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Three-terminal refrigerator based on resonant-tunneling quantum wells
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A three-terminal refrigerator based on resonant-tunneling quantum wells is proposed. With the help of the
Landauer formula, the expressions for the cooling rate and the coefficient of performance (COP) are derived. The
working regions of the refrigerator are determined and the three-dimensional projection graphs of the cooling
rate and the COP varying with the positions of the two energy levels are plotted. Moreover, the influence of the
bias voltage, the asymmetric factor, and the temperature difference on the optimal performance parameters is
analyzed in detail. Finally, the performance characteristics of the refrigerator in the case of negative temperature
difference are discussed.
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I. INTRODUCTION

Thermoelectric devices can be used as power generators
to convert heat to electricity based on the Seebeck effect
or as refrigerators to cool a spatial region by external elec-
tricity based on the Peltier effect. With the development of
nanotechnology there has been great interest in investigating
highly efficient and powerful three-terminal nanoscale ther-
moelectric devices [1,2]. Compared with two-terminal setups,
three-terminal ones can rectify thermal fluctuations from the
hot reservoir and drive a directed charge current, can spatially
separate the hot and cold reservoirs, and also exhibit a crossed
flow of charge and heat currents.

For example, Edwards et al. investigated theoretically the
quantum-dot refrigerator (QDR) which utilizes the discrete
energy levels of quantum dots to customize the electronic
Fermi-Dirac distribution, cooling a small reservoir to far
below the ambient temperature [3,4]. Prance et al. presented
experimental measurements of a QDR designed to cool a
6-μm2 electron gas, and significant electrostatic interactions
were observed in this device [5]. Later, Jordan et al. proposed
a three-terminal heat engine with resonant-tunneling dots and
obtained the maximum power and the corresponding effi-
ciency [6]. Kano and Fujii studied the conversion efficiency
of an energy harvester based on resonant tunneling through
quantum dots in which heat leakage current from a hot reser-
voir to a cold reservoir is taken into account in the analysis
of the harvester operation [7]. Sothmann et al. proposed a
three-terminal heat engine based on resonant-tunneling wells
and obtained the maximum power and the corresponding
efficiency [8]. Choi and Jordan analyzed the performance
of a three-terminal heat engine for energy harvesting and
a refrigerator for cooling purposes based on semiconductor
superlattices in which the periodicity of the superlattice struc-
ture creates an energy miniband; they also discussed phonon
heat current through the system [9]. Other three-terminal
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thermoelectric devices with energy selective tunnels or ideal
resonant-tunneling quantum dots have been extensively stud-
ied in the past several years [10–13]. Three- and multiter-
minal thermoelectric devices based on capacitively coupled
quantum dots in the Coulomb-blockade regime theoretically
[14–20] and experimentally [21–25] have been investigated.
Three-terminal thermoelectric devices which are driven by
phonons, magnons, and photons, have been analyzed [26–36].

On the basis of the previous works, we propose a three-
terminal refrigerator based on resonant-tunneling quantum
wells. It should be pointed out that the refrigeration model
proposed here is not only the reverse operation of the energy
harvester described in Ref. [8] but also includes the general
expressions for charge and heat currents in linear response
which may be directly used to discuss the optimal perfor-
mance parameters and the critical temperature difference. The
main focus in this paper is to analyze the thermodynamic
performance characteristics and the optimal performance of
a three-terminal quantum well refrigerator. The influence of
the main parameters, including the positions of the two en-
ergy levels, bias voltage, asymmetry factor, and temperature
difference on the refrigerator performance is discussed in
detail.

This paper is organized as follows. In Sec. II, we briefly de-
scribe the model and basic physical theory of a three-terminal
quantum well refrigerator and derive the general expressions
for the cooling rate and the coefficient of performance (COP)
based on the Landauer formula. In Sec. III, we analyze the
working regions and the performance characteristics of the
refrigerator. In Sec. IV, we investigate the optimal perfor-
mance of the refrigerator. The influence of the bias voltage,
asymmetry factor, and temperature difference on the optimal
performance parameters is discussed in detail. In Sec. V,
the performance characteristics of the refrigerator operated in
cases of �T/T > 0 and �T/T < 0 are compared where �T
is the temperature difference between the central cavity and
the left and right electron reservoirs. Finally, the important
results of this paper are summarized in Sec. VI.
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FIG. 1. Schematic diagram of a three-terminal refrigerator based
on quantum well. A central cavity with temperature TC and chemical
potential μC is connected to the left and right electron reservoirs
with temperature Ti (i = L, R) and chemical potential μi via quantum
wells. The positive direction of charge and heat currents is indicated
by arrows.

II. MODEL AND THEORY

The model we consider is schematically illustrated in
Fig. 1. It consists of a central cavity connected via quantum
wells to left and right electron reservoirs with temperature Ti

(i = L, R). The central cavity is kept at temperature TC by a
cold thermal reservoir. The temperatures of the left and right
reservoirs are the same and higher than that of the central
cavity (TL = TR > TC). When no bias voltage is applied, the
chemical potential of the left electron reservoir is equal to the
chemical potential of the right (μL = μR = μ0). When a bias
voltage V is applied, we take μL = μ0 − 1/2eV and μR =
μ0 + 1/2eV (e is the electronic charge). For simplicity, we
take μ0 = 0 in numerical calculation. The chemical potential
μC of the cavity is determined by the conservation of charge
current, i.e., IL + IR = 0. The positive direction of charge and
energy currents is flowing from the reservoir i into the cavity.

Based on the Landauer formula, the charge and energy
currents flowing from the reservoir i into the cavity can be
evaluated [8],

Ii = em∗A

2π2h̄3

∫∫
dE⊥dEZτi(EZ )[ fi(EZ + E⊥)

− fC (EZ + E⊥)], (1)

and

Ji = m∗A

2π2h̄3

∫∫
dE⊥dEZ (EZ + E⊥)τi(EZ )[ fi(EZ + E⊥)

− fC (EZ + E⊥)], (2)

where fi = {exp[(EZ + E⊥ − μi )/kBTi] + 1}−1 is the Fermi
distribution of the reservoir i, fC = {exp[(EZ + E⊥ −
μC )/kBTC] + 1}−1 is the Fermi distribution of the cavity,
EZ is the component of electron energy parallel to the
direction of transport, E⊥ is the component of electron energy
perpendicular to it, kB is the Boltzmann constant, m∗ is the

effective electron mass, A is the surface area of the quantum
well, and h̄ is Planck’s constant. τi(EZ ) is the transmission
function of the quantum well i which is given by

τi(EZ ) = �i1(EZ )�i2(EZ )

(EZ − Ei )2 + [�i1(EZ ) + �i2(EZ )]2/4
, (3)

where Ei is the energy of the resonant level within the quan-
tum well i; �i2 and �i1 are the coupling strengths of the
quantum well i to the cavity and the reservoir i, respectively.

To simplify notation, we introduce the temperature
difference �T = Ti − TC and average temperature T =
(TC + Ti )/2. In linear response, the temperature difference
�T and chemical potential difference �μ = μR − μL = eV
are small. With the conservation of charge and energy in the
cavity, i.e., IL + IR = 0 and JL + JR + J = 0, the net current
flowing through the system, I ≡ IL = −IR, is given by

I = GV + GS(−�T ), (4)

and the heat current injected from the cold thermal reservoir,
J = −JL − JR, is given by (the detailed derivation is in the
Appendix)

J = G�V + (K + GS�)(−�T ), (5)

where G, S, and K are the electrical conductance, the Seebeck
coefficient, and the thermal conductance, respectively; � is
the Peltier coefficient which is equal to � = − ST based on
the Onsager reciprocal relation.

To linear order in the temperature difference �T and
chemical potential difference eV , the expressions for these
coefficients are given by

G = −e2m∗A

2π2h̄3

GL1GR1

GL1 + GR1
, (6)

S = kB

e

[
GL2 + GL3

GL1
− GR2 + GR3

GR1

]
, (7)

K = m∗A

2π2h̄3 k2
BT

[
(GL4 + 2GL5 − 2GL6) + (GR4 + 2GR5

− 2GR6) − (GR2 + GR3)2

GR1
− (GL2 + GL3)2

GL1

]
, (8)

� = kBT

e

[
GR2 + GR3

GR1
− GL2 + GL3

GL1

]
= − ST, (9)

with the auxiliary functions

Gi1 =
∫ ∞

−∞
dEZτi(EZ )

1

1 + eEZ /kBT
, (10)

Gi2 =
∫ ∞

−∞
dEZτi(EZ )

EZ/kBT

1 + eEZ /kBT
, (11)

Gi3 =
∫ ∞

−∞
dEZτi(EZ ) log(1 + e−EZ /kBT ), (12)

Gi4 =
∫ ∞

−∞
dEZτi(EZ )

(EZ/kBT )2

1 + eEZ /kBT
, (13)

Gi5 =
∫ ∞

−∞
dEZτi(EZ )(EZ/kBT ) log(1 + e−EZ /kBT ), (14)
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FIG. 2. (a) The three- dimensional projection of the cooling rate versus the temperature difference �T /T and the bias voltage eV for given
a = 0. Panel (b) shows the working regions of the refrigerator for different asymmetry factors a. For both plots, EL = 1kBT and ER = −5kBT .

Gi6 =
∫ ∞

−∞
dEZτi(EZ )Li2(−e−EZ /kBT ), (15)

where we have introduced the integral Li2(−ez ) =
−∫ ∞

0 t (1 + et−z )−1dt with the dilogarithm Li2(x) =∑∞
k=1 (xk/k2).
The electrical conductance shows that GL1(GR1) is propor-

tional to the electrical conductance of the left (right) quantum
well, so the net conductance G is simply the series com-
bination of the two conductors. The three-terminal Seebeck
coefficient S is determined by the difference between the left

and right two-terminal Seebeck coefficient of each quantum
well. Therefore, S depends on the properties of left and right
quantum wells. When the left and right quantum wells are
symmetrical, i.e., GL2+GL3

GL1
= GR2+GR3

GR1
, the Seebeck coefficient

S vanishes; S = 0.
Eqation (5) shows that the first part is simply proportional

to the charge current and the second part is the heat current
generated by the temperature difference. The Peltier coeffi-
cient � shows the presence of the heating from the Peltier
contribution. The relation � = − ST shows that � can be
considered as the back action counterpart to S; the minus sign
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FIG. 3. (a), (c) The cooling rate Q̇C versus the level positions (EL, ER) at different asymmetry factors a. (b), (d) The COP ε versus the level
positions (EL, ER) at different asymmetry factors a. All plots are obtained for given �T /T = 0.05 and eV = 2kBT .
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of the relation occurs because J is the heat current injected
from the cold thermal reservoir into the cavity. This relation
shows that our system satisfies Onsager symmetry resulting
from the time reversibility.

It is easily seen from Eq. (5) that there exists a critical
temperature difference �Tcri for J = 0,

�Tcri = G�

K + GS�
V. (16)

It is a function of the bias voltage and the resonant-energy
level. The refrigerator works only when the heat current is
emitted by the cavity into the reservoirs, J � 0. Hence, the
temperature reduction of the cavity should be in the range of
0 � �T � �Tcri.

We assume that the couplings are very weak, i.e., �i1 =
�i2 = �i � kBTi, kBTC ; then the transmission function can
be denoted as a delta function τi(EZ ) = π �i δ(EZ − Ei ). The
expressions (1) and (2) for the charge and energy currents can
be rewritten as

Ii = em∗A

2π h̄3 �i

[
kBTiξ

(
μi − Ei

kBTi

)
− kBTCξ

(
μC − Ei

kBTC

)]
, (17)

and

Ji = Ei

e
Ii + m∗A

2π h̄3 �i

[
(kBTi )

2φ

(
μi − Ei

kBTi

)

− (kBTC )2φ

(
μC − Ei

kBTC

)]
, (18)

with the auxiliary functions ξ (x) = log(1 + ex ) and φ(x) =
−Li2(−ex ).

Based on Eqs. (4) and (5) or (17) and (18) and the law of
energy conservation in the cavity, the cooling rate is given by

Q̇C ≡ J = −JL − JR. (19)

The input electrical power is P = IV . The coefficient of
performance (COP) is given by

ε = Q̇C/P. (20)

In the following, we assume the asymmetry between the
coupling strengths of the left and right quantum wells, i.e.,
�L = (1 + a) �, �R = (1 − a) �, where a satisfies the bounds
−1 < a < 1, and � is the total coupling strength. The cooling
rate Q̇C and the input electrical power P are in units of
m∗A�

2π h̄3 (kBT )2.

III. PERFORMANCE CHARACTERISTICS

Now we consider the working regions of the refrigerator
at first. The three- dimensional projection of the cooling rate
Q̇C varying with the temperature difference �T /T and the
bias voltage eV at symmetric case a = 0 for given EL = 1kBT
and ER = −5kBT is shown in Fig. 2(a). The black curve
in Fig. 2(a) represents when the cooling rate becomes zero.
The left region of the curve is the working region of the
refrigerator (i.e., Q̇C > 0 and P > 0). It is seen in Fig. 2(a) that
the bias voltage has a start value eVmin and a stopping voltage
eVmax when the temperature difference �T /T is given, and the
temperature difference has a maximum value �Tmax/T . The

FIG. 4. (a) The cooling rate Q̇C and (b) the COP ε versus the bias
voltage eV at different asymmetry factors a. (c) The characteristic
curves at different asymmetry factors a. All plots are obtained for
given �T /T = 0.05, EL = 1kBT , and ER = −5kBT .

cooling regions for different asymmetry factors a are plotted
as shown in Fig. 2(b). It is found that the working region
increases as the asymmetry factor increases.
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FIG. 5. (a),(b) The three- dimensional projections of the cooling rate and the COP varying with EL and a for given �T /T = 0.05, eV =
2kBT , and ER = −5kBT , respectively.

According to Eqs. (17)–(20), we plot three- dimensional
(3D) projection graphs of the cooling rate Q̇C and the COP
ε varying with the positions of the two energy levels EL and
ER at different asymmetry factors a for given �T/T = 0.05
and eV = 2kBT , as shown in Fig. 3. It is seen from Fig. 3 that
both the cooling rate and COP at a = 0.5 are larger than those
at a = 0. In Figs. 3(a) and 3(c), the maximum cooling rate
appears approximately at EL ≈ 1kBT and ER ≈ −5kBT , and
there exists an optimum energy level leading to a maximum
cooling rate. However, the COP increases as the energy levels
EL and ER increase, as shown in Figs. 3(b) and 3(d).

Similarly we plot the curves of the cooling rate Q̇C and
the COP ε versus the bias voltage eV at different asymmetry
factors a for given �T /T = 0.05, EL = 1kBT , and ER =
−5kBT , as shown in Fig. 4. It is seen in Fig. 4(a) that the
cooling rate first increases and then decreases as the bias
voltage eV increases and is almost a symmetric parabolalike
curve. However, the COP first increases rapidly and then
decreases slowly as the bias voltage eV increases and is
different from the curves of the cooling rate, as shown in
Fig. 4(b). Especially, the characteristic curves of the cooling
rate versus the COP are plotted, as shown in Fig. 4(c). It is

FIG. 6. (a) The optimized cooling rate Q̇op
C , (b) the corresponding COP εopQ̇C , and (c) the optimal position of left energy level EopQ̇C

L versus
the bias voltage eV at different asymmetry factors a for given �T /T = 0.05.
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found that the characteristic curves between the cooling rate
and the COP are the closed-loop-shaped ones. This means
that the cooling power Q̇c does not vanish at maximum COP
condition. The refrigerator cannot operate in the reversible
regime and the maximum value of the COP cannot achieve the
Carnot COP εC = TC/(Ti − TC ) = T /�T − 1/2. The optimal
operating regions of the refrigerator should be located in those
of the Q̇C ∼ ε curves with a negative slope. The COP will
decrease as the cooling rate increases, and vice versa. Thus
the optimal ranges of the cooling rate and the coefficient of
performance should satisfy

Q̇Cε � Q̇C � Q̇m
C , (21)

εmQ � ε � εm, (22)

where Q̇Cε, Q̇m
C , εmQ, and εm are four important performance

parameters which determine the lower and upper bounds of
the optimal cooling rate and the coefficient of performance.

We now turn to the discussion of the cooling rate and COP
at the asymmetry case. According to Eqs. (19) and (20), we
plot 3D projection graphs of the cooling rate Q̇C and the COP
ε varying with the positions of the left energy levels EL and the
asymmetry factor a for given �T/T = 0.05, eV = 2kBT , and
ER = −5kBT , as shown in Fig. 5. It is seen in Fig. 5(a) that the
maximum cooling rate appears approximately at EL ≈ 1.5kBT
and a = 0.5; there exists an optimum left energy level EL and
an optimum asymmetry factor leading to a maximum cooling
rate. However, the COP increases as the left energy levels and
the asymmetry factor increase, as shown in Fig. 5(b).

IV. PERFORMANCE OPTIMIZATION

Using Eqs. (19) and (20) and two partial differential equa-
tions,

∂Q̇C

∂EL
= 0 and

∂Q̇C

∂ER
= 0, (23)

we can numerically calculate the optimized cooling rate Q̇op
C

and the corresponding COP εopQ̇C . The curves of the opti-
mized cooling rate and the corresponding COP at the opti-
mized cooling rate are plotted as a function of the bias voltage
eV at different asymmetry factors a for given �T /T = 0.05,
as shown in Fig. 6. It is seen in Fig. 6(a) that the optimized
cooling rate is a monotonically increasing function of eV and
has a saturation value at eV ≈ 8kBT . The corresponding COP
at the optimized cooling rate first increases rapidly and then
decreases to a saturation value as the bias voltage increases,
as shown in Fig. 6(b). The optimal position of the left energy
level EopQ̇C

L increases almost linearly with the bias voltage eV

and EopQ̇C
L ≈ 1/2eV , as shown in Fig. 6(c). It is not shown

in Fig. 6 that the optimal position of the right energy level
EopQ̇C

R is a large negative value; i.e., −EopQ̇C
R 	 kBT . When the

optimized cooling rate has a saturation value at eV ≈ 8kBT ,
the optimal position of the left energy level EopQ̇C

L is EopQ̇C
L ≈

4kBT .
Similarly, we plot the curves of the optimized cooling rate

Q̇op
C and the corresponding COP εopQ̇C versus the asymme-

try factor a for given �T /T = 0.05 and the saturation bias
voltage eV ≈ 8kBT , as shown in Fig. 7. It is seen in Fig. 7
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FIG. 7. The optimized cooling rate Q̇op
C (solid) and the corre-

sponding COP εopQ̇C (dot dash) versus the asymmetry factor a for
given �T /T = 0.05 and eV ≈ 8kBT .
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εmQ̇C /εC (dot dash) versus the temperature difference �T /T . (b) The
optimal asymmetry factor a (solid) and the optimal bias voltage eV
(dot dash) versus the temperature difference �T /T .
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FIG. 9. The cooling rate (a) and COP (b) versus the level positions (EL, ER ) for given �T/T = −0.05, eV = 2kBT , and a = 0.

that the optimized cooling rate Q̇op
C first increases and then

decreases as the asymmetry factor a increases and reaches
its maximum at a ≈ 0.5. The corresponding COP εopQ̇C is a
monotonically increasing function of the asymmetry factor
a. In order to achieve the maximum cooling rate and at the
same time obtain a large COP, the quantum well refriger-
ator should work in the region of a � 0.5. In the actual
design, the optimal region of the asymmetry factor should be
0.5 � a � 1.

In order to consider the influence of the temperature dif-
ference on the performance of the refrigerator, we maximize
the cooling rate with respect to the bias voltage eV and the
asymmetry factor a for the given positions of energy levels
EL = 1kBT and ER = −5kBT . Using Eqs. (19) and (20) and
two partial differential equations,

∂Q̇C

∂eV
= 0 and

∂Q̇C

∂a
= 0, (24)

we can numerically calculate the maximum cooling rate Q̇max
C ,

the corresponding COP at the maximum cooling rate εmQ̇C , the
corresponding bias voltage eV , and the corresponding asym-
metry factor a. The curves of the maximum cooling rate Q̇max

C
(dash) and the corresponding COP at the maximum cooling
rate εmQ̇C (solid) are plotted as a function of the temperature
difference �T /T , as shown in Fig. 8(a). It is seen in Fig. 8(a)
that the maximum cooling rate decreases as �T /T increases,
and then vanishes at �T /T ≈ 0.4; the corresponding COP
at the maximum cooling rate decreases as �T /T increases,
and the corresponding COP in units of Carnot COP at the
maximum cooling rate εmQ̇C /εC (dot dash) first increases and
then decreases as �T /T increases and reaches its maximum
value at �T /T ≈ 0.2. The optimal asymmetry factor a (solid)
and the optimal bias voltage eV (dot dash) are plotted as a
function of �T /T as shown in Fig. 8(b). It is seen in Fig. 8(b)
that the asymmetry factor a and the bias voltage eV are the
monotonically increasing function of �T /T . Therefore, the
refrigerator can be operated at the maximum cooling rate
by reasonably choosing the asymmetry factor and the bias
voltage for different �T /T .

V. DISCUSSION AND COMPARISON

We turn to discuss the performance of the refrigerator op-
erated in the case of �T/T < 0; i.e., the cavity’s temperature
is higher than the reservoir’s one. In this case, the heat current
Q̇i flows from the cavity into the thermal reservoir i into
the cavity by the applied bias voltage. The energy current
−J is rejected to the thermal reservoir. According to the
conservation of energy in the cavity, i.e., Q̇i + J + P = 0, the
cooling rate is given by

Q̇i = −J − P, (25)

and the COP is defined as

ε = Q̇i

P
= −J − P

P
. (26)

According to Eqs. (25) and (26), we plot 3D projection
graphs of the cooling rate Q̇C and the COP ε varying with
the positions of the two energy levels EL and ER for given
a = 0, �T/T = −0.05, and eV = 2kBT , as shown in Fig. 9.
It is seen in Fig. 9(a) that the maximum cooling rate appears
approximately at EL ≈ −5kBT and ER ≈ 1.5kBT . However,
the COP increases with increase of the energy levels EL and
ER as shown in Fig. 9(b). The result obtained in this case is
similar to one in the case of �T/T > 0 as long as the posi-
tions of the two energy levels EL and ER exchange each other.

VI. CONCLUSION

We have investigated the performance characteristics of a
three-terminal refrigerator based on resonant-tunneling quan-
tum wells, and have obtained the cooling region. Then, we
have optimized the performance of the refrigerator and ob-
tained these main results as follows: (1) the three-terminal
quantum well refrigerator cannot operate in the reversible
regime; (2) the performance of the refrigerator which works
in the asymmetry case is better than that in the symmetry
case; (3) the maximum cooling rate and the corresponding
COP decrease as �T /T increases. The results obtained here
can provide some theoretical guidelines for the design and
operation of the practical quantum well refrigerators.
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APPENDIX

We here discuss the detailed derivation of Eqs. (4) and (5) in the main text.

Ii = em∗A

2π2h̄3

∫∫
dE⊥dEZτi(EZ )[ fi(EZ + E⊥) − fC (EZ + E⊥)]

= em∗A

2π2h̄3

∫
dEZτi(EZ )

{
kTi log[1 + e(μi−EZ )/kTi ] − kTC log[1 + e(μC−EZ )/kTC ]

}

≈ em∗A

2π2h̄3

∫
dEZτi(EZ )

{
EZ/kT

1 + eEZ /kT
k(Ti − TC ) + log[1 + e−EZ /kT ]k(Ti − TC ) + 1

1 + eEZ /kT
(μi − μC )

}

= em∗A

2π2h̄3

{∫
dEZτi(EZ ) log[1 + e−EZ /kT ]k�T +

∫
dEZτi(EZ )

EZ/kT

1 + eEZ /kT
k�T +

∫
dEZτi(EZ )

(μi − μC )

1 + eEZ /kT

}

= em∗A

2π2h̄3 [Gi3k�T + Gi2k�T + Gi1(μi − μC )],

∵ IL + IR = 0,

∴ GL1(μL − μC ) + GR1(μR − μC )+(GL2 + GL3 + GR2 + GR3)k�T = 0.

μC = GL1μL + GR1μR+(GL2 + GL3 + GR2 + GR3)k�T

GL1 + GR1
,

IL = em∗A

2π2h̄3 [GL1(μL − μC ) + (GL2 + GL3)k�T ]

= em∗A

2π2h̄3

{
− GL1GR1

GL1 + GR1
(μR − μL )+

[
(GL2 + GL3) − GL1(GL2 + GL3 + GR2 + GR3)

GL1 + GR1

]
k�T

}

= em∗A

2π2h̄3

{
− GL1GR1

GL1 + GR1
(μR − μL )+ −GL1GR1

GL1 + GR1

[
GL2 + GL3

GL1
− GR2 + GR3

GR1

]
(−k�T )

}

= −e2m∗A

2π2h̄3

GL1GR1

GL1 + GR1
V + −e2m∗A

2π2h̄3

GL1GR1

GL1 + GR1

[
GL2 + GL3

GL1
− GR2 + GR3

GR1

]
k

e
(−�T )

= GV + GS(−�T ).

Ji = m∗A

2π2h̄3

∫∫
dE⊥dEZ (EZ + E⊥)τi(EZ )[ fi(EZ + E⊥) − fC (EZ + E⊥)]

= m∗A

2π2h̄3

∫
dEZτi(EZ ){EZkTi log[1 + e(μi−EZ )/kTi ] − EZ kTC log[1 + e(μC−EZ )/kTC ]}

+ m∗A

2π2h̄3

∫
dEZτi(EZ ){(kTi )

2[−Li2(−e(μi−EZ )/kTi )] − (kTC )2[−Li2(−e(μC−EZ )/kTC )]}

≈ m∗A

2π2h̄3

{∫
dEZτi(EZ )

(EZ/kT )2

1 + eEZ /kT
k2T (Ti − TC ) +

∫
dEZτi(EZ ) log(1 + e−EZ /kT )k2T (Ti − TC )

+
∫

dEZτi(EZ )
EZ/kT

1 + eEZ /kT
kT (μi − μC )

}
+ m∗A

2π2h̄3

{∫
dEZτi(EZ )

EZ

kT
log(1 + e−EZ /kT )k2T (Ti − TC )

− 2
∫

dEZτi(EZ )Li2(−e−EZ /kT )k2T (Ti − TC ) +
∫

dEZτi(EZ ) log(1 + e−EZ /kT )kT (μi − μC )

}

= m∗A

2π2h̄3 [(Gi2 + Gi3)kT (μi − μC ) + (Gi4 + 2Gi5 − 2Gi6)k2T (Ti − TC )].

J = −JL − JR = m∗A

2π2h̄3 [(GL2 + GL3)(μC − μL )kT + (GR2 + GR3)(μC − μR)kT

+ (GL4 + 2GL5 − 2GL6)k2T (−�T ) + (GR4 + 2GR5 − 2GR6)k2T (−�T )]
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= −e2m∗A

2π2h̄3

GL1GR1

GL1 + GR1

kT

e

(
GR2 + GR3

GR1
− GL2 + GL3

GL1

)[
μR − μL

e
+

(
GL2 + GL3

GL1
− GR2 + GR3

GR1

)
k

e
(−�T )

]

+ m∗A

2π2h̄3 k2T

{
−

[
(GL2 + GL3)2

GL1
+ (GR2 + GR3)2

GR1

]
+ (GL4 + 2GL5 − 2GL6 + GR4 + 2GR5 − 2GR6)

}
(−�T )

= G�(V − S�T ) + K (−�T )

= G�V + (K + GS�)(−�T )

= �I + K (−�T ).
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