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Cell-cell communication is often achieved by secreted signaling molecules that bind membrane-bound
receptors. A common class of such receptors are G-protein coupled receptors, where extracellular binding
induces changes on the membrane affinity near the receptor for certain cytosolic proteins, effectively altering
their chemical potential. We analyze the minimum-dissipation schedules for dynamically changing chemical
potential to induce steady-state changes in protein copy-number distributions, and illustrate with analytic
solutions for linear chemical reaction networks. Protocols that change chemical potential on biologically
relevant timescales are experimentally accessible using optogenetic manipulations, and our framework provides
nontrivial predictions about functional dynamical cell-cell interactions.
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I. INTRODUCTION

Biochemical reaction networks play a central role in cellu-
lar response to external stimuli (such as cell-cell signaling),
converting intercellular signals into a driven chemical re-
sponse [1]. A prominent communication channel for chemical
signals across the cell membrane is the G-protein coupled re-
ceptors (GPCRs). An agonist ligand binds to the extracellular
face of a GPCR and allosterically induces a conformational
change on its intracellular face. This conformational change
stimulates exchange of GDP for GTP on the α subunit of
the intracellularly bound heterotrimeric G-protein, thereby
reducing the binding affinity between the G-protein and the re-
ceptor. The G-protein unbinds from the GPCR and dissociates
into separate α and βγ subunits, which respectively diffuse
away from the GPCR in the cytosol and in the membrane
[2]. The delocalization of the α and βγ subunits from the
GPCR increases their concentration in the cytosol and at
other membrane locations, respectively, which elicits a series
of reactions ultimately leading to the downstream cellular
response [3].

In mammals, GPCRs mediate many physiological
responses—to changes in concentrations of peptides,
hormones, lipids, neurotransmitters, ions, odorants, tastants,
and light. Since ∼1000 human genes code for GPCRs [4,5],
we predict that a more energetically efficient signaling
process through a GPCR (all else being equal) would
provide a selective advantage, such that evolved signaling
pathways could be expected to exhibit impressive efficiency.
While energetic efficiency is surely only one of many
criteria that influence natural selection, presumably greater
efficiency provides an advantage when holding other criteria
constant [6].

*dsivak@sfu.ca

One ultimate effect of agonist ligand binding extracellu-
larly to the GPCR is to decrease the integral membrane protein
GPCR’s intracellular binding affinity for the G-protein, and
thus increase the concentration of G-protein α subunit in the
cytosol. Thus the GPCR signaling process can be modeled
as changes in the chemical potential difference between un-
bound G-protein and G-protein bound at the cell membrane
(from hereon simply referred to as the chemical potential),
ultimately driving changes in G-protein concentration in the
cytosol. The chemical potential is externally controlled by
modulating the number of activated GPCRs through, for
example, changing extracellular concentrations of agonist
ligand.

For given desired equilibrium endpoints of chemical poten-
tial, any protocol (schedule of changing chemical potential)
that proceeds quasistatically (at negligible speed) requires the
same input energy in the form of chemical potential work, an
amount equal to the free energy change between the equilib-
rium ensembles at the two endpoint chemical potentials. For
protocols that proceed at a finite velocity, different protocols
differ in their energetic costs, and hence in the required
number of signaling molecules the signaling cell must secrete.

Here we develop theory describing how a cell can achieve
a given dynamic signaling outcome at minimal energetic cost.
This can be formalized in the language of a previously devel-
oped theoretical framework in nonequilibrium statistical me-
chanics, that of finding a protocol that minimizes the excess
work associated with finite-time changes in a control param-
eter [7]. Starting from a theoretical framework developed in
Ref. [8] to approximate the thermodynamic cost (excess work)
of rapid changes in an arbitrary control parameter, we extend
the formalism to address changes in chemical potential, and
derive protocols that minimize the required work.

We find that near equilibrium, the excess work is deter-
mined by the autocovariance of the protein copy number.
For the special case of linear-order chemical reactions, we
derive analytic forms of the generalized friction tensor, and the
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required work for both designed and naive (constant-velocity)
protocols. We illustrate these results in simple chemical reac-
tion schemes: an open system exchanging molecules with a
molecular reservoir, and a closed system with fixed total copy
number.

II. THEORETICAL REVIEW

We first present a review of minimum-dissipation nonequi-
librium control in the linear-response framework. The average
excess power (above the average power if the system were
equilibrated throughout the driving protocol) exerted by an
external agent changing control parameters λ that are coupled
to the system in the canonical ensemble is [8]

dtWex = −〈δ f j〉�dtλ j . (1)

Here dt denotes the time derivative, β ≡ (kBT )−1 is inverse
temperature, f j ≡ −∂λ jU is the force conjugate to the jth
control parameter, and δ f j (t ) ≡ f j (t ) − 〈 f j〉λ are the equi-
librium fluctuations. 〈· · · 〉λ indicates an equilibrium average
for fixed λ, and 〈· · · 〉� a nonequilibrium average during
the control parameter protocol �. Throughout, we adopt the
Einstein summation convention of implied summation over all
repeated indices. Applying linear-response theory [8] gives a
near-equilibrium expression,

dtWex(t ) ≈ dtλ j ζ j
[λ(t )] dtλ
, (2)

in terms of the generalized friction tensor

ζ j
(λ) ≡ β

∫ ∞

0
dt 〈δ f j (t )δ f
(0)〉λ, (3)

with 〈δ f j (t )δ f
(0)〉λ the force covariance.
The generalized friction tensor ζ j
 is the Hadamard product

β〈δ f jδ f
〉λ ◦ τ j
 of the conjugate force covariance (the force
fluctuations) and the integral relaxation time

τ j
 ≡
∫ ∞

0
dt

〈δ f j (t )δ f
(0)〉λ
〈δ f jδ f
〉λ , (4)

the characteristic time it takes for these fluctuations to die out.
The generalized friction tensor reflects the increased en-

ergy cost associated with rapid driving through control param-
eter space. Integrating the excess power (2) over the control
parameter protocol gives the mean excess work,

Wex =
∫ �t

0
dt dtWex(t ), (5)

above and beyond the quasistatic work.
Under the linear-response approximation, the excess work

is minimized for a “designed” protocol with constant excess
power [8]. For a single control parameter, this amounts to
proceeding with a velocity dtλ

des ∝ ζ (λ)−1/2, which when
normalized to complete the protocol in a fixed allotted time
�t , gives

dtλ
des =

∫ λf

λi
dλ′√ζ (λ′)√
ζ (λ)�t

, (6)

for initial and final control parameters λi and λf , respectively.
Thus for a fixed protocol time, work is minimized by

driving the system (changing the control parameter) slowly in

regions of high friction, and quickly in areas of low friction.
The ratio of excess works during the naive and designed
protocols is [9]

W naive
ex

W des
ex

= �λ
∫ λf

λi
ζ (λ) dλ[ ∫ λf

λi

√
ζ (λ) dλ

]2 . (7)

III. DRIVING CHEMICAL POTENTIAL

A system of n different chemical species at thermal
and chemical equilibrium with a single heat reservoir and
multiple particle reservoirs at temperature T and chemical
potentials μ j , respectively, is described by the grand canonical
ensemble (GCE) with free energy (grand potential)


G ≡ U − T S − μ jNj, (8)

for system energy U (as in Sec. II), entropy S, and copy num-
ber Nj of the jth chemical species. To extend Eq. (1) to the
GCE we show in Appendix A that the appropriate conjugate
force is f j = −∂λ j 
G. In this study, the control parameters λ j

are chemical potentials μ j , and hence the conjugate forces are
the copy numbers, f j = −∂μ j 
G = Nj .

This produces a friction tensor and excess work

ζ j
(μ) = β

∫ ∞

0
dt〈δNj (t )δN
(0)〉μ (9a)

= β〈δNjδN
〉μ ◦ τ j
(μ), (9b)

Wex = β

∫ �t

0
dt dtμ j〈δNjδN
〉μ ◦ τ j
(μ) dtμ
. (9c)

The total work during a chemical-potential protocol is the
equilibrium free energy change, plus an additional contribu-
tion from the excess work. This extra cost is proportional
to the relaxation time τ and equilibrium copy-number co-
variance 〈δNjδN
〉μ, so rapidly changing the chemical po-
tential incurs greater energy cost (due to system resistance)
in reaction systems subject to large and long-persisting fluc-
tuations in protein copy number. Such continuous changes
of chemical potential are plausible in natural settings: the
chemical potential is a function of the ligand-binding state
of the collection of receptors, so for more than a few re-
ceptors, the chemical potential changes fairly smoothly even
upon rather sudden extracellular concentration changes, as the
receptors progressively bind ligand (or progressively unbind
upon ligand depletion).

IV. LINEAR MARKOV CHEMICAL
REACTION NETWORKS

The dependence of the friction tensor ζ on control param-
eter μ, and thus the solution for the designed protocol, is a
function of the topology and kinetics of the chemical reaction
network [10–12]. Here we model the stochastic behavior of
chemical reaction systems assuming Markovian dynamics,
where the future dynamics depends exclusively on the present
state.

In general, the autocovariance for nonlinear chemical reac-
tion networks cannot be solved analytically. A conceptually
simple alternative is to numerically calculate the autoco-
variance [13] using a stochastic simulation of the chemical
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reaction dynamics, such as the Gillespie algorithm [14];
however, direct simulations can be computationally intensive.
An alternate approach is to find approximate solutions us-
ing moment-closure techniques [12]. Briefly, the chemical
master equation [15,16] leads to coupled ordinary differen-
tial equations describing evolution of the moments of the
probability distribution of chemical counts. Approximations,
that permit expression of higher-order moments in terms of
lower-order moments, lead to the dynamics of the entire
probability distribution being described by a small number
of moment-evolution equations, which can be solved to find
the equilibrium autocovariance. [12] provides more detailed
discussion.

For linear-order chemical reactions, the autocovariance—
and therefore the friction tensor—can be solved exactly
[10,11]. A linear-order chemical reaction system with
multiple chemical species (and fixed chemical potential)
satisfies [10]

dt Nj (t ) = −Kj
N
(t ) + ks
j, (10)

where K ≡ Kd − Kcon, Kd is the diagonal matrix of degrada-
tion rates, Kcon is the matrix of conversion reaction rates, and
ks are the production rates from a constant source. An overbar
indicates an (in general out-of-equilibrium) average Nj (t ) =∫

dNj Nj p(Nj, t |Nj (t0), t0), with p(Nj, t |Nj (t0), t0) the condi-
tional probability of finding Nj molecules at time t , subject to
the initial condition Nj (t0) at time t0. For notational simplicity,
in this section we suppress explicit dependence on μ.

Equation (10) has the general solution

Nj (t ) = [e−Kt ] j
N
(0)

+ (δ jm − [e−Kt ] jm)
∫ t

0
dt ′[e−Kt ′

]m
ks

. (11)

Assuming K is diagonalizable, then e−Kt = Ve−DtV −1, where
D is the diagonal eigenvalue matrix, and V is the eigenvector
matrix, whose rows are the corresponding eigenvectors of K .
If K is not diagonalizable, then other standard methods of
computing the matrix exponential can be employed [17,18].

For a linear Markov reaction network, the autocovariance
obeys a similar time evolution equation as the mean [15]:

dt 〈δNj (t )δN
(0)〉 = −Kjm〈δNm(t )δN
(0)〉. (12)

Assuming the system is initially at equilibrium, this has the
solution

〈δNj (t )δN
(0)〉 = [e−Kt ] jm〈δNmδN
〉 (13)

= Vjne−λnt [V −1]nm〈δNmδN
〉. (14)

This produces a friction tensor

ζ j
 = β

∫ ∞

0
dt Vjne−λnt [V −1]nm〈δNmδN
〉 (15)

= βVjnλ
−1
n [V −1]nm〈δNmδN
〉. (16)

For the case of a zero eigenvalue, λn = 0, and λ−1
n is un-

defined, seemingly indicating that the integral in (15) does
not converge; however, an ergodic stationary process has an
autocovariance that does not contain any time-independent

elements [15], thus all λn = 0 components cancel in the
product Vjne−λnt [V −1]nm〈δNmδN
〉, and the integral converges.

A conversion network allows only conversion, degradation,
and source reactions [11]. It is open when it has at least one
degradation or source reaction. The equilibrium distribution
[reached in the t → ∞ limit of (11)] of any species in an open
linear conversion network is a Poisson distribution, with mean
and covariance [11]〈

δN2
m

〉o = 〈Nm〉o = Vmnλ
−1
n [V −1]n jk

s
j, (17)

and 〈δNmδN
〉o = 0 if m 
= 
.
The friction tensor for an open system can therefore be

fully determined from the equilibrium mean and reaction
rates as

ζ o
j
 = βVjnλ

−1
n [V −1]nm〈Nm〉oδm
, (18)

where δm
 is the Kronecker delta, equal to 1 if m = 
, and 0
otherwise. The relaxation time is τ o

j
 = Vjnλ
−1
n [V −1]n
, which

is proportional to the mean copy number (17). Hence an
increase in mean copy number has the compound effect of
increasing both the size and lifetime of fluctuations. There-
fore, the designed chemical-potential protocol drives slowly
in areas of large mean copy number and quickly in areas of
low mean copy number.

For a linear closed conversion network (no sources or
degradation), the equilibrium distribution is not Poisson [11],
but the mean, variance, and covariance can still be solved
analytically using standard linear algebra techniques [10,11].
The equilibrium covariance is

〈δNmδN
〉c =
{〈Nm〉c

(
1 − 〈N
〉c

Ntot

)
, 
 = m

−〈Nm〉c〈N
〉c

Ntot
, 
 
= m

, (19)

where Ntot = ∑
j Nj is the total number of chemical

molecules. For chemical reaction systems with a strongly
connected reaction graph (i.e., any species can be reached
from any other via a set of allowed reactions), K has exactly
one zero eigenvalue, and the equilibrium probability distribu-
tion across all species is multinomial [11], π j = v0

j /
∑


 v0

 ,

where v0
j is the jth component of the eigenvector with zero

eigenvalue. The multinomial mean copy number of species j
is simply 〈Nj〉 = Ntotπ j , producing covariance

〈δNmδN
〉c =
{

Ntotπm(1 − π
), 
 = m
−Ntotπmπ
, 
 
= m

. (20)

Substituting the covariance (19) into the friction (16) gives

ζ c
j
 =βVjnλ

−1
n [V −1]nm〈Nm〉c

(
δm
 − 〈N
〉c

Ntot

)
. (21)

Unlike for the open system, the closed covariance (19) does
not monotonically increase with mean copy number, but rather
is largest when the two species have equal mean copy numbers
and is smallest when one species dominates. If m = 
, then
the covariance reduces to the variance, which is maximized
at 〈Nm〉c = Ntot/2 and minimized at 〈Nm〉c = Ntot or 〈Nm〉c =
0. When m 
= 
, 〈δNmδN
〉c = −〈Nm〉c〈N
〉c/Ntot , which is
always negative and reaches its maximum magnitude when
〈Nm〉c = 〈N
〉c = Ntot/2.

For small mean copy number relative to the total,
〈N
〉c � Ntot , the friction of a closed system (21) reduces to
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FIG. 1. Two-state chemical reaction network representing bound
and unbound G-proteins. Proteins bind at rate k1 = k and unbind at
rate k−1 = ke−μ.

that of an open system (18), since the second term in paren-
theses in (21) becomes negligible. The large total number of
molecules acts as a constant source, or chemical bath, making
the closed and open systems equivalent.

In order to interpret the form of the closed-system re-
laxation time τ c

j
 = Vjn λ−1
n [V −1]n
, we recognize that the

eigenvalues of K in a closed system have non-negative real
components [11]. Furthermore, if the system satisfies detailed
balance, then the eigenvalues of K are real [19,20]. Thus τ j
 is
non-negative. As we have seen, all off-diagonal components
of the covariance are negative and all diagonal components
are positive, therefore the same is true of the friction tensor,
the product of covariance and relaxation time. Although the
friction tensor can have negative specific entries, it is positive
semidefinite since it is an auto-covariance matrix [8].

The friction tensors (15), (18), and (21) imply analytic
solutions for the designed protocol of any linear Markov
chemical reaction. In the following sections we examine
specific reaction networks to gain further insight into designed
protocols.

V. CLOSED SYSTEM

As a simple tractable model, we examine a two-state
chemical reaction with respective binding and unbinding rates
k1 and k−1 (Fig. 1), nominally meant to represent G-proteins
binding to the GPCR at the cell membrane.

In this model, the signal is the chemical potential differ-
ence between the unbound and bound states, which regulates
the number of bound G-proteins. In the unbound state, the
G-proteins are active, leading to downstream reactions result-
ing in the cellular response. The chemical potential is the
externally controlled signal, for example, as modulated by
the number of expressed agonist molecules. In this model,
the chemical potential regulates the number of unbound (ac-
tive) G-proteins and hence the cellular response.

It is natural to model the membrane binding rate k1 = k
as depending on the dynamic encounter rate and not on
the strength of the chemical potential, and the membrane
unbinding rate k−1 as depending on how tightly the protein
is bound, and hence on the chemical potential difference μ

FIG. 2. Generalized friction coefficient ζ (in units of seconds,
since kBT is set to unity) as a function of chemical potential μ,
for various binding rates k (different colors). The horizontal axis
is shifted by ln 2 so that the friction of the closed system is max-
imized at 0. For simplicity, the total protein copy number Ntot is
normalized to 1.

between unbound and bound states, as

k−1 = ke−μ. (22)

μ = 0 produces equal binding and unbinding rates, k1 = k−1.
(This specific dependence of rates on chemical potential is
consistent with [21,22] for a splitting factor [23,24] of 0,
although our framework could be applied to any splitting
factor.) For simplicity, here and in subsequent sections, ener-
gies are written in units of kBT (equivalent to setting β = 1).

We additionally assume a fixed total number of molecules
Ntot = NUB + NB, with variable numbers of unbound (NUB)
and bound (NB) molecules. The reaction-rate matrix is

K =
[

ke−μ −k
−ke−μ k

]
. (23)

In Sec. IV we derived simple expressions for the autoco-
variance (13), equilibrium covariance (20), and friction (21).
With one chemical potential, there is only the j = 
 = 1
component, giving equilibrium variance

〈(δNB)2〉c
μ = Ntot

e−μ

(1 + e−μ)2
, (24)

relaxation time

τ (μ) = 1

k(1 + e−μ)
, (25)

and friction

ζ (μ) = Ntot
e−μ

k(1 + e−μ)3
. (26)

The variance is maximized at μ = 0. For eμ � 1, the variance
decays exponentially with μ as 〈(δNB)2〉c

μ ≈ Ntote−μ. Figure 2
plots the dependence of friction coefficient on μ, for several
binding rates k.

Physically, as μ increases, molecules are held more
tightly to the membrane (unbinding rate decreases), and
thus copy-number fluctuations relax more slowly. The relax-
ation time is sigmoidal in μ, with τ (μ → −∞) → 0 and
τ (μ → ∞) → 1/k. The first limit corresponds to molecules
bound very loosely to the membrane, such that the unbinding
rate is much larger than the binding rate, with fluctuations
decaying rapidly. The latter limit corresponds to tightly bound
molecules such that the binding rate is much larger than
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unbinding, causing fluctuations to decay slowly and most
molecules to be bound: the relaxation time is maximized
when all molecules are bound. Ultimately, this asymmetry in
relaxation time is caused by the asymmetric dependence of
the forward and reverse reaction rates on chemical potential:
k1 is independent of μ and k−1 ∝ e−μ.

The friction is minimized (and vanishes) when either all
molecules are bound or all are unbound. The friction peaks at
μ = ln 2, when 2/3 of all molecules are bound, 〈NB〉c = 2

3 Ntot.
Physically, the resistance increases when driving away from
either all-bound or all-unbound: as the mean copy number of
the less common species increases, the resistance to changes
in chemical potential increases. This can be rationalized be-
cause the variance is maximized at μ = 0, when each state
(bound and unbound) contains on average half the total num-
ber of molecules, whereas the relaxation time is maximized
when all the molecules are bound, thus shifting the maximal
friction to occur past an even split in each state. At chemical
potentials well below this maximum (for eμ � 1), the fric-
tion increases as e2μ, whereas for large chemical potentials
(eμ � 1), the friction decays exponentially with chemical
potential, ζ → e−μ. Figure 2 shows these differing slopes.

The designed protocol drives slowly in control parameter
regimes of high friction, which, due to the exponential depen-
dence of friction on chemical potential (26), produces large
variations in chemical potential velocity and potentially large
energetic saving. This behavior is illustrated in Fig. 2.

With a single control parameter, the designed protocol is
easily solved using (6):

dtμ
des|μ =2

√
1 + eμ(1 + e−μ)

�t

(
1√

1 + eμi
− 1√

1 + eμf

)
.

(27)

The velocity of the designed protocol reaches a minimum
when the friction is at a maximum, μ = ln 2. Appendix C
derives the equivalent designed mean-copy-number protocol,
which increases as dt 〈NB〉c des ∝ √〈NUB〉c. Appendix D com-
pares the initial and final designed protocol velocities, and
demonstrates that for small changes in chemical potential, the
designed protocol reduces to the naive.

The designed protocol produces an excess work

W c des
ex =4Ntot

k�t

(
1√

1 + eμi
− 1√

1 + eμf

)2

. (28)

For significant changes in chemical potential, either in-
creases (eμf � eμi and eμf � 1) or decreases (eμf � eμi and
eμf � 1), the designed excess work becomes independent
of μf .

The naive protocol changes chemical potential at constant
velocity dtμ

naive = �μ/�t and produces excess work (5)

W c naive
ex = Ntot

�μ

�t

1

2k

[
1 + 2eμi

(1 + eμi )2
− 1 + 2eμf

(1 + eμf )2

]
. (29)

A linear protocol represents the conceptually simplest one for
comparison and a natural choice in the absence of any other
information about how to proceed. For significant changes in
chemical potential, the naive excess work (29) scales linearly
with �μ ≡ μf − μi. This is in contrast to the excess work

FIG. 3. The ratio of naive to designed excess works as a function
of the final chemical potential μf − ln 2, for varying shifted initial
chemical potential μi − ln 2 (different colors). Horizontal axis is
shifted to μf − ln 2, so that the protocol crosses the maximal fric-
tion at 0.

from the designed protocol (28), which becomes independent
of μf in this limit.

We quantify the thermodynamic benefit of designed driv-
ing by the ratio of the excess works incurred during the naive
and designed protocols (7):

W c naive
ex

W c des
ex

= �μ

(1+2eμi )(1+eμf )
1+eμi

− (1+2eμf )(1+eμi )
1+eμf

8(
√

1 + eμi − √
1 + eμf )2

. (30)

The ratio does not depend on the bare binding and unbinding
rate k. For significant chemical potential changes, the excess-
work ratio scales linearly with �μ. Appendix E shows that for
small changes �μ in chemical potential, both the naive excess
work and the excess-work ratio increase quadratically in �μ.

The only parameters in (30) are the initial and final chemi-
cal potentials μi and μf . Figure 3 demonstrates that the excess
work ratio is nonmonotonic in μf , empirically peaking near
the local maximum in the friction; however, after decreasing
for a short distance, the ratio begins to increase linearly. This
transition can occur for either positive or negative chemical
potential distances, depending on which side of the maximum
friction the protocol starts. Such a feature is not found for a
protocol initially at the peak friction. The asymmetry in excess
work ratio on different sides of the maximal friction is caused
by the friction scaling as e2μ for chemical potentials below
the peak and as e−μ for chemical potentials above the peak
(Fig. 2), itself a result of the asymmetric chemical potential
dependence of the forward and reverse reaction rates. Outside
of this region, more significant chemical potential changes
still produce greater benefits from the designed protocol
(quadratic for small �μ and linear for large �μ).

VI. OPEN SYSTEM

When the unbinding rate is much larger than the bind-
ing rate (for eμ � 1), and hence 〈NUB〉c � 〈NB〉c, NUB is
effectively constant over copy-number fluctuations, and thus
the system is effectively open, with K = −Kd = −k−1 and
ks = Ntotk. This limit produces particularly simple forms for
the variance (24)

〈(δNB)2〉o
μ = Ntote

μ, (31)

relaxation time (25)

τ (μ) = eμ

k
, (32)
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and friction (26)

ζ (μ) = Ntot
e2μ

k
. (33)

Both the copy-number variance (31) and relaxation time
(32) increase exponentially with μ. The relaxation time only
depends on the unbinding rate, the characteristic time for a
membrane-bound molecule to unbind, and since the (Pois-
sonian) copy-number variance equals the mean, larger μ

decreases the unbinding rate, increasing copy-number mean
and thus decreasing the relaxation time and variance.

Combining (6) with (33) leads to the designed protocol
velocity,

dtμ
des|μ = e−μ(eμf − eμi )

�t
. (34)

When driving the system from low to high chemical poten-
tial, as time progresses the designed protocol slows as e−μ.
Appendix C derives the designed protocol in terms of mean
copy number, which amounts to driving at constant velocity
dt 〈NB〉o = �〈NB〉o/�t , equivalent to the naive mean-copy-
number protocol. Appendix D shows that the initial velocity
is exponentially faster than the final, and for small changes in
chemical potential the designed protocol reduces to the naive.

The designed chemical-potential protocol produces a con-
stant excess power, leading to total excess work (5)

W o des
ex = Ntot

e2μi

k�t
(e�μ − 1)2. (35)

For large increases in chemical potential (e�μ � 1), the
designed excess work increases exponentially in chemical
potential distance, incurring large energetic costs; conversely,
for large decreases in chemical potential, the excess work is
independent of the chemical potential change �μ.

The excess power during the naive (constant-velocity)
protocol (2) produces excess work (5):

W o naive
ex = Ntot

�μ

�t

e2μi

2k
(e2�μ − 1). (36)

For large �μ, the naive excess work increases exponentially
in chemical potential, thus incurring huge energetic costs.
When significantly reducing chemical potential (e2�μ � 1),
the excess work increases linearly with decreasing �μ, which
is a significantly slower rate than for chemical potential in-
creases, but still significantly faster than the designed protocol
(35), for which the excess work becomes independent of
chemical potential. The friction is smaller at lower chemical
potentials; therefore, reducing chemical potential carries the
system through regions of control parameter space with lower
resistance, thereby slowing the increase in energetic cost
associated with greater-magnitude changes of chemical poten-
tial. Increasing chemical potential carries the system towards
parameter space with higher resistance, further exacerbating
the energetic cost.

The excess work ratio is

W o naive
ex

W o des
ex

= �μ

2

e�μ + 1

e�μ − 1
. (37)

Despite the magnitude of the naive work increasing slowly
for chemical potential reductions, the ratio is symmetric about

�μ = 0. As the chemical potential change |�μ| increases, so
does the ratio of the excess works, and hence the energetic
savings from using the designed protocol.

VII. DISCUSSION

Living things accrue a selective advantage if they can
use less energy to achieve their required functions. In the
task of dynamic cell-cell signaling, methods for achieving
given changes in the target cell at minimum energy expen-
diture may point toward design principles for intercellular
communication.

We have adapted a theoretical framework for a novel
problem domain, to approximate the energetic cost of rapidly
changing chemical potential, and we used it to design finite-
time chemical-potential protocols that (under linear response)
reduce the excess work incurred in dynamically driven bio-
chemical reaction networks. We analyzed the designed proto-
col for an arbitrary linear Markov chemical reaction network,
and we applied it to an exactly solvable model system with
only binding and unbinding reactions: a closed system with
a fixed total number of proteins, which in the limit of small
chemical potential can effectively be treated as an open system
connected to a chemical bath. The designed protocol for such
a linear chemical reaction system is simply determined by the
collection of reaction rates. This approach can be generalized
to nonlinear chemical reactions by using moment-closure
techniques to obtain approximate solutions.

We find that for a two-state closed system, the generalized
friction—the resistance to changes in chemical potential—
is minimized (at 0) when all proteins are either bound or
unbound, and is maximized when 2/3 of all proteins are
bound, when the binding rate equals twice the unbinding rate.
This corresponds to a balance between the largest fluctuations
(when the binding rate equals the unbinding rate) and the
largest relaxation time (for small unbinding rate and tightly
bound proteins). Under these conditions, the designed pro-
tocol changes the chemical potential slowest at intermediate
mean copy number. For an open system, the friction increases
monotonically with mean copy number. Therefore, a protocol
that minimizes energetic cost (near equilibrium) changes the
chemical potential slowly when mean copy number is high
and quickly when mean copy number is low.

Similar analysis shows that when chemical potential ex-
ponentially enhances binding rather than exponentially sup-
pressing unbinding (for a splitting factor [23,24] of 1), friction
is maximized when 1/3 of all proteins are bound, corre-
sponding to a binding rate half of the unbinding rate. When
the chemical potential enhances binding and suppresses un-
binding equally (splitting factor of 1/2) friction is maxi-
mized when 1/2 of all proteins are bound, corresponding to
equal binding and unbinding rates; however, no closed-form
solutions for the designed protocols and excess works for
intermediate splitting factors in (0,1) are known.

Our analysis focused on chemical networks with known
(and simple) topologies and reaction rates. It would be inter-
esting to see how these results change for more complicated
chemical networks. For example, a chemically bistable system
(with two metastable copy-number states) would have signifi-
cantly longer relaxation times at chemical potentials for which

022118-6



OPTIMAL CONTROL OF PROTEIN COPY NUMBER PHYSICAL REVIEW E 101, 022118 (2020)

the system is bistable. Similar to recent results for a particle
diffusing over a bistable potential [9], we expect the friction
to be peaked at such bistability-inducing chemical potentials,
meaning that work-minimizing protocols slow down near the
threshold chemical potential to allow chemical fluctuations
time to kick the system into the desired metastable state.

In the absence of such detailed information, one could phe-
nomenologically map out the generalized friction coefficient
through monitoring copy-number fluctuations [25] at various
fixed chemical potentials, then use the linear-response theory
to infer the corresponding designed protocols, in analogy to
recent work in single-molecule contexts [26].

Although our study is presented in the context of cell-cell
signaling, our results hold for more general chemical reaction
systems. Traditional stochastic thermodynamics treatments of
chemical reaction networks [27–31] feature sustained chem-
ical currents at fixed chemical potentials. In contrast, our
setup dynamically varies chemical potential [32–35], with our
(9c) corresponding to a linear response approximation to the
“driving work” [35]. One major benefit of this approximation
is that it gives a relatively straightforward prescription for
designing protocols that reduce dissipative work.

In general, thermodynamic consistency demands an ac-
counting of the dissipative costs associated with implement-
ing a particular time-asymmetric, detailed-balance breaking
protocol [36,37]. However, that contribution scales subex-
tensively with system size, whereas the frictional dissipation
modeled here scales extensively, so should dominate for larger
systems such as a collection of cells each with many receptors.
In the interests of a simple and tractable model system, we
here focused on the frictional dissipation.

The less energy used during operation, the fewer signaling
proteins that must be produced and dynamically secreted.
Such designed control analysis makes strong predictions
about the dynamic interactions that communicate information
and regulate behavior in an energetically efficient manner. To
the extent that energetic efficiency is an important functional
characteristic for such signaling pathways, experiments may
uncover signatures of these design criteria in evolved molecu-
lar and cellular systems.

There are several known mechanisms by which a signaling
cell can dynamically control a target cell’s response to take
advantage of designed protocols. The simplest method is
by dynamically controlling the number of agonists secreted.
Another method, used by β-adrenergic receptor kinases [38]
and rhodopsin kinase [39], is phosphorylation, which in-
creases the affinity of the receptor for regulatory proteins
called arrestins [40,41], in turn down-regulating the number
of active receptors. Additionally, recycling of receptors and
internalization via endocytosis can regulate the signal [42,43].
All of these techniques are employed to adjust the number
of active GPCRs and therefore allow for the control of the
binding affinity and reaction rates of the G-protein between
the bound and unbound states.

Recent experimental advances make possible the precise
spatial and temporal control of binding affinity between dif-
ferent chemical species, and hence of protein spatial localiza-
tion within a cell. In particular, optogenetic techniques allow
for the use of light to adjust the binding affinity between
a light-gated protein and its binding partner [44]. Changes

in binding affinity are effectively changes in the chemical
potential of one class of proteins in the vicinity of another,
thus allowing for the dynamic experimental implementation
of our proposed control strategies. Quantitative fluorescence
microscopy techniques [45] could permit quantification of the
actual nonequilibrium changes in protein copy numbers, and
thus of the dissipative chemical-potential work and the ability
of such protocols to achieve desired downstream changes.
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APPENDIX A: EXACT WORK

In the GCE, the composition of the system can change by
adding or removing particles through, for example, a chemical
reaction. To account for this, we identify the total power as the
sum of the mechanical and chemical powers

dtW = dtWmech + dtWchem, (A1)

where the mechanical power is the nonequilibrium average
of the change in internal energy along the control parameter
protocol �,

dtWmech = 〈∂λ jU 〉� dtλ j, (A2)

and the chemical power is due to the change in composition,

dtWchem = −〈∂λ j (μ
N
)〉� dtλ j . (A3)

Combining the mechanical and chemical contributions gives
the natural extension of (A2) to the GCE, the total power

dtW = 〈∂λ jU 〉� dtλ j − 〈∂λ j (μ
N
)〉� dtλ j, (A4)

with corresponding conjugate force 〈 f 〉λ ≡ −∂λ
G. When
the control parameter is λ j = μ j , the energy U and copy
number Nj are independent of λ, so (A4) reduces to the
average instantaneous change in excess chemical work along
a particular chemical-potential protocol M,

dtWex = −〈δNj〉M dtμ j . (A5)

This definition is consistent with the recently defined
driving work in Rao, Falasco, and Esposito [33–35], where
our largest indivisible units are the chemical species Nj (as
opposed to their chemical moieties). In our case we assume
no sustained chemical currents (zero nonconservative work),
so the only dissipative contribution is the driving work.

APPENDIX B: LINEAR-RESPONSE APPROXIMATION

There are two approximations leading to the friction-
tensor formulation of the excess chemical work in (2).
One is the linear-response approximation: over time scales
where the response function dt 〈δ f (t )δ f (0)〉λ(t0 )|τ is signifi-
cantly different from zero, both the nonequilibrium response
〈� f (t0)〉� ≡ f (t0) − 〈 f 〉λ(t0 ) (the deviation of the conjugate
force f at time t0 from the average conjugate force f at
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FIG. 4. Excess power dtWex along the naive (top) and designed
(bottom) protocols as a function of chemical potential μ. Analytic
approximation (2) (solid black curve) and exact calculation (A5) for
various average chemical potential velocities c ≡ �μ/�t (different
colors) for forward (dashed) and reverse (dotted) protocols, starting
at μ − ln 2 = −5 and 5 respectively. The horizontal axis is shifted by
ln 2 so the friction is maximized at 0. The driving velocity is scaled
by the relevant reaction time scale k (excess power depends only on
the ratio c/k), and the excess power is scaled such that in the limit
of slow driving the exact solutions collapse onto a single curve, the
analytic approximation. For simplicity, the total protein copy number
Ntot is normalized to 1.

equilibrium under control parameter λ(t0)) and the equilib-
rium change 〈 f (t0)〉 − 〈 f (t0 − τ )〉 can be Taylor expanded to
first order in the control parameter change λ(t0) − λ(t0 − τ ).
The other is smooth protocols: the control parameter can be
Taylor expanded to zeroth order, λ̇(t0 − t ′′) = λ̇(t0), when
the control protocol � is sufficiently smooth, such that
λ̇ j (t ) � (t ′ − t )λ̈ j (t ) for time separations t ′ − t over which
the conjugate force autocorrelation 〈δ fi(0)δ f j (t − t ′)〉λ(t ) is
significantly greater than zero, i.e., over time scales less than
the relaxation time of the conjugate forces.

As a direct test of the linear-response approximation, we
calculate the exact excess power (A5) exactly for the two-state
closed system with control parameter μ(t ), giving

dt 〈NB〉M = k[Ntot − 〈NB〉M (e−μ(t ) + 1)], (B1)

subject to an equilibrium initial condition. The exact excess
power (2) is obtained by solving this numerically for a given
control parameter protocol and subtracting the equilibrium
mean

〈NB〉μ = Ntot

1 + e−μ
(B2)

at each chemical potential μ along the protocol.
Figure 4 compares numerical solutions for the exact ex-

cess power (A5) with analytic approximate solutions for the
naive (constant-velocity) and designed (27) protocols. As the
average driving velocity c ≡ �μ/�t decreases, the exact
solutions converge to the approximate result, which has a

maximum at μ = ln 2 for the naive protocol and is constant
for the designed protocol. It is not until the driving speed is
roughly the same speed as the bare reaction rate, |c| ≈ k, that
the exact result significantly deviates from the approximation.
In general, for chemical reactions that take place on short time
scales (large k) the approximation should be valid; however,
the exact speed at which it deviates significantly will depend
on the specifics of the reaction network.

While the approximate excess power is always independent
of the initial chemical potential and protocol direction (for-
ward or reverse), for the exact calculations this is noticeably
violated for fast driving (|c|/k � 1). For the naive protocol,
the excess power peaks after passing the maximal friction at
μ = ln 2. Intuitively, as the driving speed increases, the sys-
tem state (mean copy number of bound proteins) increasingly
lags behind the equilibrium value. If we assume the mean-
variance relation (19) still holds even though the nonequilib-
rium mean lags the corresponding equilibrium mean (amount-
ing to an assumption of endoreversibility [46]), this shifts the
maximum variance (and hence maximum excess power in
naive protocols) to larger (smaller) chemical potentials for the
forward (reverse) protocols. Since the designed protocol slows
down where the equilibrium friction coefficient is largest, the
lag—and concomitant shifting of the variance maximum to
later in the protocol—means that the designed protocol slows
down too early, and then speeds up too early. This produces
the rapid increase in excess power (red curves in Fig. 4) late
in the protocol.

APPENDIX C: DESIGNED MEAN-COPY-NUMBER
PROTOCOL

In the grand canonical ensemble (GCE) at equilibrium, the
average number 〈Nj〉 of chemical species j is related to the
covariance 〈δNjδN
〉 and free energy 
G by

β〈δNjδN
〉 = ∂μ

〈Nj〉 = −∂2

μ jμ


G. (C1)

Equation (C1) implies dμ j = d〈Nj〉/〈δN2
j 〉, so we can write

the designed protocol in terms of the mean copy number,
rewriting (6) as

dt 〈Nj〉des =
〈
δN2

j

〉 ∫ 〈Nj〉f

〈Nj〉i
d〈Nj〉

√
ζ (〈Nj〉)

〈δN2
j 〉

�t
√

ζ (〈Nj〉)
. (C2)

For the two-state closed system, the friction (26) is

ζ (〈NB〉c) = (〈NB〉c)2

Ntotk

(
1 − 〈NB〉c

Ntot

)
(C3)

= (〈NB〉c)2〈NUB〉c

N2
totk

, (C4)

and the designed protocol becomes

dt 〈NB〉c des = 2

�t

√
1 − 〈NB〉c

Ntot
(C5)

× (√
Ntot − 〈NB〉c

i − √
Ntot − 〈NB〉c

f

)
= 2

�t

√
〈NUB〉c

Ntot

(√〈NUB〉c
i − √〈NUB〉c

f

)
. (C6)
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For the two-state open system, the friction (33) can be
written as

ζ (〈NB〉o) = (〈NB〉o)2

Ntotk
, (C7)

which produces a designed protocol for mean copy number:

dt 〈NB〉o des = �〈NB〉o

�t
, (C8)

with �〈NB〉o ≡ 〈NB〉o
f − 〈NB〉o

i . This is equivalent to the naive
mean-copy-number protocol.

APPENDIX D: INITIAL AND FINAL
PROTOCOL VELOCITIES

Substituting μ = μi and μ = μf into the designed protocol
for the two-state closed system (27) gives the respective initial
and final velocities:

dtμ
des|μi = 2(1 + e−μi )

�t

(
1 −

√
1 + e−μi

e�μ + e−μi

)
, (D1a)

dtμ
des|μf = 2(1 + e−μf )

�t

⎛
⎝

√
e�μ + e−μi

1 + e−μi
− 1

⎞
⎠. (D1b)

For significant increases in chemical potential (eμf � eμi

and eμf � 1), the initial velocity reduces to dtμ
des|μi ≈ 2(1 +

e−μi )/�t and the final to dtμ
des|μf ≈ 2

√
eμf /(1 + eμi )/�t . In

this limit, the final velocity is exponentially faster in μf than
the initial, because for large chemical potentials the friction
is exponentially damped. The opposite limit (large chemical
potential decreases) also produces initial velocity independent
of μf and final velocity exponential in μf .

For small changes in chemical potential, Taylor expanding
about �μ = 0 gives

(1 + e−μi )

(
1 −

√
1 + e−μi

e�μ + e−μi

)
≈ �μ/2, (D2a)

(1 + e−μf )

⎛
⎝

√
e�μ + e−μi

1 + e−μi
− 1

⎞
⎠ ≈ �μ/2, (D2b)

so dtμ
des|μi ≈ dtμ

des|μf ≈ �μ/�t . For sufficiently small
changes in chemical potential, the designed protocol reduces
to the naive.

Comparing the initial and final velocities of the open
system (33),

dtμ
des|μi = 1

�t
(e�μ − 1), (D3a)

dtμ
des|μf = 1

�t
(1 − e−�μ), (D3b)

shows that for large chemical potential changes (�μ � 1),
dtμ

des|μi ≈ e�μ/�t and dtμ
des|μf ≈ 1/�t , i.e., the initial

velocity is exponentially fast, whereas the final velocity is
independent of protocol distance. Conversely, for small chem-
ical potential changes, e�μ − 1 ≈ �μ, and hence dtμ

des|μi =
dtμ

des|μf = �μ/�t , reducing to the naive constant-velocity
protocol. Therefore, for large �μ there is an exponential
difference in final and initial velocities, whereas for small �μ

there is no difference.

APPENDIX E: WORK RATIO FOR SMALL CHEMICAL
POTENTIAL CHANGES

For small changes in chemical potential (to lowest order
in �μ), the naive excess work (9c) for a single control
parameter is

W naive
ex = β

∫ �t

0
dt ζ [μ(t )]

(
�μ

�t

)2

= β

(
�μ

�t

)2 ∫ �t

0
dt (E1a)

×{ζ (μi ) + ∂μζ |μi [μ(t ) − μi] + · · · }

= β

(
�μ

�t

)2

(E1b)

×
[
ζ (μi )�t + �t

�μ
∂μζ |μi

∫ μf

μi

dμ(μ − μi ) + · · ·
]

= β

(
�μ

�t

)2

(E1c)

×
[
ζ (μi )�t + �t

�μ
∂μζ |μi

1

2
(μ − μi )

2|μf
μi

+ . . .

]

= β

(
�μ

�t

)2

(E1d)

×
[
ζ (μi )�t + �t

2�μ
∂μζ |μi (�μ)2 + · · ·

]

≈ β
(�μ)2

�t
ζ (μi ) + O[(�μ)3], (E1e)

where the third line follows since the first term is independent
of t and the second term is integrated using dtμ

naive = �μ/�t
for the naive protocol.

Since the excess work ratio is unity at �μ = 0 and can
never decrease below unity, �μ = 0 must be a minimum.
Taylor expanding about this minimum gives

W naive
ex

W des
ex

≡ R(�μ) = 1 + 1

2
∂2
�μR(�μ)|0(�μ)2 + O[(�μ)3].

(E2)
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