u2 + qσ

1

)(
2u2 + 2qσ

1

)
)]

+ O(k3, ω2, kω)

= N0 + Nωω + Nk2 k2 + O(k3, ω2, kω), (A8)
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where N0, Nω, and Nk2 are coefficients. Finally, because the derivative of Eq. (A8) with respect to kσ vanishes, the coefficient Dσ

is not renormalized up to the first order in the ε expansion around the upper critical dimension. Although we showed that it is
valid for up to O(ε), it is commonly believed that nonlocal terms of the dynamic action are not renormalized at all [60–62].

APPENDIX B: TABLES OF NUMERICAL ESTIMATES

The critical exponents for the LTDP model are given in Tables III and IV.
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