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A Hamiltonian-based model of many harmonically interacting massive particles that are subject to linear
friction and coupled to heat baths at different temperatures is used to study the dynamic approach to equilibrium
and nonequilibrium stationary states. An equilibrium system is here defined as a system whose stationary
distribution equals the Boltzmann distribution, the relation of this definition to the conditions of detailed balance
and vanishing probability current is discussed both for underdamped as well as for overdamped systems.
Based on the exactly calculated dynamic approach to the stationary distribution, the functional that governs
this approach, which is called the free entropy Sfree(t ), is constructed. For the stationary distribution Sfree(t )
becomes maximal and its time derivative, the free entropy production Ṡfree(t ), is minimal and vanishes. Thus,
Sfree(t ) characterizes equilibrium as well as nonequilibrium stationary distributions by their extremal and stability
properties. For an equilibrium system, i.e., if all heat baths have the same temperature, the free entropy equals
the negative free energy divided by temperature and thus corresponds to the Massieu function which was
previously introduced in an alternative formulation of statistical mechanics. Using a systematic perturbative
scheme for calculating velocity and position correlations in the overdamped massless limit, explicit results for
few particles are presented: For two particles localization in position and momentum space is demonstrated in
the nonequilibrium stationary state, indicative of a tendency to phase separate. For three elastically interacting
particles heat flows from a particle coupled to a cold reservoir to a particle coupled to a warm reservoir if the third
reservoir is sufficiently hot. This does not constitute a violation of the second law of thermodynamics, but rather
demonstrates that a particle in such a nonequilibrium system is not characterized by an effective temperature
which equals the temperature of the heat bath it is coupled to. Active particle models can be described in the same
general framework, which thereby allows us to characterize their entropy production not only in the stationary
state but also in the approach to the stationary nonequilibrium state. Finally, the connection to nonequilibrium
thermodynamics formulations that include the reservoir entropy production is discussed.
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I. INTRODUCTION

Systems that even in their stationary state are not in equilib-
rium have in the last decades received renewed attention since
standard concepts of thermodynamics and statistical mechan-
ics do not work and because of their experimental relevance
[1–14]. Some of the motivation for studying such systems
comes from experimental observations of molecular processes
in living systems, which are fundamentally nonequilibrium
(NEQ) [15,16]. Apart from biological applications, experi-
mental advances allow for the construction of NEQ systems
either from biological components that are driven out of
equilibrium by ATP consumption or by using macromolecular
and colloidal assemblies that can be driven out of equilibrium
by chemical fuels or by applying external forces [17,18].

Two prominent features of NEQ systems are departures
from the canonical Boltzmann distribution and violation of the
fluctuation-dissipation theorem, which were recently demon-
strated to go hand in hand for a harmonically coupled particle
system [19], the fundamental hallmark of NEQ systems is
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the violation of the detailed-balance condition [5,8]. A par-
ticularly striking example for the breakdown of equilibrium
statistical mechanics is the occurrence of phase transitions
induced by NEQ driving. As a result of external forces acting
on particle systems, laning and phase separations have been
observed [20–25]. Internal NEQ effects can generate parti-
cle propulsion that is sustained by chemical or biochemical
means. NEQ effects can also be induced by stochastic forces
due to the coupling of particles to different heat or chemical
energy reservoirs. Such internal NEQ effects have also been
shown to lead to clustering and phase separation [26–35]. Ex-
perimentally, symmetry-breaking transitions in suspensions
of swimming bacteria and filament systems driven by mo-
tor proteins have indeed been demonstrated [36,37]. Also
in more coarse-grained models, defined by migration rules,
collective ordering can be obtained and describes the response
of pedestrians to spatial confinement or the flocking and
swarming of animals [12,38]. NEQ transformations also occur
for polymers that are driven by externally applied torques
[39,40].

The equilibrium fluctuation-dissipation theorem (FDT) de-
scribes the dynamical response of an equilibrium system to a
small perturbation. Since it is a key concept for systems close

2470-0045/2020/101(2)/022120(23) 022120-1 ©2020 American Physical Society

https://orcid.org/0000-0003-0147-0162
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.022120&domain=pdf&date_stamp=2020-02-18
https://doi.org/10.1103/PhysRevE.101.022120


ROLAND R. NETZ PHYSICAL REVIEW E 101, 022120 (2020)

to equilibrium, and since any violation of the FDT clearly
signals that a system is off equilibrium, the derivation of
generalized fluctuation-dissipation relations that also hold for
NEQ systems is central and has been discussed in the context
of laser [41], chaotic [42], glassy [43], driven colloidal [44],
sheared [45–47], and active systems [48]. Generalized NEQ
fluctuation-dissipation relations were derived [41,49–54] and
compared with experimental data for glasses [55], colloids
[56,57], bundles of biological filaments [58,59], living cells
[60], and biological gels that are driven by motor proteins in
the presence of ATP [19,61].

Significant theoretical progress has been made in the char-
acterization of NEQ systems by generalized NEQ fluctuation-
dissipation relations, as discussed above, and by fluctuation
relations that give bounds and exact relations involving tra-
jectory ensembles [62–64]. The field of stochastic thermo-
dynamics has linked the statistics of trajectories to entropy-
production contributions [14,65]. A good fraction of contem-
porary work on NEQ systems is concerned with analyzing the
solutions of governing dynamic equations either by simulation
techniques or, for simple systems, by analytical methods. In
essence, and as acknowledged by most workers in the field,
NEQ theory is far from the predictive power and understand-
ing furnished by, e.g., the usage of thermodynamic potentials
in the context of equilibrium scenarios. For an isolated system
the entropy is maximized, but this provides little help for the
type of NEQ problems one is typically interested in, because
they are not isolated. For a system coupled to a single heat
reservoir and in the absence of external driving forces, which
gives rise to the equilibrium canonical ensemble, the free
energy is minimized. The free energy, when evaluated exactly
or approximately, allows us to predict phase transitions, struc-
tures, and all static properties of an equilibrium system. In
the search for a similarly useful framework, the first theo-
retical studies on NEQ systems formulated general extremal
principles that express the system’s tendency to extremize
its dissipation, i.e., its entropy production [2,3]. These early
extremal principles were limited to linear and homogeneous
systems close to equilibrium and included interactions only
indirectly in terms of phenomenological coefficients. Subse-
quently, the master equation approach allowed the derivation
of extremal principles for general NEQ stationary states in
terms of a generalized entropy [5,6,8,11]. More recently,
Onsager’s variational principle [1] was revisited and used
for the study of various NEQ problems in soft condensed
matter [66].

In this paper we start from a quadratic Hamiltonian
model with general interactions. By adding friction terms
and stochastic fields to the Hamilton equations, we arrive
at the general linear Hamiltonian-based many-dimensional
Langevin equation that, for suitably chosen friction and
stochastic parameters, describes a many-body system of mas-
sive particles coupled to multiple heat baths with different
and well-defined temperatures, a model that corresponds to
the nonequilibrium version of the multidimensional Ornstein-
Uhlenbeck process and has in certain limits been studied in
literature [4,51,67–71].

The explicit presence of heat baths with different tem-
peratures allows us to prepare the system in a unique NEQ
stationary state and to calculate all contributions to the

entropy production as the system approaches the stationary
state. Instead of considering trajectories in phase space, we
base our theory on the time-dependent distribution. The key
point of our model is that we can exactly calculate the time
derivative of the distribution entropy and from that construct,
by comparison with the independently calculated relaxation
of the distribution, the time-dependent functional that governs
the approach to equilibrium as well to NEQ stationary distri-
butions. In analogy to the relation between the energy and the
free energy, this functional is called the free entropy, Sfree(t ),
since it contains the distribution entropy of the system and
accounts for the interactions within the system and the cou-
pling to the reservoirs. Using the free entropy Sfree(t ), the total
entropy Stot (t ), which includes the entropy of the interacting
particle system S (t ) as well as the reservoir entropy Sres(t ),
can be decomposed as

Stot (t ) = S (t ) + Sres(t ) = Sfree(t ) + t Ṡ◦
res (1)

up to unimportant constants, where Ṡ◦
res denotes the entropy

production due to heat transfer with all reservoirs in the unique
stationary state. While Sres(t ) is difficult to calculate for the
stochastic models used for the description of heat reservoirs
and in fact increases boundlessly, Sfree(t ) and Ṡ◦

res can be
explicitly calculated. Similar to the free energy of statistical
mechanics, different observables can be derived from the
free entropy by taking suitable derivatives, as is shown in
Sec. IV A.

For an equilibrium system, i.e., when all heat baths have
the same temperature and Ṡ◦

res = 0, and in the stationary state,
the free entropy is time-independent and equals the negative
free energy divided by temperature,

S•
free = −F•/T = S• − U•/T, (2)

where filled circles in our paper denote the equilibrium sta-
tionary state. In fact, the free entropy functional had been
used by Massieu already in 1869 [72,73], a few years before
Gibbs introduced his energy transforms. The advantage of
the free entropy functional has been pointed out by Planck
[74] and Schrödinger [75], while the name was introduced
more recently in the mathematical literature [76,77]. The free
entropy is central in the context of our model, since the
presence of different heat bath temperatures does not allow
the definition of a unique NEQ version of the free energy.

In a number of previous papers functionals were derived
that in a NEQ stationary state are extremal and thereby allow
the study of the relaxation and the stability of NEQ systems
and the relation of these functionals to the Kullback-Leibler
entropy [78] was pointed out [5–8,11,79–83]. Our model
differs from those works since we introduce NEQ by the
coupling to multiple heat baths with different temperatures.
While the early approaches to NEQ thermodynamics were
centered on the total entropy production Ṡtot (t ), i.e., the time
derivative of the total entropy including the reservoirs [2,3],
in later developments the entropy production due to heat
transfer from the reservoirs, which in a NEQ stationary state
is constant and given by Ṡ◦

res, has been separated off and
called the house-keeping entropy [9,10,84]. One advantage of
our model is that since the particles have finite masses, the
heat fluxes between the particles and the heat reservoirs can
be calculated from energy balance considerations including
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the kinetic energy and thus the stationary reservoir entropy
production Ṡ◦

res can be derived straightforwardly. For this we
introduce a systematic perturbation scheme using the particle
masses as expansion parameters to calculate NEQ mixed
position-velocity correlations.

We here show that for a system coupled to different tem-
perature reservoirs, the free entropy functional Sfree(t ) can be
written explicitly and is for the NEQ stationary distribution
maximal and constant in time. The free entropy production
Ṡfree(t ) is positive except at the stationary NEQ state, for
which it vanishes:

Ṡfree(t ) � 0. (3)

This shows that the NEQ stationary state is stable with respect
to small perturbations and that in the NEQ stationary state the
total entropy production is given solely by the reservoirs. The
time derivative of the free entropy production, which would be
the second time derivative of the free entropy, is not needed,
unlike early NEQ approaches [2,3]. Our framework thus treats
NEQ and equilibrium systems on the same footing, as for an
equilibrium system the NEQ free entropy smoothly crosses
over to the standard free energy divided by −T [see Eq. (2)],
and so the standard equilibrium and stability conditions of
statistical mechanics are recovered.

Interestingly, the dynamic approach to the equilibrium and
to the NEQ stationary distributions obey the same differential
equation, as is shown in Sec. III C. In fact, while equilibrium
and NEQ stationary distributions exhibit many fundamental
differences, the relaxation times that characterize the ap-
proach to stationarity are independent of the heat bath temper-
atures and therefore do not allow distinguishing equilibrium
from NEQ systems. While this might be a simplification due
to our neglect of nonlinear interactions, we argue that non-
linear systems can typically be quadratically approximated
around locally stable states, and thus our results should also
apply to sufficiently well-behaved nonlinear systems.

We also demonstrate that the definition of equilibrium we
are using in this paper, which is based on the Boltzmann
distribution, is equivalent to the detailed-balance condition
only if the friction matrix is symmetric and if the random
fields couple separately to position and velocity degrees of
freedom. For a simple system consisting of two coupled
massive particles, we show that if the Boltzmann distribution
is realized, the fluctuation-dissipation theorem is satisfied,
even when the friction matrix is asymmetric (and thus the
condition of detailed balance is not satisfied). This shows
that equilibrium definitions based on Boltzmann statistics,
on the fluctuation-dissipation theorem and on the detailed-
balance condition are equivalent only for symmetric friction
matrices and that the detailed-balance condition is the strictest
of all three.

As a simple application of our model we present results
for three interacting massive particles that are coupled to
temperature reservoirs at different temperatures, for which
we demonstrate that heat flows from a particle coupled to a
cold reservoir to a particle coupled to a warm reservoir if the
third reservoir is sufficiently hot. This, of course, does not
constitute a violation of the second law of thermodynamics.
Rather, this NEQ entrainment effect can be rationalized by the
fact that the reservoirs are not coupled directly to each other

but rather indirectly via the particles, and that the particles are
not characterized solely by the heat bath temperatures. This
point can be explained in more detail by considering just two
particles that are coupled to different heat baths: We demon-
strate that the concept of a NEQ effective temperature has
only a rather limited value, since each covariance matrix entry
of two coupled NEQ particles would have to be attributed
a different effective temperature. For two particles we also
demonstrate that NEQ effects give rise to localization effects
both in position and in momentum space, which is reminiscent
of attractive interactions. This reflects the tendency of NEQ
systems to phase separate in both position and momentum
space. Finally, we show how active particle models can be
described using our general framework and discuss the con-
nection between the free entropy production and the total
entropy production that includes the reservoirs.

In the following sections we first treat general NEQ sys-
tems and derive the necessary conditions to reach a stationary
state and a stationary equilibrium state, described by the
Lyapunov and the Lyapunov-Boltzmann equations, respec-
tively. In Sec. IV B we start treating the core model of this
paper, where particles are coupled to heat reservoirs that are
characterized by different temperatures, and present various
explicit examples.

II. MANY-PARTICLE HAMILTONIAN MODEL

A. From Hamilton to Langevin equations

To proceed, we consider N massive particles in one dimen-
sion with positions xα and momenta pα that move according
to the Hamilton equations

ẋα (t ) = ∂H(�x, �p)

∂ pα

, (4)

ṗα (t ) = −∂H(�x, �p)

∂xα

, (5)

where α = 1, . . . , N is an index that runs over all particles.
The case of M interacting particles in three dimensions is
described by N = 3M particle coordinates and is implicitly
included in our model. Using the antisymmetric matrix

U =

⎛
⎜⎜⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

. . .

⎞
⎟⎟⎟⎟⎠ (6)

and the state vector

�z(t ) = (x1(t ), p1(t ), x2(t ), p2(t ) . . .)T (7)

the Hamilton equations can be written compactly as

żi(t ) = Ui j
∂H(�z)

∂z j
, (8)

where i = 1, . . . , 2N is an index that runs over all position and
momentum coordinates. Throughout this paper, greek indices
denote particles (running from 1 to N), roman indices denote
coordinates (running from 1 to 2N), and indices that appear
more than once are summed over except primed indices. We
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consider quadratic Hamiltonians of the form

H(�z) = ziHi jz j/2 (9)

that are described by a general symmetric matrix H which we
assume to be positive definite, i.e., H(�z) > 0 for general �z. A
possible linear term in the Hamiltonian can be absorbed into
the definition of the state vector z j and need not be considered
explicitly. For quadratic Hamiltonians the Hamilton equations
are linear and given by

żi(t ) = Ui jHjkzk (t ). (10)

More specific forms of the Hamiltonian matrix H , in partic-
ular Newtonian Hamiltonians where momentum und position
degrees of freedom are decoupled, will be discussed later, in
the first part of this paper the discussion applies to general
Hamiltonian models.

By adding linear friction terms and random fields to the
Hamilton equations, which will be later shown to mimic the
coupling to heat baths with in general different temperatures,
we obtain the coupled linear Langevin equations

żi(t ) = Ui jHjkzk (t ) − �ikzk (t ) + �ikFk (t ) (11)

which by definition of the generally asymmetric coupling
matrix

Aik = −Ui jHjk + �ik (12)

can be written more compactly as

żi(t ) = −Aikzk (t ) + �ikFk (t ). (13)

Here � is the friction coefficient matrix and � is the ran-
dom strength matrix that describes how random fields couple
to different particle coordinates. For simplicity, we assume
Gaussian white random fields with zero mean 〈Fi(t )〉 = 0 and
and variances 〈Fi(t )Fj (t ′)〉 = 2δi jδ(t − t ′). Non-Markovian
models with colored noise can be obtained by integrating
out degrees of freedom and need not explicitly be considered
[85]. In standard friction models friction forces couple to
the momentum degree of freedom and are proportional to
particle velocities. In more elaborate models that include
hydrodynamic interactions, the friction force acting on a given
particle depends on the velocities of all particles. In the first
part of this paper the matrices � and � are kept general, and
� can also be asymmetric (which will be shown to have direct
consequences for the detailed-balance condition in Sec. III D).
In the second part of the paper, starting in Sec. IV B, we
model heat baths with different temperatures and for this will
assume � and � to be diagonal. The general form of the
linear Langevin Eq. (13) does not directly reveal whether it
describes an equilibrium or a NEQ system [70]; this point will
be addressed further below.

B. Stationary distribution

The algebraic solution of the Langevin Eq. (13) is

zi(t ) = e−tA
i j z j (0) +

∫ t

0
dt ′e−(t−t ′ )A

i j � jkFk (t ′), (14)

where z j (0) denotes the initial particle positions and momenta
at time zero. The average over the noise gives

〈zi(t )〉 = e−tA
i j z j (0), (15)

which can be viewed as the solution of the noise-averaged
version of the Langevin Eq. (13)

〈żi(t )〉 = −Aik〈zk (t )〉. (16)

If all eigenvalues of the matrix A have positive real compo-
nents, a unique stationary distribution exists and is character-
ized by a vanishing mean 〈zi(t → ∞)〉 = 0.

The covariance matrix of the deviations from the mean
�zi(t ) = zi(t ) − 〈zi(t )〉 follows from squaring the solution
Eq. (14) and averaging over the noise, leading to [86]

Ei j (t ) ≡ 〈�zi(t )�z j (t )〉 = 2
∫ t

0
dt ′e−(t−t ′ )A

ik e−(t−t ′ )A
jl Ckl ,

(17)
where the random correlation matrix is defined by

Ckl = �km�lm = Clk (18)

and is symmetric by construction. Since

AikEk j + AjkEki = AikEk j + AjkEik

= 2
∫ t

0
dt ′ d

dt ′ e
−(t−t ′ )A
ik e−(t−t ′ )A

jl Ckl , (19)

the stationary covariance matrix, denoted by an open circle
and defined by

E◦
i j ≡ Ei j (t → ∞), (20)

is unique and given by the Lyapunov equation

2Ci j = AikE◦
k j + AjkE◦

ki (21)

if all eigenvalues of the matrix A have positive real parts,
which we will assume to be true throughout this paper.

III. SYSTEMS THAT HAVE AN EQUILIBRIUM
DISTRIBUTION

A. Distributions, entropy, and free energy

In equilibrium, the normalized distribution in terms of the
state vector �z is given by the Boltzmann distribution

ρ(�z) = e−βH(�z)/Z, (22)

where β = 1/(kBT ) denotes the inverse thermal energy and
Z = ∫

d�ze−βH(�z) is the partition function. We will discuss the
connection of this definition of equilibrium to the conditions
of detailed balance, vanishing probability current as well
as the fluctuation-dissipation theorem in Sec. III D. Positive
definiteness of the Hamiltonian matrix H guarantees that Z
is finite (if the Hamiltonian is invariant with respect to one or
few degrees of freedom they can be separated off to make the
reduced Hamiltonian positive definite). For a quadratic Hamil-
tonian, the average state vector vanishes and all covariances
can be calculated from the Boltzmann distribution, which only
involves inversion of the Hamiltonian matrix.

For the later discussion of the NEQ scenario, it is instruc-
tive to derive the equilibrium distribution also via the ther-
modynamic route. From the thermodynamic definitions of the
free energy F = −kBT lnZ and the entropy S = −∂F/∂T ,
the Shannon expression for the entropy directly follows as

S/kB = −
∫

d�zρ(�z) ln ρ(�z); (23)
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the derivation is shown in Appendix A. Note that the Shan-
non expression Eq. (23) can also be used to describe the
distribution entropy for time-dependent distributions, i.e., for
nonstationary and even NEQ situations, since the expression
makes no reference to the equilibrium ensemble or to the
presence of a heat bath. This will allow us to describe the time-
dependent approach to equilibrium as well as to stationary
NEQ distributions.

For the linear Langevin Eq. (13), the time-dependent prob-
ability distribution is Gaussian and can be written as

ρ(�z, t ) = N−1(t ) exp
{−[zi − 〈zi(t )〉]

× E−1
i j (t )[z j − 〈z j (t )〉]/2

}
, (24)

where the time-dependent normalization constant is given by

N (t ) =
√

(2π )2N det E (t ) (25)

and exists only if the covariance matrix E (t ) is positive
definite [note that by its definition E (t ) is also symmetric].
The proof is standard textbook material [86], in Appendix B
we present a derivation based on random-field path integrals,
which has the advantage that it can in principle be generalized
to non-Gaussian colored noise; there we furthermore demon-
strate that the expression (24) is in fact the Green’s function of
the general Langevin Eq. (13), i.e., the conditional probability
distribution at time t for the case that the distribution is a delta
function at time t = 0.

With the Gaussian form (24), the integral in Eq. (23)
can be performed and yields the time-dependent distribution
entropy as

S (t )/kB = N + lnN (t ) = N + (1/2) ln[(2π )2N det E (t )].

(26)

The internal energy is given by

U (t ) = 〈H[�z(t )]〉 = Hi j〈zi(t )z j (t )〉/2

= Hi j〈zi(t )〉〈z j (t )〉/2 + Hi jEi j (t )/2. (27)

With these results for the entropy and internal energy, the
free energy

F (t ) = U (t ) − TS (t ) (28)

follows as

F (t ) = Hi j〈zi(t )〉〈z j (t )〉/2 + Hi jEi j (t )/2

− kBT N − (kBT/2) ln[(2π )2N det E (t )]. (29)

The extremum of the free energy is determined by 〈�z(t )〉 = 0
and by

∂F (t )

∂Ei j
= Hi j/2 − kBT E−1

ji (t )/2 = 0, (30)

the solution of which is time-independent and defines the
equilibrium distribution (denoted by a filled circle) as

E•
i j = kBT H−1

i j . (31)

In deriving Eq. (30) we used the basic algebraic relation
∂ ln det E/∂Ei j = E−1

ji . The partial derivative denotes the
derivative with respect to one matrix component while keep-
ing all other components fixed. The equilibrium free energy

follows by reinserting 〈�z(t )〉 = 0 and the solution E•
i j into the

free-energy expression (29) and is given by

F• = −(kBT/2) ln[(2πkBT )2N/ det H]. (32)

We next want to show that the extremum of the free energy
is in fact a minimum [for this we neglect the trivial quadratic
dependence of Eq. (29) on the mean state vector 〈�z(t )〉]. We
first realize that

∂2F (t )

∂Ekl∂Ei j
= kBT E−1

ik (t )E−1
l j (t )/2, (33)

where we used the basic algebraic relation ∂E−1
kn /∂Ei j =

−E−1
ki E−1

jn . Around the equilibrium distribution Ei j = E•
i j the

free energy is to second order given by

F (t ) − F• 
 Hki
[
Ei j (t ) − H−1

i j kBT
]

× Hjl
[
Elk (t ) − H−1

lk kBT
]
/(2kBT ), (34)

which can be rewritten as

F (t ) − F• 
 kBT [δil − βHikEkl (t )][δil − βHlkEki(t )]

2
.

(35)
The latter form is quadratic and of the general form F (t ) −
F• 
 kBT Bil Bli/2 with Bil ≡ δil − βHikEkl (t ), but this by
itself does not guarantee that F (t ) − F• is positive since Bil

is not necessarily symmetric. In Appendix C we show by
diagonalization that the positivity of the expression (34) for
F (t ) − F• follows from the fact that H is symmetric and
positive definite.

The Gaussian distribution (24) in conjunction with Eq. (31)
is equivalent to the Boltzmann distribution (22), which we
have thus rederived by minimizing the time-dependent free-
energy functional (29). But the free-energy functional (29)
is not only valid in equilibrium but also describes systems
that approach the equilibrium distribution. This is an impor-
tant insight, as this functional framework will allow us to
characterize the approach not only to equilibrium but also to
stationary NEQ distributions.

B. When does a Langevin equation describe
an equilibrium system?

In this section we will explore under which conditions the
Langevin Eq. (13) describes an equilibrium system, which
will put stringent conditions on the random correlation matrix
C and on the friction matrix �. We in this paper define a
system to be in equilibrium if the stationary state corresponds
to the Boltzmann distribution, the relation to other definitions
of equilibrium will be discussed in Sec. III D. We implement
this condition by replacing the stationary covariance matrix
E◦

i j in the Lyapunov Eq. (21) by the equilibrium covariance
matrix E•

i j from Eq. (31), by which we obtain

2C•
i j/(kBT ) = AikH−1

k j + AjkH−1
ki . (36)

Inserting the expression for the Langevin matrix A from
Eq. (12) and using the fact that the matrix U is antisymmetric
[see Eq. (6)], we arrive at the Lyapunov-Boltzmann equation

2C•
i j/(kBT ) = �ikH−1

k j + � jkH−1
ki . (37)
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If for arbitrary Hamiltonian matrix H the friction matrix �

and the random force correlation matrix C obey this equa-
tion, the Langevin equation given by Eq. (13) describes the
dynamics of an equilibrium system. Conversely, if C and �

do not satisfy Eq. (37) the Langevin equation describes a
NEQ system. Two obvious NEQ scenarios come to mind:
(1) a Newtonian Hamiltonian many-body system coupled to
heat baths characterized by different temperatures (as will be
discussed starting in Sec. IV B), and (2) a many-body system
with off-diagonal friction terms that do not obey Eq. (37).

Let us give a simple example, namely, the harmonic os-
cillator with Hamiltonian H = Kx2/2 + p2/(2m), which is
described by the Hamiltonian matrix

H =
(

K 0
0 1/m

)
. (38)

We choose a diagonal momentum friction model described by
the friction matrix

� =
(

0 0
0 γ /m

)
, (39)

where the friction force is proportional to the velocity of
the particle and enters only the momentum degree of free-
dom. The matrix product appearing on the right side of the
Lyapunov-Boltzmann Eq. (37) is given by

�H−1 =
(

0 0
0 γ

)
(40)

and thus the equilibrium random correlation matrix follows as

C• =
(

0 0
0 kBT γ

)
. (41)

This agrees with the well-known result that the equilibrium
Langevin equation of a massive particle involves a random
field that acts on the momentum degree of freedom only
and is proportional to the friction coefficient γ , where the
proportionality constant kBT defines the temperature of the
reservoir. Conversely, any nontrivial deviation of the matrix C
from Eq. (41), i.e., any deviation that cannot be captured by a
modified temperature, indicates a NEQ system. For the simple
example of a one-dimensional harmonic oscillator considered
here, this could for example be the presence of an additional
entry in the symmetric matrix C, e.g., additional entries in the
off-diagonals or in the upper-left diagonal.

C. Dynamic approach to the stationary distribution

From the time-dependent analog of the Shannon
entropy (23)

S (t )/kB = −
∫

d�zρ(�z, t ) ln ρ(�z, t ), (42)

we obtain by differentiation

Ṡ (t )/kB = −
∫

d�zρ̇(�z, t )[ln ρ(�z, t ) + 1]. (43)

The time derivative of the density distribution ρ̇(�z, t ) is deter-
mined by the Fokker-Planck equation

ρ̇(�z, t ) = [ �∇kAkmzm + �∇k �∇mCkm]ρ(�z, t ), (44)

which follows via Kramers-Moyal expansion of the Langevin
Eq. (13) [86]. With the Gaussian time-dependent distribution
Eq. (24) we obtain from Eq. (44) the expression

ρ̇(�z, t ) = ρ(�z, t ) × [
Akk − AkmzmE−1

k j �z j

+Ci j
(
E−1

ik �zkE−1
jl �zl − E−1

i j

)]
. (45)

Inserting this into the expression (43) and calculating all
Gaussian expectation values, we obtain the final expression
for the time derivative of the entropy as

Ṡ (t )/kB = CkmE−1
km (t ) − Akk, (46)

which holds for equilibrium as well as for NEQ systems. From
the Lyapunov Eq. (21) we can derive the expression

Ci jE
◦−1
i j = Akk, (47)

inserting this into Eq. (46) we obtain the alternative expression

Ṡ (t )/kB = Ckm
[
E−1

km (t ) − E◦−1
km

]
, (48)

which demonstrates that the entropy change vanishes in the
stationary state Ekm(t ) = E◦

km, as is expected. We will later
come back to Eq. (48) as it allows us to write one of the
constitutive dynamic equations for NEQ systems.

We next calculate the time derivative of the covariance
matrix. From the expression (45) we immediately read off that

∂ ln ρ(�z, t )/∂t = Akk − AkmzmE−1
k j �z j

+Ci j
(
E−1

ik �zkE−1
jl �zl − E−1

i j

)
, (49)

which can be rewritten as

∂ ln ρ(�z, t )/∂t = �zi�z j
[
CkmE−1

k j E−1
mi − AkiE

−1
k j

]
+ Akk − CkmE−1

km − Akm〈zm(t )〉E−1
k j �z j .

(50)

On the other hand, using the definition of the Gaussian distri-
bution (24) we find

∂ ln ρ(�z, t )

∂t
= ∂

∂t

{
−1

2
ln[(2π )2N det E (t )]

− 1

2
[zi − 〈zi(t )〉]E−1

i j (t )[z j − 〈z j (t )〉]
}
, (51)

which can be rewritten as

∂ ln ρ(�z, t )

∂t
= 〈żi(t )〉E−1

i j (t )�z j

+ Ė−1
kl ∂

∂E−1
kl

{
1

2
ln[(2π )−2N det E−1(t )]

− 1

2
�ziE

−1
i j (t )�z j

}
(52)

and finally yields

∂ ln ρ(�z, t )

∂t
= 〈żi(t )〉E−1

i j �z j + Ė−1
kl

2
{Ekl (t ) − �zk�zl}.

(53)
Comparison of Eqs. (50) and (53) term by term yields

Ė−1
i j (t ) = −2CkmE−1

k j (t )E−1
mi (t ) + E−1

jk (t )Aki + E−1
ik (t )Ak j,

(54)
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where we have used Eq. (16). From the basic algebraic
relation Ėil (t ) = −Ei j (t )Ė−1

jk (t )E−1
kl (t ) we finally obtain from

Eq. (54) the temporal change of the covariance matrix as

Ėi j (t ) = 2Ci j − AikEk j (t ) − AjkEki(t ), (55)

which, using Eq. (21), can be rewritten as

Ėi j (t ) = −Aik
[
Ek j (t ) − E◦

k j

]− Ajk
[
Eki(t ) − E◦

ki

]
. (56)

Note that this expression holds for equilibrium as well as for
NEQ systems. As would be expected, the temporal change
of the covariance matrix vanishes in the stationary state, i.e.,
when Ekm(t ) = E◦

km.

D. Conditions of detailed balance and vanishing
probability current

Our definition of equilibrium employs the Boltzmann dis-
tribution (22) and not the condition of detailed balance, which
is often used as the defining property of equilibrium [87]. The
reason for using the Boltzmann condition is that it is very
easy to implement, while the condition of detailed balance
is for underdamped many-particle systems rather involved. In
fact, for overdamped systems the detailed-balance condition
becomes equivalent to the condition of vanishing probability
current [5,8], which in literature is also called the potential
condition. We will in this section formulate the condition
for the probability current to vanish and then compare with
the detailed-balance condition, for which the derivation is
presented in Appendix D.

The Fokker-Planck Eq. (44) can be interpreted as a balance
equation

ρ̇(�z, t ) = −�∇kJk (�z, t ) (57)

with the probability current J (�z, t ) being given as

Jk (�z, t ) = −[Akmzm + �∇mCkm]ρ(�z, t ). (58)

For the Gaussian distribution (24) we obtain [for simplicity
we set 〈zi(t )〉 = 0 here] for the current

Jk (�z, t ) = −[Akm − Ck jE
−1
m j

]
zmρ(�z, t ). (59)

The probability current vanishes, Jk (�z, t ) = 0, for

AkmEm j = Ck j . (60)

From the equilibrium condition Ek j (t ) = E•
k j = kBT H−1

k j ,
Eq. (31), and the explicit form of the matrix A in Eq. (12),
we obtain the vanishing probability current condition

�kmH−1
m j − Uk j = Ck j/(kBT ), (61)

which in the general case is not satisfied in the equilibrium
situation defined by the Lyapunov-Boltzmann Eq. (37), since
C is a symmetric matrix, while U is antisymmetric and
typically �kmH−1

m j is an asymmetric matrix. We conclude
that for an underdamped system, the probability generally
does not vanish, this is trivially illustrated by the fact that a
harmonic oscillator performs orbits in phase space. In fact,
current mathematical work is devoted to separating phase
space trajectories of underdamped systems into periodic and
diffusive parts [82,83]. In Appendix E we show that in the
overdamped (i.e., massless) limit the probability current in
equilibrium vanishes if the friction matrix � is symmetric.

Since we did not impose that � is symmetric so far, we see
that our definition of equilibrium, which is based on the sta-
tionary distribution being equal to the Boltzmann distribution,
is for overdamped systems only equivalent to the vanishing
probability current condition for a symmetric friction matrix.
We conclude that the vanishing probability current condition
is even in the overdamped limit a more restrictive criterion
than our Boltzmann distribution criterion.

Furthermore, in Appendix F we show for the special case
of two coupled particles, that the equilibrium fluctuation-
dissipation theorem holds if our Boltzmann definition for
equilibrium is satisfied and in particular also works for an
asymmetric friction matrix. This suggests that equilibrium
definitions based on the Boltzmann distribution and based on
the fluctuation-dissipation theorem are equivalent and that the
condition of vanishing probability current is more restrictive
and requires the symmetry of the friction matrix.

Finally, in Appendix D we derive the condition of de-
tailed balance for our underdamped Hamiltonian model and
demonstrate that it is equivalent to the Boltzmann-distribution
based criterion for equilibrium only if the friction matrix is
symmetric. Clearly, an asymmetric friction matrix breaks the
physical principle of equal actio and reactio, so for physical
models where friction is produced, e.g., by hydrodynamic
interactions, the friction matrix should be symmetric and our
definition of equilibrium (based on the Boltzmann distribu-
tion) is fully equivalent to the condition of detailed balance.
More abstract models with asymmetric friction matrices are
conceivable, for such models the distribution is predicted to
be of the Boltzmann type if the Lyapunov-Boltzmann Eq. (37)
is satisfied, yet the condition of detailed balance is violated.

E. Time-dependent free energy: Extremal
and stability properties

The time derivative of the free-energy expression Eq. (28)
reads

Ḟ (t ) = Hi j〈żi(t )〉〈z j (t )〉 + Hi jĖi j (t )/2 − kBT Ṡ (t ) (62)

and using Eqs. (16), (46), and (55) is explicitly given by

Ḟ (t ) = −〈z j (t )〉HjiAik〈zk (t )〉 + Hi jCi j − Hi jAikEk j (t )

− kBTCkmE−1
km (t ) + kBTAkk . (63)

After some manipulation this expression can be rewritten as

Ḟ (t ) = −〈z j (t )〉Hji�ik〈zk (t )〉 − Ckm
[
Hml − kBT E−1

ml (t )
]

× El j (t )

kBT

[
Hjk − kBT E−1

jk (t )
]
. (64)

The quadratic form of Eq. (64) directly demonstrates that
for the equilibrium distribution, defined by Ek j (t ) = E•

k j =
kBT H−1

k j and 〈zk (t )〉 = 0, the free energy is stationary and

does not change in time, i.e., Ḟ (t ) = 0. This is somewhat
trivial since this just reflects that the equilibrium distribution
is a special case of a stationary distribution. More impor-
tantly, from the fact that H , C and E are symmetric ma-
trices that are positive-definite or semi-positive-definite, we
derive in Appendix C that the free energy does not increase
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FIG. 1. Graphical illustration of extremal and stability properties
of equilibrium and nonequilibrium (NEQ) systems. For an equilib-
rium system, the free energy in (a) takes its minimal value F• given
by Eq. (32) at the equilibrium value of the covariance matrix E •,
determined by Eq. (31). The free-energy production Ḟ in (b) is
negative and vanishes at the equilibrium state; see Eq. (65). This
means that the system is stable with respect to perturbations and
flows towards the equilibrium state, as indicated by red arrows in
(a). For a NEQ system, the free entropy Sfree(t ) in (c) takes its
maximal value S◦

free at the stationary value of the covariance matrix
E ◦. The free entropy production Ṡfree(t ) in (d) is positive and vanishes
in the stationary state. This means that the system is stable with
respect to perturbations and flows towards the NEQ stationary state,
as indicated by red arrows in (c).

in time,

Ḟ (t ) � 0; (65)

generally, this means that the equilibrium distribution is stable
with respect to perturbations. For this we have used that the
first term of Eq. (64) is not negative since the product of two
positive semidefinite matrices is also positive semidefinite.
Equation (65) corresponds to the second law of thermody-
namics, here derived for many-body systems described by
quadratic Hamiltonians and Langevin equations with friction
terms and random fields. These results are graphically illus-
trated in Fig. 1. Figure 1(a) shows that the free energy F (t ) is
minimal in equilibrium defined by Ek j (t ) = E•

k j and 〈zk (t )〉 =
0, as demonstrated by Eq. (35). Figure 1(b) shows that the
time derivative of the free energy Ḟ (t ) is negative except in
equilibrium where it vanishes, as follows from Eq. (65). This
indicates that a nonstationary distribution flows monotonically
towards the equilibrium stationary distribution, as indicated
by the red arrows in the top graph.

We finally derive a set of constitutive dynamic equations,
which we will in the next section generalize for NEQ sys-
tems. For an equilibrium system the Lyapunov-Boltzmann
condition (37) is satisfied and the stationary covariance matrix
E◦

k j is given by the equilibrium state, E◦
k j = E•

k j = kBT H−1
k j .

Comparison of the expression for the entropy production (48)
and the derivative of the free energy (30) yields

Ṡ (t ) = − 2

kBT
Ci j

∂F (t )

∂Ei j
, (66)

which is a simple relation between the entropy production Ṡ
and the free-energy derivative, the first constitutive dynamic
relation. The other dynamic relations are obtained from the
time derivative of the covariance matrix (56),

Ėi j (t ) = − 2

kBT

[
AikE•

kl

∂F (t )

∂Elm
Ejm + AjkE•

kl

∂F (t )

∂Elm
Emi

]
,

(67)
and by comparing Eq. (16) with the derivative of the free
energy (29) with respect to 〈zi(t )〉,

〈żi(t )〉 = − 1

kBT
AikE•

kl

∂F (t )

∂〈zl〉 . (68)

Equations (66), (67), and (68) are the constitutive dy-
namic equations for equilibrium systems that relate temporal
changes of all relevant quantities to derivatives of the free
energy with respect to the state variables, i.e., to generalized
thermodynamic forces.

IV. TRULY NONEQUILIBRIUM SYSTEMS

A. Extremal and stability properties of the free entropy

We remark that the word nonequilibrium (NEQ) typically
refers to two very different situations: For a NEQ system, i.e.,
when the Lyapunov-Boltzmann condition (37) is not satisfied,
the stationary distribution is a NEQ stationary distribution,
which is characterized by a nonvanishing positive entropy
production. For such a system an equilibrium distribution does
not exist. An equilibrium system is one where the Lyapunov-
Boltzmann condition (37) is satisfied, but even such a system
is off equilibrium as long as it has not settled in its stationary
equilibrium distribution.

Obviously, it is not possible to use the constitutive equilib-
rium dynamic equations (66), (67), and (68) in the NEQ case,
because of the appearance of the equilibrium temperature T .
The temperature can be trivially eliminated by introducing a
modified thermodynamic potential, which is called the free
entropy and which is, for the equilibrium scenario using
Eqs. (27), (28), and (31), given by

Sfree(t )

kB
≡−F (t )

kBT
= S (t )

kB
−E•−1

i j Ei j (t )

2
− E•−1

i j 〈zi(t )〉〈z j (t )〉
2

.

(69)
As mentioned before, the equilibrium free entropy had been
originally introduced by Massieu in 1869 [72,73] and the
advantage of this functional was already recognized by Planck
[74] and Schrödinger [75]. The free entropy concept is partic-
ularly useful in the current NEQ setting, since for the NEQ
systems we will consider there is no unique temperature.

In fact, the free entropy concept allows for straightforward
generalization to the NEQ case. For this we replace E•−1

i j in

Eq. (69) by E◦−1
i j , after which we obtain the NEQ version of

the free entropy

Sfree(t )

kB
= S (t )

kB
− E◦−1

i j Ei j (t )

2
− E◦−1

i j 〈zi(t )〉〈z j (t )〉
2

. (70)

Note that the entropy production in the stationary NEQ state,
which for suitably chosen friction and random strength matri-
ces can be described as being due to heat fluxes in and out of
heat reservoirs, is, as illustrated in Eq. (1), not included in the
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free entropy, but will be discussed in Sec. IV B. Clearly, for
an equilibrium system, for which E◦−1

i j = E•−1
i j = Hi j/(kBT ),

the general expression Eq. (70) reduces to the equilibrium
expression (69). Similar functionals, which in a NEQ station-
ary state are extremal, were derived previously [5–8,11,79–
83]; in Appendix G we show that the free entropy expression
(70) is equivalent to the Kullback-Leibler entropy [6,78]. Our
model differs from previous approaches in that the definition
of separate friction and random strength matrices will allow us
to describe the coupling to multiple heat baths with different
well-defined temperatures.

Using the free entropy, the constitutive dynamic equations
(66), (67), and (68) can be rewritten as

Ṡ (t ) = 2Ci j
∂Sfree(t )/kB

∂Ei j
, (71)

Ėi j (t ) = 2AikE◦
kl

∂Sfree(t )/kB

∂Elm
Ejm

+ 2AjkE◦
kl

∂Sfree(t )/kB

∂Elm
Emi, (72)

〈żi(t )〉 = AikE◦
kl

∂Sfree(t )/kB

∂〈zl〉 , (73)

where the temperature has obviously (and trivially) disap-
peared. When Eq. (70) is used in conjunction with the con-
stitutive dynamic equations (71), (72), and (73), the exact
dynamic evolution equations (derived for general NEQ sys-
tems) (48), (56), and (16) are reproduced, this independently
confirms the validity of the expression (70).

We next show that the free entropy has very similar prop-
erties for NEQ systems as the free energy has for equilibrium
systems, namely, Sfree(t ) is extremal and in fact maximal in
the stationary NEQ state and the stationary state is stable in the
sense that Ṡfree(t ) � 0. For this we basically repeat the steps
leading to the minimal condition of the free energy (35). The
extremum of Sfree(t ) is given by 〈�z(t )〉 = 0 and determined by

∂Sfree(t )/kB

∂Ei j
= E−1

ji (t )/2 − E◦−1
ji /2 = 0, (74)

the solution of which yields the time-independent stationary
distribution, Ei j (t ) = E◦

i j . With the stationary covariance ma-
trix E◦

i j many observables can be calculated, for example, the
internal energy follows according to Eq. (27). The stationary
free entropy is given by

S◦
free/kB = (1/2) ln[(2π )2N det E◦]. (75)

The second derivative of the free entropy is given by

∂2Sfree(t )/kB

∂Ekl∂Ei j
= −E−1

ik (t )E−1
l j (t )/2. (76)

Around the stationary state Ei j = E◦
i j the free entropy thus is

to second order given by

Sfree(t )/kB − S◦
free/kB 
 −E◦−1

ik E◦−1
l j [Ei j (t ) − E◦

i jkBT ]

× [Ekl (t ) − E◦
kl kBT ]/2, (77)

which is negative since E◦−1 is symmetric and negative defi-
nite (the general proof for this is given in Appendix C).

The free entropy production follows from Eq. (70) by
taking a time derivative as

Ṡfree(t )

kB
= Ṡ (t )

kB
− E◦−1

i j Ėi j (t )

2
− E◦−1

i j 〈żi(t )〉〈z j (t )〉. (78)

Using our previous results for Ṡ (t ), Eq. (48), for Ėi j (t ),
Eq. (56), and for 〈żi(t )〉, Eq. (16), we arrive after a few
intermediate steps at

Ṡfree(t )/kB = 〈z j (t )〉E◦−1
ji Aik〈zk (t )〉 + Ckm

[
E◦−1

ml − E−1
ml (t )

]
× El j (t )

[
E◦−1

jk − E−1
jk (t )

]
. (79)

The quadratic form of this expression shows that in the sta-
tionary state, defined by Ek j (t ) = E◦

k j and 〈zk (t )〉 = 0, the free
entropy production of the system vanishes. More importantly,
from the fact that E◦, C, and E are symmetric matrices that
are semi-positive-definite or positive-definite, it follows that
the free entropy does not decrease in time, i.e.,

Ṡfree(t ) � 0; (80)

generally, this means that the stationary NEQ distribution is
stable with respect to perturbations; the proof is given in
Appendix C. In writing Eq. (80) we have used that the first
term of Eq. (79) is not negative since the product of the two
positive-definite matrices A and E◦ is also positive-definite,
where positive definiteness of the asymmetric matrix A is
equivalent to demanding that all eigenvalues of the symmetric
part of A are positive, which is more restrictive than the
condition that the eigenvalues of A have all positive real
components, as required for the existence of a stationary state
in Sec. II B. This result is here derived for interacting many
body systems described by quadratic Hamiltonians and is
graphically illustrated in Fig. 1. Figure 1(c) shows that the
free entropy Sfree(t ) is maximal at the stationary distribution
defined by Ek j (t ) = E◦

k j and 〈zk (t )〉 = 0, which follows from
Eq. (77). Figure 1(d) shows that the time derivative of the free
entropy Ṡfree(t ) is positive except at the stationary distribution
where it vanishes, as follows from Eq. (79). This indicates that
the system flows monotonically towards the stationary state,
as indicated by the red arrows in Fig. 1(c).

The free entropy maximization principle applies to NEQ
and equilibrium systems alike. On the one hand this allows
us to treat NEQ and equilibrium systems within a unified
framework and thereby eliminates a disturbing schism in the
description of these systems. On the other hand, the usage
of the free entropy, which does not include the stationary
reservoir entropy production [which is related to the so-called
house-keeping entropy [9,10,84] and increases linearly in time
in a stationary NEQ state; see Eq. (1) and as discussed in
the next section], brings a significant methodological advan-
tage over early approaches to NEQ systems, according to
which stationary NEQ states are defined by an extremum of
the total entropy production (including the reservoirs) and
stability criteria invoke the time derivative of the entropy
production, i.e., the second time derivative of the total entropy
[87]. The connection between the free entropy production
(excluding the reservoirs) and the total entropy production (in-
cluding the reservoirs) is discussed in the Conclusions and in
Appendix H.
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B. Stationary entropy production for particles coupled to
different temperature reservoirs

The calculations so far were completely general and no
restrictions on the type of the Hamiltonian matrix H , the
friction matrix �, and the random correlation matrix C were
imposed. To gain insight into the entropy production of the
reservoirs, denoted by Ṡres(t ), we need to restrict the discus-
sion to Newtonian systems, meaning that in the Hamiltonian
the spatial and momentum coordinates decouple and the ki-
netic energy is diagonal. This will allow us to ascribe well-
defined temperatures to different heat baths, which will then
be used to calculate the reservoir entropy production from
the individual heat fluxes between the system and the heat
baths. To conveniently use the symmetry of such Newtonian
systems, we switch to particle indices, denoted by greek
symbols, with which the Hamiltonian can be written as

H(�y) = yαHαεyε/2. (81)

Here we introduced the particle state vector

yα (t ) = (xα (t ), pα (t ))T , (82)

where xα (t ) and pα (t ) are the position and the momentum
of particle α. The N × N entries of the Hamiltonian matrix
Hαε each consist of 2 × 2 matrices. These submatrices are
expanded in terms of the matrices

u =
(

0 1
−1 0

)
, s =

(
1 0
0 0

)
, r =

(
0 0
0 1

)
. (83)

From the matrix products

us = ru =
(

0 0
−1 0

)
, ur = su =

(
0 1
0 0

)
(84)

it is easily seen that all 2 × 2 matrices can be expanded in
terms of the four matrices s, r, us, and ur, which thus form
a convenient complete set. We will make in the following
repeated use of the properties:

s2 = s, r2 = r, u2 = −1, rs = 0 = sr. (85)

The Langevin Eq. (13) can be written as

ẏα (t ) = −Aαεyε (t ) + �αεFε (t ), (86)

where Aαε is given by

Aαε = −Uαγ Hγ ε + �αε (87)

and Uαγ can be written as Uαγ = uδαγ . The Hamiltonian
matrix is for Newtonian systems given by

Hα′ε = shα′ε + rδα′ε/mα′ , (88)

where hαε is a general N × N symmetric interaction matrix
that acts only on positional degrees of freedom (and thus
is multiplied by the matrix s) and the second term is the
kinetic energy which is diagonal in the momentum degrees
of freedom (and thus is multiplied by the matrix r) and mα′

is the mass of particle α′. Note that the primed index α′ is
not summed over. From the product properties of the 2 × 2
matrices the inverse Hamiltonian matrix follows as

H−1
α′ε = sh−1

α′ε + rδα′εmα′ . (89)

To allow for a clear definition of reservoir temperatures,
we will in the remainder treat momentum-diagonal friction,
for which the friction matrix � is reduced to the momenta
entries as

�α′ε = rγα′ε/mα′ (90)

and where the matrix γα′ε is diagonal and given by γα′ε =
δα′εγα′ , where γα′ is the friction coefficient of particle α′.
The Lyapunov-Boltzmann condition (37) in terms of particle
indices reads

2C•
αε/(kBT ) = �αγ H−1

γ ε + �εγ H−1
γα , (91)

which, using Eqs. (89) and (90) and the matrix product
properties (85), leads to

C•
α′ε = rδα′εγα′kBT, �•

α′ε = rφ•
α′ε = rδα′ε

√
γα′kBT . (92)

These expressions show that the random correlation and ran-
dom strength matrices are diagonal in the particle indices and
proportional to r and thus only couple momentum degrees to
each other. The NEQ generalization of Eq. (92) for reservoirs
with different temperatures reads

Cα′ε = rγα′δα′ε/βα′ , �α′ε = rδα′ε
√

γα′/βα′ , (93)

where βα′ = 1/(kBTα′ ) denote the different inverse thermal
energies of reservoirs, each characterized by a tempera-
ture Tα′ . The expressions (93) are central to our paper as
they define the NEQ model we are using to derive all
following results.

To calculate an explicit expression for the reservoir entropy
production we multiply the Langevin Eq. (86) for the momen-
tum component pα (t ) by pα (t ) and use Eqs. (87) and (88)
to obtain

pα′ (t ) ṗα′ (t ) = d
[
p2

α′ (t )
]
/(2dt ) = −pα′ (t )hα′εxε (t )

− pα′ (t )γα′ pα′ (t )/mα′ + pα′ (t )�α′α′Fα′ (t ),

(94)

where we again note that the primed index α′ is not summed
over. From this expression the average heating rate of the
system due to reservoir α′, i.e., the work performed by the
random force per unit time, the last term in Eq. (94), minus
the friction work dissipated by the particle α′ per unit time,
the second-last term in Eq. (94), turns out to be

Q̇α′ (t ) = �α′α′ 〈pα′ (t )Fα′ (t )〉/mα′ − γα′ 〈pα′ (t )pα′ (t )〉/m2
α′

= 1

2mα′

d
〈
p2

α′ (t )
〉

dt
+ hα′ε〈pα′ (t )xε (t )〉/mα′ . (95)

Since the last line of Eq. (95) is nothing but the time derivative
of the sum of the kinetic and potential energies of particle
α′, we see that the reservoir heating rate Q̇α′ (t ) balances
the particle energy at each instance of time (a clear conse-
quence of the quadratic Hamiltonian approximation). For the
entropy production of all reservoirs Ṡres(t ) we thus obtain
from Eq. (95) the expression

Ṡres(t )

kB
≡ −βαQ̇α (t ) = − βα

2mα

d
〈
p2

α (t )
〉

dt
− βαhαε

mα

〈pαxε〉.
(96)
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We now replace momenta by velocities vα′ (t ) = pα′ (t )/mα′ .
From the fact that in the stationary state

d

dt
〈xαxε〉◦ = 〈xαvε〉◦ + 〈vαxε〉◦ = 0 (97)

and d〈v2
α〉◦/dt = 0 and using that hαε is symmetric, we obtain

for the reservoir entropy production in the stationary state

Ṡ◦
res/kB = −βαhαε〈xεvα〉◦ = 1

2 hαε〈xεvα〉◦(βε − βα ). (98)

This expression shows that one necessary condition for a
nonzero stationary reservoir entropy production is that reser-
voirs have different temperatures. Other necessary condi-
tions are a nonvanishing stationary position-velocity cou-
pling 〈xεvα〉◦, which for Newtonian Hamiltonian systems is
only obtained off equilibrium, and a nonvanishing interaction
strength hαε . To obtain explicit results for the stationary
reservoir entropy production we need to calculate the position-
velocity correlations 〈xεvα〉◦, which do not vanish even in the
overdamped massless limit for a NEQ system. For this a sys-
tematic perturbative scheme is introduced in the next section.

C. Perturbative solution of the Lyapunov equation

The solution of the Lyapunov equation (21) for N particles
described by a state vector with 2N components consists
of determining all 2N (2N + 1)/2 entries of the symmetric
covariance matrix E . The calculation is cumbersome even for
only N = 2 particles [19]. Here we introduce a systematic
expansion of the Lyapunov equation with the particles mass as
the perturbation parameter, which employs a projection of the
matrix equations onto the complete set of 2 × 2 matrices (83)
and (84) introduced in the previous section. This expansion
is subtle, since the leading-order result for the covariance
matrix in the limit mα → 0 is not obtained by taking this limit
upfront in the Langevin equation. In fact, the overdamped
limit is commonly obtained by setting mα = 0 in the Langevin
equation [86], which correctly describes the long-time particle
dynamics but obviously misses the short-time ballistic particle
dynamics and leads to divergent instantaneous particle veloc-
ities. Since we need position-velocity correlations in order to
estimate the entropy production according to Eq. (98), it is
advisable to keep velocities to leading order as mα → 0. As
it turns out, position-velocity correlations that result from the
perturbation calculation stay finite even in the mα → 0 limit.

To proceed, we expand the covariance matrix as

Eαβ = 〈xαxβ〉s + 〈pα pβ〉r + 〈xα pβ〉ut + 〈pαxβ〉us (99)

and insert the expressions for A, Eq. (87), H , Eq. (88), �,
Eq. (90), C, Eq. (93), and E , Eq. (99), into the Lyapunov
Eq. (21). The resulting expression splits into an equation
proportional to s for α �= β,

0 = 〈xαvβ〉◦ + 〈xβvα〉◦, (100)

an equation proportional to s for α = β,

0 = 〈xαvα〉◦, (101)

an equation proportional to r for α′ �= β ′,

0 = (γα′mβ ′ + γβ ′mα′ )〈vα′vβ ′ 〉◦
+ mβ ′hα′γ 〈xγ vβ ′ 〉◦ + mα′hβ ′γ 〈xγ vα′ 〉◦, (102)

an equation proportional to r for α′ = β ′,

1/βα′ = mα′ 〈vα′vα′ 〉◦ + mα′hα′γ 〈xγ vβ ′ 〉◦/γα′ , (103)

an equation proportional to ur for α′ �= β ′,

mβ ′ 〈vα′vβ ′ 〉◦ = γβ ′ 〈xα′vβ ′ 〉◦ + hβ ′γ 〈xγ xα′ 〉◦, (104)

and an equation proportional to ur for α′ = β ′,

mα′ 〈vα′vα′ 〉◦ = hα′γ 〈xγ xα′ 〉◦, (105)

where we have converted all momenta pα′ to velocities vα′ =
pα′/mα′ . Note that there are also two equations proportional
to us which however are equivalent to the equations propor-
tional to ur. The limit mα′ → 0 must be taken with care.
Equation (105) shows that 〈vα′vα′ 〉◦ ∼ m−1, which reflects the
equipartition theorem in the equilibrium case, while Eq. (102)
suggests that 〈vαvβ〉◦ ∼ 〈xαvβ〉◦ for α �= β. Together with
Eq. (104), this suggests that 〈vαvβ〉◦ ∼ 〈xαvβ〉◦ ∼ m0 for
α �= β and thus that these terms do not necessarily vanish
in the massless limit mα → 0. This in turn means that the
terms in the boxes in Eqs. (103) and (104) can be treated
perturbatively in an expansion in powers of mα and can,
to leading order in the particles masses, be neglected. Cor-
rections to the leading-order results for the covariances can
be systematically calculated by inserting the leading-order
results for the terms in the boxes and by solving the resulting
equations term-by-term in powers of the particle masses. Such
a calculation of next-leading-order terms would also allow
assessment of the accuracy of the leading-order results, but
is rather involved because for NEQ systems mixed position-
velocity cross-correlations are present, as we will show explic-
itly for the simple case of two coupled particles in the next
section. As a main result, we conclude that while the mean-
squared velocities of particles diverge in the overdamped
limit, the position-velocity correlations between different par-
ticles take nonzero and finite values for NEQ systems in the
overdamped limit.

V. APPLICATIONS

A. Two particles coupled to different temperature reservoirs:
Effective temperature concept and position and momentum

localization

We now present explicit results for two particles that are
described by the Newtonian Hamiltonian as defined generally
in Eq. (88),

H = h11x2
1/2 + h22x2

2/2 + h12x1x2 + m1v
2
1/2 + m2v

2
2/2,

(106)

and which are characterized by the two diagonal friction coef-
ficients γ1 and γ2 as defined in Eq. (90). The particles are cou-
pled to two heat reservoirs characterized by inverse thermal
energies β1 and β2 as defined in Eq. (93). This is a model sys-
tem that has been considered by different researchers [69,88–
90]. We here reproduce the complete covariance matrix from
our previous calculation [19]. By straightforward solution of
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the set of linear equations (100)–(105) we obtain to leading
order in the particle masses

〈x1x1〉◦ = h22d

[
1

β1
+ �

h12

h22
γ2

]
, (107)

〈x2x2〉◦ = h11d

[
1

β2
− �

h12

h11
γ1

]
, (108)

〈x1x2〉◦ = −h12d

2

[
1

β1
+ 1

β2
+ �

h11γ2 − h22γ1

h12

]
, (109)

〈v1v1〉◦ = 1

m1

[
1

β1
+ �

h12m1

γ1

]
, (110)

〈v2v2〉◦ = 1

m2

[
1

β2
− �

h12m2

γ2

]
, (111)

〈v1v2〉◦ = �
m2h11 − m1h22

γ1m2 + γ2m1
, (112)

〈x1v2〉◦ = −〈v1x2〉◦ = �, (113)

where d = (h11h22 − h2
12)−1 is the inverse determinant of the

interaction matrix and the parameter

� = h12

γ1h22 + γ2h11

(
1

β2
− 1

β1

)
(114)

is a measure of the departure from equilibrium. For � =
0, i.e., in equilibrium, the covariance matrix elements are
given by the inverse of the Hamiltonian matrix according to
Eq. (31) and in particular the off-diagonal velocity coupling
terms 〈v1v2〉◦ and the position-velocity correlations 〈x1v2〉◦ =
−〈v1x2〉◦ vanish. Off equilibrium, that means for � �= 0,
these covariances are nonzero and thus the symmetry of the
covariance matrix changes abruptly. The expressions in the
square brackets in Eqs. (107)–(111) could in principle be used
to define inverse effective temperatures for the covariance
elements that are nonzero in equilibrium: inspection of the
terms in the square brackets shows that they are all different.
For the covariances Eqs. (112) and (113) that are proportional
to �, the effective inverse temperatures are also different and
diverge as equilibrium is approached, i.e., as � → 0. While
for one or two of the covariances an effective temperature
can be defined [91], consideration of the entire covariance
matrix shows that the ascription of an effective temperature
to a particle is not possible. This suggests that an effective
temperature picture, where one assigns effective temperatures
to particles, does not describe the particle statistics correctly
and in particular does not characterize well the transition from
equilibrium, � = 0, to NEQ, � �= 0. To rescue the effective
temperature picture one would have to ascribe different tem-
peratures to each covariance matrix element, which clearly
is far from the usefulness of the temperature definition at
equilibrium. When basing the effective temperature definition
on the fluctuation-dissipation relation, as an additional effect
a frequency dependence appears [19,42,43,92], which is not
reflected in the effective temperatures one would obtain based
on the covariance matrix elements.

As an additional illustration of NEQ effects, we calculate
the mean-squared difference between the particle positions,
which from Eqs. (107)–(109) is to order m0 in the particle

mass given by

〈(x1 − x2)2〉◦ = β1 + β2

2hβ1β2

[
1 −

(
β1 − β2

β1 + β2

)(
γ1 − γ2

γ1 + γ2

)]
,

(115)

where we have considered two particles whose center of mass
is not confined, h11 = h22 = −h12 = h > 0 (note that this
limit must be taken with care since the interaction matrix hi j

is not invertible in this case). The first term is the equilibrium
result which survives in the limit β1 = β2. Note that when
the two friction coefficients and the two temperatures are
different from each other, NEQ effects modify the equilibrium
result. In fact, in the limits β1/β2 � 1 and γ1/γ2 � 1 (or
β2/β1 � 1 and γ2/γ1 � 1) the distance between the particles
tends to zero, thus indicating positional colocalization of
particles, which in equilibrium one would only obtain from
strong attractive interactions between particles. Interestingly,
since βα = γα/φ2

αα , where φαα denotes the strength of the
Gaussian white noise that enters the Langevin equation, we
see that colocalization is automatically obtained when the
friction coefficients of particles γα are modified while keeping
the random strengths φαα fixed. This indicates a tendency of
particles to phase separate in position space in NEQ, which
is indeed obtained in mixtures of particles that are coupled to
different heat baths [31–34].

A similar calculation for the mean-squared velocity differ-
ence based on Eqs. (110)–(112) gives

〈(v1 − v2)2〉◦ = β1 + β2

mβ1β2

[
1− mh2

12

hγ1γ2

(
β1 − β2

β1 + β2

)(
γ1 − γ2

γ1 + γ2

)]
(116)

to order m0 and where we used the simplifications m = m1 =
m2 and h11 = h22 = h. Also here we see that in the limit
β1/β2 � 1 and γ1/γ2 � 1 (or β2/β1 � 1 and γ2/γ1 � 1) the
momentum difference between the particles goes down. This
is indicative of colocalization in momentum space, meaning
that different particles tend to move with the same velocity.
For a Newtonian Hamiltonian Eq. (88) which is diagonal in
momentum space and for which momenta do not couple to
positions, particle velocities are uncorrelated to each other in
equilibrium. We thus conclude that the momentum localiza-
tion demonstrated in Eq. (116) is a NEQ phenomenon that
has no equilibrium analog for Newtonian Hamiltonians.

B. Stationary entropy production for three coupled particles:
Heat flux from cold to warm reservoir

We will now present an explicit solution for a system con-
sisting of three coupled particles, as schematically visualized
in Fig. 2(a). Since here we are interested only in the stationary
entropy production, Eq. (98), we only need to calculate the
stationary velocity-position cross terms 〈xεvα〉◦. We consider
the simplified Hamiltonian

H = h1

2
(x1 − x2)2+h3

2
(x2 − x3)2+m1

2
v2

1+
m2

2
v2

2 + m3

2
v2

3,

(117)

where only particles 1 and 2 and particles 2 and 3 are coupled
via harmonic bonds. We also assume the friction coefficients
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(a)T1 h1 h3T2 T31

T1/T21

(b)
T3/T2

0
0

1

T1< T2 < T3

T2< T1 < T3

T1< T3 < T2

FIG. 2. (a) Schematic representation of three particles that in-
teract elastically and that are coupled to heat baths with different
temperatures. (b) Stationary heat flux diagram for symmetric elastic
couplings h1 = h3, showing a colored region where heat flows from
particle 3 to particle 2, Q̇◦

3 > 0, and heat flows from particle 2 to
particle 1, Q̇◦

1 < 0. The green area denotes the temperature range
T1 < T2 < T3 and the red areas denote T2 < T1 < T3 and T1 < T3 <

T2. The green area is the expected temperature range where heat flows
from particle 3 coupled to the hot reservoir at T3 to particle 2 coupled
to the warm reservoir at T2 and from particle 2 coupled to the warm
reservoir at T2 to particle 1 coupled to the cold reservoir at T1. In
the red areas heat flows between the particles against the temperature
gradients of the heat reservoirs: In the upper red area heat flows from
particle 2 coupled to the cold reservoir at T2 to particle 1 coupled
to the warm reservoir at T1, in the lower red area heat flows from
particle 3 coupled to the warm reservoir at T3 to particle 2 coupled to
the hot reservoir at T2.

to be all the same: γ1 = γ2 = γ3 ≡ γ . The solution strategy
consists in eliminating 〈v2

α′ 〉◦ by inserting Eq. (105) into
Eq. (103), which results in three equations, and solving the
six equations defined by Eq. (104) by using Eqs. (100) and
(101). These are nine equations for nine unknowns; it turns
out that Eq. (102) is not needed. The results are to order m0 in
the particle mass given by

〈x2v3〉◦ = 1

6γ (h1 + h3)

[
h1

β1
+ h1 + 3h3

β2
− 2h1 + 3h3

β3

]
,

(118)

〈x1v2〉◦ = 1

6γ (h1 + h3)

[
2h3 + 3h1

β1
− h3

β3
− h3 + 3h1

β2

]
,

(119)

〈x1v3〉◦ = 1

γ�

[
h3 + h2

β1
+ h1 − h3

β2
− h1 + h2

β3

]
, (120)

where we defined for convenience

� ≡ h1 + 2h2 + h3 + h2
2 − h2

3

h1
+ h2

2 − h2
1

h3
. (121)

Inserting these results into the expression for the entropy
production Eq. (98) we obtain

Ṡ◦
res/kB = 1

2
h1〈x2v1〉◦(β1 − β2) + 1

2
h3〈x2v3〉◦(β3 − β2)

= 1

12γ (h1 + h3)

⎡
⎣h1h3

(√
β1

β3
−
√

β3

β1

)2

+ h1(3h1 + h3)

(√
β1

β2
−
√

β2

β1

)2

+ h3(3h3 + h1)

(√
β3

β2
−
√

β2

β3

)2
⎤
⎦. (122)

Obviously, the entropy production is positive and finite in the
zero mass limit if the reservoir temperatures are different and
if the coupling strengths h1 and h3 are finite and positive.

The limiting case of h3 = 0 is insightful: in this case,
particle 3 becomes decoupled and we are basically left with
only two coupled particles. The expression (122) simplifies to

Ṡ◦
res/kB = h1

4γ

(√
β1

β2
−
√

β2

β1

)2

, (123)

which describes the stationary entropy production of two
reservoirs of inverse temperatures β1 and β2 that act on
two particles that are subject to friction with coefficients γ

and which are coupled by a harmonic spring of strength h1.
Obviously, also this entropy production is never negative and
finite if the reservoir temperatures are different and if the
coupling strength h1 is finite.

The case of three particles that are coupled to heat reser-
voirs at three different temperatures allows demonstrating
as an interesting NEQ effect the pumping of heat against a
temperature gradient. Before we go into the analysis, we note
that this does not constitute a violation of the second law of
thermodynamics but rather is a NEQ entrainment effect. To
proceed, we calculate the stationary heat flux from the heat
reservoir at temperature T1 to particle 1, which according to
Eqs. (95) and (119) is given by

Q̇◦
1 = −h1〈x2v1〉◦ = h1〈x1v2〉◦

= h1

6γ (h1 + h3)

[
2h3 + 3h1

β1
− h3

β3
− h3 + 3h1

β2

]
. (124)

The stationary heat flux from the heat reservoir at temperature
T3 to particle 3 is according to Eqs. (95) and (118) given by

Q̇◦
3 = −h3〈x2v3〉◦

= − h3

6γ (h1 + h3)

[
h1

β1
+ h1 + 3h3

β2
− 2h1 + 3h3

β3

]
. (125)

Due to energy conservation Q̇◦
2 = −Q̇◦

1 − Q̇◦
3 holds. Note that

all stationary heat fluxes Q̇◦
1, Q̇◦

2, Q̇◦
3 obviously vanish in

equilibrium, i.e., when the temperatures of all heat reservoirs
are the same. The flux from heat reservoir 1 according to
Eq. (124) is negative, Q̇◦

1 < 0, i.e., heat flows into reservoir
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1, for

T3

T2
> −1 − 3h1/h3 + (2 + 3h1/h3)

T1

T2
, (126)

which for equal elastic coupling strengths h1 = h3

simplifies to

T3

T2
> −4 + 5

T1

T2
. (127)

The flux from heat reservoir 3 according to Eq. (125) is
positive, Q̇◦

3 > 0, i.e. heat flows out of reservoir 3, for

T3

T2
>

h1 + 3h3

2h1 + 3h3
+ h1

2h1 + 3h3

T1

T2
, (128)

which for equal elastic coupling strengths h1 = h3

simplifies to

T3

T2
> 4/5 + T1

5T2
. (129)

As expected, the conditions (126) and (128) are simultane-
ously satisfied, i.e., heat flows into reservoir 1 and out of
reservoir 3, for

T1 < T2 < T3, (130)

i.e., per unit time the heat amount |Q̇◦
3|, flows from particle 3

(which is coupled to the hot heat reservoir) to particle 2 (which
is coupled to the warm reservoir), and the heat amount |Q̇◦

1|
flows from particle 2 to particle 1 (which is coupled to the
cold reservoir).

More interestingly, the conditions (126) and (128) can also
be simultaneously satisfied for the scenario

T2 < T1 < T3. (131)

In this case there is a small range of temperatures where heat
flows from particle 3 (coupled to the hot heat reservoir) to
particle 2 (coupled to the cold reservoir), which is expected,
but at the same time a heat amount |Q̇◦

1| flows from particle
2 (coupled to the cold reservoir) to particle 1 (coupled to the
warm reservoir). A similar scenario is provided for

T1 < T3 < T2, (132)

where for a small range of temperatures heat flows from
particle 2 (coupled to the hot heat reservoir) to particle 1
(coupled to the cold reservoir), which is expected, but at the
same time a heat amount |Q̇◦

3| flows from particle 3 (coupled to
the warm reservoir) to particle 2 (coupled to the hot reservoir).
This means we find situations where heat flows against the
temperature gradient of the heat reservoirs that are coupled
to the particles. This situation is indicated in Fig. 2(b) in a
phase diagram for equal elastic coupling h1 = h3, in which
case the simplified inequalities (127) and (129) hold. In the
phase diagram the inequalities (127) and (129) are indicated
by straight lines, and the region where Eq. (130) holds is
indicated in green. The regions where the inequalities (127)
and (129) and in addition Eq. (131) or Eq. (132) hold are
indicated in red. Our discussion uses the fact that any heat
Q̇◦

1 that is transferred to or from reservoir 1 is transferred
between particles 1 and 2 via elastic interactions, likewise, any
heat Q̇◦

3 that is transferred to or from reservoir 3 is transferred
between particles 2 and 3. In other words, we do not only

know the stationary heat fluxes from the reservoirs but also the
stationary energy fluxes between the particles, which is due to
the simple linear topology of the elastic particle interactions
as indicated in Fig. 2(a).

As mentioned before, the finding of a heat flux against
the reservoir temperature gradient does not violate the second
law of thermodynamics. First, the heat flux from the particle
coupled to the cold heat bath to the particle coupled to the
warm heat bath is accompanied by an even larger heat flux
from the particle coupled to the hot heat bath to the particle
coupled to the warm heat bath, our result for the total entropy
production (122) is strictly positive. Second, heat is not trans-
ferred directly between the heat reservoirs but only between
particles that are coupled to heat reservoirs. In this connection
it is crucial to remember [according to our previous discussion
centered around the covariance elements (107)–(113)] that
particles are not characterized by the temperature of the heat
reservoir they are coupled to. Therefore, since the particles
do not have well-defined effective temperatures, the second
law of thermodynamics is not violated. One could be tempted
to define effective temperatures based on the heat fluxes, but
such a definition would be based solely on one entry of the
covariance matrix, namely, the off-diagonal position velocity
coupling 〈xαvβ〉◦, and not work for other applications.

C. Mapping on active particles

Similarly to recent calculations [70], we here show how ac-
tive particle models can be described within the current frame-
work of Markovian coupled particles. We want to describe a
single active particle, for this we reduce the Hamiltonian (117)
to two coupled massive particles and obtain

H = h1

2
(x1 − x2)2 + m1

2
v2

1 + m2

2
v2

2 . (133)

By assuming the friction coefficients to be the same, γ1 =
γ2 ≡ γ , and choosing two different heat bath temperatures
β1 and β2, we obtain from Eqs. (86), (87), (88), and (90) the
coupled set of linear Langevin equations

m1 v̇1(t ) = −γ v1(t ) − h1[x1(t ) − x2(t )] +
√

γ /β1F1(t ),

m2 v̇2(t ) = −γ v2(t ) − h1[x2(t ) − x1(t )] +
√

γ /β2F2(t ).

The Langevin equation for the second particle is straightfor-
wardly solved in the massless limit m2 = 0 and gives

x2(t ) =
∫ t

−∞
dt ′e−(t−t ′ )h1/γ

[
h1

γ
x1(t ′) + (β2γ )−1/2F2(t ′)

]
.

(134)

Inserting this solution into the Langevin equation for the first
particle, we obtain the generalized Langevin equation

m1v̇1(t ) = −
∫ ∞

−∞
dt ′�(t − t ′)v1(t ′) + FR(t ). (135)

The memory function that appears in Eq. (135) is given by

�(t ) = θ (t )[2γ δ(t ) + h1e−th1/γ ], (136)

where θ (t ) denotes the Theta function with the properties
θ (t ) = 1 for t > 0 and θ (t ) = 0 for t < 0, which makes the
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memory function single-sided. The noise FR(t ) in Eq. (135) is
given by

FR(t ) =
√

γ /β1F1(t ) + h1√
β2γ

∫ t

−∞
dt ′e−(t−t ′ )h1/γ F2(t ′)

(137)
and consists of the noise acting directly on the first particle
and a term due to noise acting on the second particle. The
latter term consists of a convolution integral because this noise
is transmitted via the elastic bond of strength h1. Defining
the autocorrelation function of the random noise as CFF(t ) =
〈FR(0)FR(t )〉, we obtain [19]

β1CFF(t ) = 2γ δ(t ) + h1(β1/β2)e−|t |h1/γ . (138)

Comparing Eq. (136) and Eq. (138), we see that β1CFF(t ) =
�(|t |), a consequence of the standard fluctuation-dissipation
theorem [86], holds only for β1 = β2, i.e., if the two reservoir
temperatures are the same. If β1 �= β2, the memory kernel
�(t ) and the random force correlation function CFF(t ) differ,
which points to FDT violation and thus to the presence of an
active NEQ process. The equation of motion (135) is similar
to previously studied active particle models that were shown
to exhibit NEQ phase transitions [93,94]. In fact, the active
Ornstein-Uhlenbeck model is obtained by setting the expo-
nential in the memory function (136) to zero while keeping
the exponential term in the noise correlator (138). The entropy
production of such active particle models has been intensely
studied and debated [95–98].

The entropy production of the present active particle
model, defined by Eq. (135) in conjunction with Eqs. (136)
and (138), is given exactly by the simple expression (123);
alternatively, it can be obtained directly from simulations by
evaluating the position-velocity correlation functions in the
general expression (98). The advantage of the present active
particle model, which follows from a Newtonian Hamiltonian,
is that the extremal and stability conditions in terms of the
free entropy functional derived in this work are valid and not
only describe the stationary NEQ distribution itself but also
the approach to the stationary NEQ distribution. We hasten
to add that not all active particle models can be mapped on
our model, in particular models with non-Gaussian velocity
distributions are not captured by our linear equations. In future
work interacting active particles similar to the model derived
here will be studied analytically as well as in simulations,
it will be interesting to see whether the NEQ position and
momentum localization effects demonstrated in Sec. V A also
show up in those more complex systems.

VI. CONCLUSIONS

In this paper we consider the approach of Hamiltonian
many-body systems that are coupled to multiple heat reser-
voirs with different temperatures to stationary NEQ distribu-
tions. Based on the exactly calculated approach of the covari-
ance matrix E (t ) to its stationary NEQ form E◦, we construct
the functional Sfree(t ) that yields the stationary covariance
matrix E◦ at its extremum with respect to variations of E (t ).
This function is called the free entropy, and it consists of the
system distribution entropy S (t ) and a term that accounts for

interactions within the system, described by the Hamiltonian,
and the frictional and noise coupling to the heat reservoirs.

Since in the stationary state the free entropy production
by construction vanishes, as explained in Sec. IV A, the
difference between the free entropy production and the total
entropy production is the reservoir entropy production in the
stationary state, Ṡ◦

res, which is constant in time. The total
entropy production Ṡtot (t ), which is the sum of the system
entropy production Ṡ (t ) and the reservoir entropy production
Ṡres(t ), follows from Eq. (1) by differentiation as

Ṡtot (t ) = Ṡ (t ) + Ṡres(t ) = Ṡfree(t ) + Ṡ◦
res. (139)

Using the result in Eq. (78) we obtain the explicit
expression

Ṡtot (t )

kB
= Ṡ (t )

kB
− E◦−1

i j Ėi j (t )

2
− E◦−1

i j 〈żi(t )〉〈z j (t )〉 + Ṡ◦
res,

(140)
which consists of the system distribution entropy production
Ṡ (t ), the stationary reservoir entropy production Ṡ◦

res, and
two terms that account for interactions within the system as
well as the frictional and noise coupling to the environment.
NEQ effects make these coupling terms differ dramatically
from their equilibrium counterparts, in which case E◦−1

i j be-
comes replaced by the Hamiltonian matrix Hi j/(kBT ). In
Appendix H we attempt to derive Eq. (139) explicitly by
calculating the time-dependent reservoir entropy production
Ṡres(t ) from our explicit expressions for the time-dependent
heat fluxes between the heat reservoirs and the system. We
demonstrate that the heat fluxes are by themselves not suf-
ficient to derive the reservoir entropy production Ṡres(t ) if
the reservoir temperatures are not the same, which implies
that internal reservoir degrees of freedom contribute in a
nonneglible manner to the reservoir entropy production for
a NEQ system. The connection between the free entropy
production Ṡfree(t ) (excluding the reservoirs) and the total
entropy production Ṡtot (t ) (including the reservoirs) will be
reconsidered in future work using microscopic models for the
heat reservoirs.

It is important to note that the reservoir entropy production
in the stationary state, denoted as Ṡ◦

res and given explicitly in
Eq. (98), does not depend on the time-dependent covariance
matrix E (t ) but only on the stationary covariance matrix E◦,
so it is a constant with respect to variations in E (t ); thus, the
total entropy production Ṡtot (t ) exhibits the identical extremal
and stability properties as the free entropy production Ṡfree(t ).
It trivially follows from Eq. (140) that the total entropy Stot (t )
of a NEQ system increases indefinitely with time, as shown
explicitly in Eq. (1), and thus is not bounded, whereas the
free entropy Sfree(t ) is a well-defined and finite expression
even for NEQ systems. Expression (140) will be useful for
various applications whenever the total entropy production
of different NEQ states of a system need to be compared.
The functional Eq. (140) should also allow us to construct
approximate methods for the description of NEQ nonlinear
systems as well as for NEQ phase transitions.

One advantage of the current formulation is that in the
limit when all heat reservoir temperatures become equal and
the NEQ system transforms into an equilibrium system, the
NEQ free entropy smoothly crosses over to the equilibrium

022120-15



ROLAND R. NETZ PHYSICAL REVIEW E 101, 022120 (2020)

free energy divided by −T , which displays the standard
equilibrium extremal and stability properties of a canonical
system. We thus have derived a unified framework to treat
NEQ systems that are coupled to heat reservoirs at different
temperatures on the same footing as equilibrium systems. We
have in our work restricted ourselves to one specific class of
NEQ models, namely, where NEQ is produced by stochas-
tic forces with vanishing mean. Forces with a nonvanishing
mean are straightforward to include and will be treated in
future work.

Our approach rests on the harmonic approximation for the
interaction Hamiltonian and for the friction and stochastic
terms. It is not clear how to extend the present derivation to
nonlinear systems, here variational and perturbative methods
will most likely be helpful. Clearly, a harmonic model can
always be obtained from a more complex, nonlinear model
by a saddle-point expansion in terms of suitably defined
deviatory coordinates. Our model should thus also apply to
nonlinear systems as long as this saddle-point approximation
is justified.
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APPENDIX A: DERIVATION OF SHANNON ENTROPY

We start from the canonical partition function

Z =
∫

d�ze−βH(�z), (A1)

where β = 1/(kBT ) denotes the inverse thermal energy. Us-
ing the thermodynamic definition of the free energy F =
−kBT lnZ we can write

F = −kBT ln
∫

d�ze−βH(�z). (A2)

From this we obtain, using the thermodynamic definition S =
−∂F/∂T , for the entropy

S = kB lnZ + Z−1T −1
∫

d�zH(�z)e−βH(�z). (A3)

From the definition of the normalized equilibrium distribution
(22), we obtain

βH(�z) = − ln ρ(�z) − lnZ, (A4)

which is inserted into Eq. (A3) to give

S = −kBZ−1
∫

d�ze−βH(�z) ln ρ(�z). (A5)

Using again the definition of the normalized equilibrium
distribution (22), we finally obtain the Shannon expression for
the entropy as

S/kB = −
∫

d�zρ(�z) ln ρ(�z). (A6)

APPENDIX B: THE TIME-DEPENDENT PROBABILITY
DISTRIBUTION IS GAUSSIAN

Here we show that the time-dependent distribution function
is Gaussian and governed by the time-dependent inverse co-
variance matrix. The calculation holds for equilibrium as well
as for NEQ systems. Given a solution �z(t ) of the Langevin
Eq. (13), we construct the time-dependent probability distri-
bution as

ρ(�z′, t ) = �δ[�z′ − �z(t )]. (B1)

Using the Fourier representation of the δ function and the
time-dependent solution (14) for given initial value, we obtain

ρF [�z′, t, �F (·)] =
∫

d �ω
(2π )2N

exp

{
− ıωiz

′
i + ıωi

[
〈zi(t )〉

+
∫ t

0
dt ′e−(t−t ′ )A

i j � jkFk (t ′)
]}

, (B2)

which is a functional of the random force trajectory �F (t ). The
probability distribution is obtained by a path integral over all
random force trajectories as

ρ(�z′, t ) =
∫

D �F (·)P[ �F (·)]ρF [�z′, t, �F (·)]. (B3)

Here P[ �F (·)] is the path integral weight, which for diagonal
white noise is given by

P[ �F (·)] = N−1
F exp

{
−1

4

∫
dt dt ′Fk (t )δ(t − t ′)Fk (t ′)

}
(B4)

and leads to 〈Fi(t )〉 = 0 and 〈Fi(t )Fj (t ′)〉 = 2δi jδ(t − t ′),
where the normalization factor is given by NF . The path
integral over the random noise in Eq. (B3) can be performed
and leads to the expression

ρ(�z′, t )=
∫

d �ω
(2π )2N

exp{−ıωiz
′
i + ıωi〈zi(t )〉 − ωiEi j (t )ω j},

(B5)
where the covariance matrix Ei j (t ) is given by Eq. (17).
Performing the integral over �ω leads to

ρ(�z′, t )=N−1(t ) exp
{−[z′

i−〈zi(t )〉]E−1
i j (t )[z′

j−〈z j (t )〉]/2
}
,

(B6)

with N given by Eq. (25), which is identical to the expression
given in Eq. (24). Since the mean state vector 〈zi(t )〉 in
Eq. (B6) depends according to Eq. (15) on the initial state
vector zi(0), the time-dependent probability distribution we
derived here is in fact the conditional distribution and thus
corresponds to the Green’s function, this can be made explicit
by rewriting Eq. (B6) as

ρ(�z′, t |�z, 0) = N−1(t ) exp
{−[z′

i − e−tA
ik zk

]
× E−1

i j (t )
[
z′

j − e−tA
jl zl

]
/2
}
. (B7)

APPENDIX C: SEMIPOSITIVE DEFINITENESS OF
MATRIX PRODUCT TRACE

We start from the part of the expression (64) for the free-
energy production rate of an equilibrium system that involves
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the trace of a product of four matrices,

Ḟ = −Ckm
[
Hml − kBT E−1

ml

] El j

kBT

[
Hjk − kBT E−1

jk

]
, (C1)

where we have for simplicity omitted all time dependencies.
An analogous expression also appears in the free entropy
production in Eq. (79). The matrix trace expressions that
appear in the free energy (34) and the free entropy (77) are
special cases of the more general matrix product trace we
consider here.

By defining the matrix Mml = Hml − kBT E−1
ml , the expres-

sion can be written more compactly as

kBT Ḟ = −CkmMml El jMjk, (C2)

where all matrices C, M, E are symmetric and assumed to be
nondefective, E is positive definite, C is semipositive definite
and the definiteness of M (since it is the difference of two
matrices) is not specified. We first diagonalize the matrix E
by the similarity transformation

EPE PE−1 = PE DE PE−1 = PE DE PE ,T , (C3)

where in the last step we used that E is symmetric and PE

is thus an orthogonal matrix. The matrix DE
i′ j′ = δi′ jdE

i′ is
diagonal with diagonal elements dE

i′ . We thus obtain

kBT Ḟ = −CkmMmlPliD
E
i jPn jMnk . (C4)

We next define Nmi = MmlPli and obtain, by using that M is
symmetric,

kBT Ḟ = −CkmNmiD
E
i jNk j . (C5)

We next diagonalize the matrix C by the similarity
transformation

CPCPC−1 = PCDCPC−1 = PCDCPC,T , (C6)

where DC
i′ j′ = δi′ jdC

i′ and obtain

kBT Ḟ = −PC
kl D

C
loPC

moNmiD
E
i jNk j . (C7)

We now define Roi = PC
moNmi, which is equivalent to Rl j =

Nk jPC
kl , and thus obtain

kBT Ḟ = −DC
loRoiD

E
i jRl j . (C8)

Now using that DC and DE are diagonal matrices we obtain

kBT Ḟ = −dC
l Rlid

E
i Rli = −dC

l dE
i R2

li � 0, (C9)

where the inequality follows since the matrix elements of
R are real and all eigenvalues of the matrices C and E are
not negative.

APPENDIX D: CONDITION OF DETAILED BALANCE

Detailed balance is satisfied if the probability for a tran-
sition from a state vector �z at time t to a state vector �z′ at
time t + τ is the same as the probability for a transition from
�z′ at time t to �z at time t + τ , provided that all velocities
are reversed. Detailed balance is satisfied for systems that
are in equilibrium and is standardly used as the definition
of equilibrium [87]. In this section we will demonstrate that
the condition of detailed balance is equivalent to the condition
based on the Boltzmann distribution, provided that the friction

matrix is symmetric and that the stochastic field correlations
satisfy certain symmetry relations. Our calculation is similar
to classical derivations [5,8,99,100].

Using the joint probability distribution, the detailed bal-
ance condition can be written as [5,99,100]

ρ(�z′, t ; �z, 0) = ρ(W �z, t ;W �z′, 0), (D1)

where W is the diagonal matrix that reverses all velocities and
is given by

W =

⎛
⎜⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

. . .

⎞
⎟⎟⎟⎟⎠. (D2)

The detailed-balance condition can be brought into its stan-
dard form by using the conditional probability, resulting in

ρ(�z′, t |�z, 0)ρ◦(�z) = ρ(W �z, t |W �z′, 0)ρ◦(�z′), (D3)

where

ρ◦(�z) = ρ(�z, t → ∞) = N ◦−1 exp
{−ziE

◦−1
i j z j/2

}
(D4)

is the stationary distribution and accordingly the time argu-
ment is omitted. The stationary normalization constant fol-
lows from Eq. (25) as N ◦ =

√
(2π )2N det E◦. The conditional

probability distribution ρ(�z′, t |�z, 0), which is equivalent to
the Green’s function of the stochastic problem defined by
the Langevin or the Fokker-Planck equation, is explicitly
given in Eq. (B7) and is valid for equilibrium as well as for
nonequilibrium systems. With the definition

�z′ = �z + �δ, (D5)

the covariance matrix elements according to the two sides of
the detailed-balance condition (D3) follow explicitly as

〈δoδp〉ls = Eop(t ) + (
δok − e−tA

ok

)(
δpl − e−tA

pl

)
E◦

kl (D6)

and

〈δoδp〉rs = WoiEi j (t )Wj p + (
δok − Wole

−tA
lm Wmk

)
× (

δpn − Wpqe−tA
qr Wrn

)
E◦

kn. (D7)

Since a Gaussian distribution is completely specified by its
covariance matrix, detailed balance is satisfied if 〈δoδp〉ls =
〈δoδp〉rs holds. Similar to previous treatments [5,99,100], we
expand the detailed-balance condition in time. From Eq. (17)
we obtain

Ei j (t ) = 2tCi j − t2(AikCk j + AjkCki ) + O(t3). (D8)

To second order in t we thus obtain

〈δoδp〉ls = 2tCop + t2
(
AokE◦

kl Apl − AokCkp − ApkCko
)

(D9)

and

〈δoδp〉rs = 2tWoiCi jWj p + t2Wol
(
AlmWmnE◦

ntWtsArs

− AlkCkr − ArkCkl
)
Wr p. (D10)

From enforcing the detailed-balance condition term by term
in powers of t , we obtain the two conditions

Cop = WoiCi jWj p (D11)
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and

AokE◦
kl Apl − AokCkp − ApkCko

= Wol
(
AlmWmnE◦

ntWtsArs − AlkCkr − ArkCkl
)
Wr p, (D12)

which are consistent with previous results [5,99,100]. To
evaluate the conditions (D11) and (D12), it is useful to ex-
press all matrices as products of particle matrices and 2 × 2
submatrices as introduced in Sec. IV B. With this, the matrix
W in Eq. (D2) can be written as

Wαβ = δαβ (s − r), (D13)

where s and r are 2 × 2 matrices defined in Eq. (83) and where
greek indices number particles. To test the consequences of
condition (D11), we expand the random correlation matrix in
the complete set of 2 × 2 submatrices according to

Cαβ = sCs
αβ + rCr

αβr + utCut
αβ + usCus

αβ. (D14)

Inserting Eqs. (D13) and (D14) into Eq. (D11), we obtain
by using the matrix product properties Eq. (85) that Cut

αβ =
0 = Cus

αβ , i.e., the random correlation matrix cannot contain
components that couple momenta and positions. We will later
see that this condition is indeed satisfied for a large class of
Hamiltonian models.

To evaluate the consequences of the condition (D12), we
need to specify the symmetry of the Hamiltonian model. As
in Eq. (88), the Hamiltonian matrix shall describe a New-
tonian system where positions and momenta are decoupled
and furthermore momentum contributions are diagonal in the
particles indices,

Hα′ε = shα′ε + rδα′ε/mα′ . (D15)

The friction matrix is copied from Eq. (90) and acts only on
momentum degrees of freedom,

�αε′ = rγαε′/mε′ , (D16)

in the following we explicitly allow the matrix γαε′ also to be
asymmetric. Using the inverse Hamiltonian from Eq. (89) and
Eq. (D16), the Lyapunov-Boltzmann condition (37) yields the
equilibrium random correlation matrix

2Cαε/(kBT ) = (γαε + γεα )r, (D17)

which acts only on momentum degrees of freedom. We con-
clude that the first detailed-balance condition (D11) is auto-
matically satisfied for a Newtonian system that is described
by the Boltzmann distribution and thus satisfies the Lyapunov-
Boltzmann condition (37).

We next probe condition (D12). According to the definition
used in the main text, in equilibrium E◦

kl = E•
kl = kBT H−1

kl
holds and thus the stationary covariance matrix E◦

kl does
not couple momentum and position coordinates, therefore
condition (D12) simplifies to

AokE•
kl A

T
l p − AokCkp − CT

okAT
kp

= Wol
(
AlmE•

msA
T
sr − AlkCkr − CT

lkAT
kr

)
Wr p, (D18)

where the superindex T denotes the transpose of the matrix
including the 2 × 2 submatrices. Equation (D18) holds if
the left side is a matrix that does not couple momenta and

positions. From the expression for A, Eq. (87), and Uαγ =
uδαγ we obtain

Aα′ε′ = −ushα′ε′ − urδα′ε′/mα′ + rγα′ε′/mε′ . (D19)

Replacing E•
kl by the explicit result for H−1

kl from Eq. (89), and
using the results for C and A from Eqs. (D17) and (D19) we
finally obtain for the left-hand side of Eq. (D18)

rhα′β ′ + sδα′β ′m−1
β ′

+ r[(γεα′ − γα′ε )γβ ′ε + (γεβ ′ − γβ ′ε )γα′ε]m−1
ε /2

+ ru(γα′β ′ − γβ ′α′ )m−1
β ′ /2 + ur(γα′β ′ − γβ ′α′ )m−1

α′ /2.

(D20)

For an asymmetric friction matrix γαβ , this expression con-
tains terms that couple positions and momenta, these are
the two terms proportional to ru and ur, and therefore the
second detailed-balance condition (D12) is not satisfied, even
if the system obeys the Boltzmann distribution. If the friction
matrix γαβ is symmetric, the terms proportional to ru and ur
disappear and the detailed-balance condition is satisfied. We
conclude that for a symmetric friction matrix the condition of
detailed balance and the definition of equilibrium we use in
the main text, based on the Boltzmann distribution, are equiv-
alent. Since none of the effects we study in this paper depend
on the presence of asymmetries in the friction matrix, it is
permissible and convenient to use the Boltzmann definition
for equilibrium, which we primarily do since it is much easier
to implement. The presence of an asymmetric friction matrix
means that the principle of equal actio and reactio is broken on
the level of the Langevin equation, this therefore constitutes a
distinct NEQ scenario.

APPENDIX E: CONDITION OF VANISHING PROBABILITY
CURRENT FOR OVERDAMPED PARTICLE DYNAMICS

In Sec. III D we show that the probability current is gen-
erally nonzero for underdamped particles. Here we consider
overdamped particle motion and show that the probability
current vanishes only for a symmetric friction matrix. To
proceed, we rewrite the equation of motion expressed in terms
of particle coordinates yα (t ) = (xα (t ), pα (t ))T , Eq. (86), as a
second-order differential equation as

mα′ ẍα′ (t ) = −γα′β ẋβ (t ) − hα′βxβ (t ) + φα′βFβ (t ), (E1)

where the Hamiltonian matrix hα′β only acts on positions and
the friction matrix γα′β only acts on momenta. φα′β is the N ×
N random coupling strength matrix. Setting all masses mα to
zero, we obtain

ẋβ (t ) = −γ −1
αβ hβγ xγ (t ) + γ −1

αβ φβγ Fγ (t ), (E2)

which we can rewrite in a form similar to Eq. (13) as

ẋα (t ) = −Aod
αβxβ (t ) + �od

αβFβ (t ), (E3)

where the overdamped versions of A and � are N × N
matrices given by Aod

αγ = γ −1
αβ hβγ and �od

αγ = γ −1
αβ φβγ . The

overdamped version of Eq. (18) is Cod
kl = �od

km�od
lm. The over-

damped version of the Lyapunov-Boltzmann Eq. (37) turns
out to be

2Cod
αβ/(kBT ) = γ −1

αβ + γ −1
βα (E4)
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and constitutes the relation between the random strength
matrix and the friction matrix for overdamped systems. The
overdamped version of the condition of vanishing probability
current follows from Eq. (60) as

Cod
αβ/(kBT ) = γ −1

αβ (E5)

and, since Cod
αβ is symmetric by construction, can be satisfied

only if the friction matrix γαβ is symmetric. Thus, if γαβ

is not symmetric, the probability current is nonzero even if
the distribution is given by the Boltzmann distribution. We
conclude that the condition of vanishing probability current
and the equilibrium definition we use in this paper, namely,
that the stationary distribution is given by the Boltzmann dis-
tribution [see Eqs. (22) and (31)] are not equivalent even in the
overdamped limit. In fact, the condition of vanishing proba-
bility current is more restrictive since it precludes asymmetric
friction matrices, which is not necessary to obtain Boltzmann
distributions. Thus, there is a class of overdamped particle
models that exhibit stationary Boltzmann distributions yet that
exhibit nonzero probability currents in the stationary state.

APPENDIX F: FLUCTUATION-DISSIPATION THEOREM

Here we demonstrate for a specific two-particle model with
an asymmetric friction matrix, that the fluctuation-dissipation
theorem can be satisfied even when the system, as demon-
strated in Appendix D, does not obey detailed balance. To
proceed, we consider a system of two massive particles that
are coupled by a general friction matrix. Following the nota-
tion of Eq. (E1) we write

m1 ẍ1(t ) = −γ1ẋ1(t ) − γ12ẋ2(t ) + φ1F1(t ) + φ12F2(t ), (F1)

m2 ẍ2(t ) = −γ2ẋ2(t ) − γ21ẋ1(t ) + φ2F2(t ) + φ21F1(t ). (F2)

Note that for ease of calculation we omit any positional
couplings between the particles. Similar to the active-particle
model in Sec. V C, where the two particle positions are
coupled, the Langevin equation for the second particle can be
solved and gives

ẋ2(t ) =
∫ t

−∞
dt ′e−(t−t ′ )γ2/m2

[
− γ21

m2
ẋ1(t ′)

+ φ2

m2
F2(t ′) + φ21

m2
F1(t ′)

]
. (F3)

Inserting this solution into the Langevin equation for the first
particle, we obtain the generalized Langevin equation

m1ẍ1(t ) = −
∫ ∞

−∞
dt ′�(t − t ′)ẋ1(t ′) + FR(t ). (F4)

The memory function that appears in Eq. (F4) is given by

�(t ) = θ (t )

[
2γ1δ(t ) − γ12γ21

m2
e−tγ2/m2

]
, (F5)

where θ (t ) denotes the Theta function with the properties
θ (t ) = 1 for t > 0 and θ (t ) = 0 for t < 0, which makes the
memory function single-sided. The noise FR(t ) in Eq. (F4) is

given by

FR(t ) = φ1F1(t ) + φ12F2(t ) −
∫ t

−∞
dt ′e−(t−t ′ )γ2/m2

×
[
γ12φ2

m2
F2(t ′) + γ12φ21

m2
F1(t ′)

]
. (F6)

The autocorrelation function of the random noise CFF(t ) =
〈FR(0)FR(t )〉 follows as

CFF(t ) = 2
(
φ2

1 + φ2
12

)
δ(t ) − [

2γ12(φ2φ12 + φ1φ21)

− γ 2
12

(
φ2

2 + φ2
21

)
/γ2

]
e−|t |γ2/m2 . (F7)

Defining the Langevin equation in analogy to Eq. (86) in
terms of the particle momenta pα′ (t ) = mα′vα′ (t ) as ṗα (t ) =
−Aαβ pβ (t ) + φαβFβ (t ) where Aαβ ′ = γαβ ′/mβ ′ and Hαβ ′ =
δαβ ′/mβ ′ , we obtain from Eq. (36) the Boltzmann-Lyapunov
equation

2Cαβ = 2φkmφlm = kBT (γαβ + γβα ), (F8)

or, explicitly,

2

(
φ2

1 + φ2
12 φ1φ21 + φ2φ12

φ1φ21 + φ2φ12 φ2
2 + φ2

21

)

= kBT

(
2γ1 γ12 + γ21

γ12 + γ21 2γ2

)
. (F9)

Provided Eq. (F9) holds, it is easy to see that Eqs. (F5) and
Eq. (F7) satisfy the fluctuation-dissipation theorem [86]

CFF(t ) = kBT �(|t |), (F10)

even if the friction matrix γαβ is asymmetric. In contrast
and as shown in Appendix D, the more restrictive detailed-
balance condition is satisfied only if the friction matrix γαβ

is symmetric. This suggests that the definition of equilibrium
we use in this paper, namely, that the stationary distribution
corresponds to the Boltzmann distribution, coincides with
the fluctuation-dissipation theorem even for asymmetric γαβ .
On the other hand, the detailed-balance condition is more
restrictive and can be satisfied only if the friction matrix is
symmetric.

APPENDIX G: EQUIVALENCE OF FREE ENTROPY AND
KULLBACK-LEIBLER ENTROPY

The multidimensional expression for the Kullback-Leibler
entropy reads [6,78]

SKL = −
∫

d�zρ(�z) ln

[
ρ◦(�z)

ρ(�z)

]
, (G1)

where the Gaussian probability distribution ρ(�z) and the
Gaussian stationary probability distribution ρ◦(�z) are given by

ρ(�z) = N−1 exp
(− ziE

−1
i j z j/2

)
, (G2)

ρ◦(�z) = N ◦−1 exp
(− ziE

◦−1
i j z j/2

)
(G3)

with the normalization constants N =
√

(2π )2N det E and
N ◦ =

√
(2π )2N det E◦. Note that we dropped all time
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dependencies for simplicity. Using the inequality

− ln

[
ρ◦(�z)

ρ(�z)

]
� 1 − ρ◦(�z)

ρ(�z)
(G4)

and the fact that ρ(�z) and ρ◦(�z) are normalized, it immediately
follows that

SKL � 0 (G5)

and that SKL = 0 for ρ(�z) = ρ◦(�z). A short calculation
shows that also δSKL/δρ(�z) = 0 for ρ(�z) = ρ◦(�z), thus, the
Kullback-Leibler is minimal for ρ(�z) = ρ◦(�z). Performing the
Gaussian integrals in Eq. (G1), one immediately obtains

SKL = E◦−1
i j Ei j/2 − N − ln[(2π )2N det E ]/2

+ ln[(2π )2N det E◦]/2. (G6)

Comparison of the Kullback-Leibler entropy (G6) with the
nonequilibrium free entropy expression (70) shows that the
two expressions are identical except the sign and terms that
do not depend on covariance matrix elements Ei j .

APPENDIX H: NONSTATIONARY ENTROPY
PRODUCTION OF HEAT RESERVOIRS

We start from the expression for the time-dependent en-
tropy production of all reservoirs [Eq. (96)], which is based
on the result for the heat fluxes between the reservoirs and
the system in Eq. (95). We recall that the calculation of
the reservoir heat fluxes is based on the general Newtonian
Hamiltonian as defined by Eq. (88) with diagonal momentum
friction as defined by Eq. (90) and the NEQ model defined by
the diagonal noise correlation matrix (93).

Using the result for the time derivative of the covariance
matrix (55) together with the explicit expression for the A
matrix (87) and the expansion of the covariance matrix E
(99), we obtain for the time derivative of the squared particle
momenta

d
〈
p2

α′ (t )
〉

dt
= 2Cα′α′ − 2γα′

mα′

〈
p2

α′ (t )
〉− 2hα′ε〈pα′xε〉. (H1)

Inserting this into the total reservoir entropy production (96)
we obtain

Ṡres(t )

kB
= βαγα

mα

[〈
p2

α (t )
〉

mα

− 1

βα

]
, (H2)

where the nonprimed index α is summed over. Clearly, in
an equilibrium stationary state, where the kinetic energy of
each particle obeys 〈p2

α (t )〉/(mα ) = 1/βα and βα = β, the
entropy production vanishes. In a stationary state we can
replace 〈p2

α (t )〉 by the expression (103) and thereby recover
Eq. (98), so our calculation thus far is consistent. We will
now test whether the stationary NEQ distribution constitutes
an extremum of the total entropy production, which according

to Eq. (139) is given by

Ṡtot (t ) = Ṡ (t ) + Ṡres(t ), (H3)

where Ṡ (t ) denotes the Shannon entropy production of the
system distribution (46) and Ṡres(t ) is given by Eq. (H2).
As an explicit calculation shows, the derivative of the reser-
voir entropy production (H2) with respect to the covariance
matrix gives

∂Ṡres(t )

∂Ei j
= �ikC

−1
km �m j, (H4)

which using Eqs. (90) and (93) is a diagonal matrix with mo-
mentum entries βα′γα′/m2

α′ . For the system entropy production
we obtain from Eq. (46)

∂Ṡ (t )

∂Ei j
= −E−1

ik (t )CkmE−1
m j (t ) (H5)

and thus for the total entropy

∂Ṡtot (t )

∂Ei j
= �ikC

−1
km �m j − E−1

ik (t )CkmE−1
m j (t ). (H6)

Multiplying by Cli we obtain

Cli
∂Ṡtot (t )

∂Ei j
= �lk�k j − CliE

−1
ik (t )C−1

km E−1
m j (t ), (H7)

which vanishes when

�lk�k j = CliE
−1
ik (t )C−1

km E−1
m j (t ) (H8)

holds. Taking the square root and multiplying by E we obtain

�lkEki(t ) = Cli (H9)

as the equation which determines the extremum of the total
entropy production. It turns out that that Eq. (H9) is satisfied
by the equilibrium stationary distribution E•

ki, therefore for an
equilibrium system the total entropy production as defined in
Eq. (H3) is extremal in the equilibrium state.

It is easy to verify that for the stationary NEQ distribution
E◦

ki with nonzero matrix elements 〈pi p j〉◦ and 〈xi p j〉◦ for
i �= j, and � and C given by Eqs. (90) and (93), Eq. (H9)
is not satisfied. This implies that the total entropy production
(H3), which is the sum of the nonstationary reservoir entropy
production (96) or (H2) (calculated from the heat fluxes
between reservoirs and the system) and the system distribution
entropy production (46), does not yield the exactly calculated
stationary distribution E◦

ki at its extremum and thus differs
from the total entropy production constructed from the sum
of the free entropy and the stationary reservoir entropy pro-
duction according to Eq. (139).

We conclude that nonstationary entropy contributions that
presumably stem from internal reservoir degrees of freedom
render the expressions (96) and (H2) incomplete. These inter-
nal reservoir degrees could be included by using microscopic
models for the heat reservoirs.
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