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Fluctuation theorem in cavity quantum electrodynamics systems
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We derive an integral fluctuation theorem (FT) in a general setup of cavity quantum electrodynamics
systems. In the derivation, a key difficulty lies in a diverging behavior of entropy change arising from the
zero-temperature limit of an external bath, which is required to describe the cavity loss. We solve this difficulty
from the viewpoint of absolute irreversibility and find that two types of absolute irreversibility contribute to the
integral FT. Furthermore, we show that, in a stationary and small cavity-loss condition, these contributions have
simple relationships to the average number of photons emitted out of the cavity, and the integral FT yields an
approximate form independent of the setup details. We illustrate the general results with a numerical simulation
in a model of quantum heat engine.
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I. INTRODUCTION

Fluctuation theorem (FT) is one of the key ingredients
in modern statistical physics and thermodynamics [1–5]. It
is a standard approach to formulate a detailed FT and then
to derive an integral FT and a second-law-like inequality
from it. In the detailed FT, the probability P of a trajectory
(state history) � during a time interval τ is compared with
the probability P̄ of a backward trajectory �̄ subject to a
time-reversed dynamics [6–10]:

P̄(�̄)

P(�)
= e−�σ (�). (1)

It thus quantifies the stochastic reversibility at the trajectory
level in terms of the total entropy change �σ along �. When
the system is in contact with a heat bath at temperature T ,
�σ (�) includes the entropy change in the bath, Q(�)/T . Here
Q denotes the heat transfer from the system to the bath.

Suppose that the bath is in a zero-temperature state
(T → +0). Then Q/T diverges and thus fully dominates �σ .
Since this causes the right-hand side of Eq. (1) to be either
zero or positive infinity, it becomes difficult to derive the
integral FT. Moreover, since the average of the total entropy
change goes to infinity, the second law is automatically valid
but rather useless.

These singular behaviors are manifested even when the
bath temperature is not zero. At nonzero but extremely low T ,
although the ordinary integral FT, 〈e−�σ 〉 = 1, is theoretically
derived, it is difficult to demonstrate it in experiments and
numerical simulations. This is because it becomes highly rare
to observe trajectories in which heat flows from the bath to the
system while such trajectories have extremely large contribu-
tion of e−�σ (�) and are therefore essential for demonstration.
Moreover, the validity of the ordinary second law, 〈�σ 〉 � 0,
derived from the ordinary integral FT is obvious since 〈�σ 〉 is
an extremely large positive value. Therefore, it is desirable to
derive an experimentally and numerically accessible integral

FT and a useful second-law-like inequality that are free from
the diverging behavior of Q/T .

In the present paper, using a general setup of cavity and
circuit quantum electrodynamics (cQED) systems, we give
a solution to these difficulties (however, many of the results
are applicable to systems other than the cQED systems).
The cQED systems [11–16] are a typical one where a zero-
temperature bath plays a role. The cavity loss, an inevitable
decay factor in these systems, is caused by the interaction
between the cavity photons and the electromagnetic fields in
an external system, which we call photon drain. Theoretically,
the photon drain is usually modeled by a zero-temperature
state in order that it only receives photons out of the cavity
but does not inject ones into the cavity. Such a theoretical
description is well justified because the excitation energies
of the cQED system are usually much larger than the drain
temperature.

We find that the cavity loss induces the absolute irre-
versibility [17–25] in the zero-temperature limit, and it is the
origin of the difficulties. A trajectory is said to be absolutely
irreversible if it is not reversible even stochastically. That
is, the system has absolute irreversibility if there exists a
trajectory satisfying either

P(�) = 0 and P̄(�̄) > 0 (2)

or

P(�) > 0 and P̄(�̄) = 0. (3)

In the original proposal [17], only the former type is referred
to as absolute irreversibility, and the latter may be referred to
as ergodic inconsistency (or the lack of ergodic consistency)
[1]. In the present paper, we refer to the both types as absolute
irreversibility.

By using the method for handling the difficulty due
to absolute irreversibility [17,20], we derive a modified
integral FT,

〈e−�S〉 = 1 − λ + �, (4)
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and the second-law-like inequality for the entropy change �S
without the drain’s contribution. In Eq. (4), λ quantifies the
absolute irreversibility of the type in Eq. (2), and � quantifies
that of the type in Eq. (3).

In contrast to previous works [17–25]—where only λ

appears—we find that both λ and � equally contribute to the
modified FT in the setup of the present paper. This comes from
the difference in the origins of absolute irreversibility. The
origin in the present setup lies in asymmetry in the dynamics,
whereas that in the previous works lies in restrictions on the
forward trajectories [26]. The present results thus shed a light
on another origin of absolute irreversibility that induces � in
addition to λ.

We furthermore find that, in a steady-state and small κ

(cavity loss rate) condition, λ and � have simple relationships
to the average number of emitted photons during the interval
τ , and their combination in the FT (4) yields −λ + � � κτ .
In this condition, therefore, the modified integral FT has an
approximate form independent of the details of the setup of
the cQED systems. � plays an essential role in deriving this
result.

The cQED systems are a potential testbed for quantum
thermodynamics [9,10,14–16,23,27–40]. The present paper
therefore have significance in exploring experimental real-
ization of quantum thermodynamics. We have to exclude
the contribution of the zero-temperature bath to the entropy
change in order to obtain meaningful results free from the
diverging behaviors. And the modifications appear in the
FT and the second-law-like inequality. The latter may affect
the thermodynamic bound on the efficiency of quantum heat
engines in the cQED systems.

The present paper is organized as follows. In Sec. II, we
describe a general setup of a cQED system in contact with
a photon drain. The dynamics of the system is governed
by the quantum master equation (QME). We introduce an
additional term related to the cavity loss in the QME to
have a counterpart of the local detailed balance condition
for the photon drain. Then we briefly review an expression
of the QME time evolution in terms of the quantum jump
trajectory (stochastic unravelling) to have the probability of
a trajectory. In Sec. III, we derive the detailed FT in our
setup in a standard method with a time-reversed dynamics.
Then we confirm the appearance of the two types of absolute
irreversibility corresponding to Eqs. (2) and (3). Section IV
is the main part of the present paper. We derive the modified
integral FT (4) and the second-law-like inequality in the ab-
solutely irreversible situation of the setup. We also investigate
a steady-state and small cavity-loss situation. In Sec. V, we
numerically demonstrate the general results in a model of
cQED system. Section VI is devoted to the conclusion. We
set h̄ = 1 and kB = 1 throughout the present paper.

II. SETUP

We consider a general setup of open cQED systems. We
show its schematic diagram in Fig. 1.

The cQED system is composed of matter and cavity pho-
tons. In the general setup, we do not specify the matter part.
We assume the single-mode cavity for simplicity though it
is straightforward to extend the theory to multimode cases.

Photon drain
(vacuum state)

Cavity QED system
(matter + photons)

Bath 1 Bath 2 Bath M

External driving

FIG. 1. Setup of an open-cavity QED system. The system inter-
acts with M heat baths and a photon drain, and it may be externally
driven.

The annihilation and creation operators of this cavity mode
are denoted by ĉ and ĉ†, respectively. The system may be
externally driven by, e.g., coherent pumping.

The cQED system interacts with heat baths and a photon
drain. Each of the heat baths is in its own thermal equilibrium
state, and the photon drain is in the vacuum state. Although
we can regard the drain as a zero-temperature heat bath, we
distinguish it from the other baths for clarity of the argument.
We assume that the interaction is weak and the baths and
drain are large. Therefore, the states of the baths and drain do
not change in the characteristic timescale of the open cQED
system.

A. Quantum master equation

The dynamics of this open cQED system is governed by the
Lindblad-type QME [41–44]: ˙̂ρ(t ) = L(t )ρ̂(t ), where ρ̂(t ) is
the state (density operator) of the cQED system at time t . Here
the Liouvillian L(t ) is defined as

L(t )ρ̂ = −i[Ĥ (t ), ρ̂] +
∑
r,k,l

D[L̂r,k,l (t )]ρ̂ + κD[ĉ]ρ̂, (5)

where D[Â]ρ̂ = Âρ̂Â† − (1/2)(Â†Âρ̂ + ρ̂Â†Â).
The first term on the right-hand side of Eq. (5) describes

the unitary time evolution of the cQED system. Ĥ (t ) is the
Hamiltonian of the cQED system. It may be time dependent
due to the external driving. Its kth energy eigenvalue and
eigenstate are denoted by Ek (t ) and |Ek (t )〉, respectively.

The second term describes the dissipative time evolution
induced by the heat baths. L̂r,k,l (t ) is the jump operator that
describes the quantum jump from |Ek (t )〉 to |El (t )〉 induced by
the rth bath. L̂r,k,l (t ) satisfies [L̂r,k,l (t ), Ĥ (t )] = ωkl (t )L̂r,k,l (t )
and the local detailed balance (LDB) condition:

L̂r,k,l (t ) = L̂†
r,l,k (t )eβrωkl (t )/2, (6)

where ωkl (t ) = Ek (t ) − El (t ) and βr is the inverse tempera-
ture of the rth bath.

The third term describes the dissipative time evolution
induced by the photon drain. The prefactor κ is the decay
constant of the cavity. In other words, this term removes one
photon in the cavity with probability κ per time, and it thus
represents the cavity-loss effect. Unlike the second term, the
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LDB condition is invalid for this term because the term that
describes the opposite jump induced by the photon drain is
absent in Eq. (5). This results from the assumption that the
drain is in the vacuum state (zero-temperature state).

To derive the fluctuation theorem, however, the LDB-like
condition is crucial. We therefore introduce an additional term
εκD[ĉ†] that describes the opposite jump:

Lε(t ) = L(t ) + εκD[ĉ†]. (7)

We will take the limit of ε → +0 at the final stage of
the calculation. This limit corresponds to the vacuum (zero-
temperature) limit of the drain. The third term in Eq. (5)
plus this additional term reads κD[ĉ] + εκD[ĉ†] = D[L̂−] +
D[L̂+], where L̂− = √

κ ĉ and L̂+ = √
εκ ĉ†. And these jump

operators satisfy

L̂+ = L̂†
−ε1/2. (8)

This is a counterpart of the LDB condition (6). From this
correspondence, we can introduce the drain temperature Td

and an effective excitation energy Eex(>0) to assign ε =
e−Eex/Td . We again confirm that the ε → +0 limit is consistent
with the zero-temperature limit Td → +0.

B. Quantum jump trajectory

We can express the time evolution of the open system by
using the quantum jump trajectory (QJT) [41–43]. To see this,
we note that the state ρ̂(τ ) of the system at time τ can be
represented by [42]

ρ̂(τ ) =
∞∑

N=0

∑
j1,..., jN

∫ τ

0

∫ tN

0
· · ·

∫ t2

0

N∏
n=1

[
Ueff(tn+1, tn)J jn (tn)

]

× Ueff(t1, t0)ρ̂ini, (9)

where tN+1 = τ and t0 = 0, and ρ̂ini is the initial state at
t = 0. The terms in the product is ordered from the right
(n = 1) to the left (n = N). The superoperator Ueff(t ′, t ) de-
scribes the nonunitary time evolution during an interval [t, t ′]
with no quantum jump observed:

Ueff(t
′, t )ρ̂ = Ûeff(t

′, t )ρ̂Û †
eff(t

′, t ), (10)

Ûeff(t
′, t ) = T exp

[
−i

∫ t ′

t
Ĥeff(s)ds

]
, (11)

Ĥeff(t ) = Ĥ (t ) − i

2

∑
r,k,l

L̂†
r,k,l (t )L̂r,k,l (t ) − i

2

∑
j=±

L̂†
j L̂ j, (12)

where T represents the time-ordering operation. The super-
operator J jn (tn), on the other hand, describes the state change
due to the nth quantum jump:

J jn (tn)ρ̂ = L̂ jn (tn)ρ̂L̂†
jn

(tn)dtn. (13)

Here jn represents the type of the jump. That is, jn =
(rn, kn, ln) if it is induced by the rnth bath and jn = ± if it
is induced by the drain (in this case, J jn and L̂ jn are time
independent).

Suppose that, at time τ , we perform an ideal mea-
surement whose measurement basis set is {|ϕ〉}ϕ . Then,
writing the initial state in the spectral decomposition,

ρ̂ini = ∑
ψ p(ψ )|ψ〉〈ψ |, we can express the probability to find

the system in one of the measurement basis states |ϕ〉 as

p̄(ϕ) = 〈ϕ|ρ̂(τ )|ϕ〉 =
∑
ψ

∞∑
N=0

∑
j1,..., jN

∫ τ

0

∫ tN

0
· · ·

∫ t2

0
Pε(�),

(14)

Pε(�) =
∣∣∣∣∣〈ϕ|

N∏
n=1

[
Ûeff(tn+1, tn)L̂ jn (tn)

]
Ûeff(t1, t0)|ψ〉

∣∣∣∣∣
2

× p(ψ )dtN , (15)

where dtN = dtN · · · dt1. � = {ψ, (t1, j1), . . . , (tN , jN ), ϕ}
represents a QJT. We can specify it with the initial state
|ψ〉 (at t = 0), the final state |ϕ〉 (at t = τ ), and when and
what types of quantum jumps occur during (0, τ ). From the
above equations, we can interpret Pε(�) as the probability den-
sity of �.

III. DETAILED FLUCTUATION THEOREM

In this section, we derive the detailed FT in our setup,
following the standard approach in the quantum stochastic
thermodynamics at the trajectory level [9,10,23]. In this ap-
proach, we consider the backward QJT in the time-reversed
dynamics with the time-reversed external driving.

A. Time-reversed dynamics

The time-reversal of the QME (7) is given by ˙̄ρ(t ) =
L̄ε(t )ρ̄(t ), where

L̄ε(t )ρ̄ = −i[H̄ (t ), ρ̄] +
∑
r,k,l

D[L̄r,k,l (t )]ρ̄

+ κD[ĉ]ρ̄ + εκD[ĉ†]ρ̄. (16)

Here the time-reversed operators are given by H̄ (t ) =
�Ĥ (τ − t )�† and L̄r,k,l (t ) = �L̂r,k,l (τ − t )�† with � being
the time-reversal operator.

Similarly to the previous section, we can construct a QJT
description of the time-reversed evolution with the time rever-
sals of the corresponding (super)operators:

Ūeff(t
′, t )ρ̄ = Ūeff(t

′, t )ρ̄Ū †
eff(t

′, t ),

Ūeff(t
′, t ) = �Û †

eff(τ − t, τ − t ′)�†, (17)

J̄ j (t )ρ̄ = L̄ j (t )ρ̄L̄†
j (t )dt,

L̄ j (t ) = �L̂ j (τ − t )�†. (18)

We note that L̄± = L̂±.

B. Detailed fluctuation theorem

Given a forward QJT � = {ψ, (t1, j1), . . . , (tN , jN ), ϕ},
we construct the corresponding backward trajectory as �̄ =
{ϕ̄, (t̄1, j̄1), . . . , (t̄N , j̄N ), ψ̄} with |ψ̄〉 = �|ψ〉, |ϕ̄〉 = �|ϕ〉,
t̄n = τ − tN+1−n, and

j̄n =
⎧⎨
⎩

(r, l, k) if jN+1−n = (r, k, l )
+ if jN+1−n = −
− if jN+1−n = +

. (19)
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Then, similarly to Eq. (15), the probability of �̄ in the time-
reversed dynamics is

P̄ε(�̄) =
∣∣∣∣∣〈ψ̄ |

N∏
n=1

[
Ūeff(t̄n+1, t̄n)L̄j̄n (t̄n)

]
Ūeff(t̄1, t̄0)|ϕ̄〉

∣∣∣∣∣
2

× p̄(ϕ)dtN . (20)

In this equation, we assume that the spectral decomposition
of the ensemble-level initial state in the backward process is
given by ρ̄ini = ∑

ϕ p̄(ϕ)|ϕ̄〉〈ϕ̄|, where p̄(ϕ) is the probability
of the final state |ϕ〉 in the forward dynamics [given by
Eq. (14)].

The derivation of the detailed FT is straightforward from
Eq. (20). We substitute Eqs. (17) and (18) and the definitions
of the other overlined quantities [shown in Eq. (19) and the
above] into Eq. (20). Then, after using �†� = 1, we take the
complex conjugate of the internal quantity in |· · ·|2. By using
the LDB(-like) conditions (6) and (8), we finally obtain

P̄ε(�̄)

Pε(�)
= e−�S(�)εN−(�)−N+(�), (21)

where

�S(�) = �Sbath(�) + �Ssys(�), (22)

�Sbath(�) =
N∑′

n=1

βrnωknln (tn), (23)

�Ssys(�) = − log p̄(ϕ) + log p(ψ ). (24)

Equation (21) is the detailed FT in our setup. Here �Sbath and
�Ssys are the trajectory-dependent bath entropy change and
system entropy change, respectively. �S is the total (except
for the drain) entropy change. The sum in Eq. (23) is taken
over the bath-induced quantum jumps by L̂rn,kn,ln (tn)’s in �

(i.e., the drain-induced jumps are excluded). N−(�) is the
number of jumps by L̂− in � (which is equal to the number
of jumps by L̄+ in �̄), and N+(�) is the number of jumps
by L̂+ in � (which is equal to the number of jumps by
L̄− in �̄).

C. Zero-temperature limit

We investigate the zero temperature limit (ε → +0) at
this stage. To this end, we note that Eq. (15) leads to
Pε(�) = O[εN+(�)] and Eq. (20) leads to P̄ε(�̄) = O[εN−(�)].
Hence, there are two noticeable situations. One is the case
of the QJTs satisfying N−(�) = 0 and N+(�) > 0. In this
case, limε→+0 Pε(�) vanishes while limε→+0 P̄ε(�̄) does not.
The other is the case of N−(�) > 0 and N+(�) = 0. In this
case, limε→+0 P̄ε(�̄) vanishes while limε→+0 Pε(�) does not.
We note that the former case corresponds to the situation in
Eq. (2) and the latter to that in Eq. (3).

The trajectories in these situations are called absolutely
irreversible [17–25]. That is, for the trajectory in the backward
(forward) process, the corresponding forward (backward) tra-
jectory never realizes even stochastically. The detailed FT (21)
is valid even in these situations in the sense that both sides of
the equation diverge or vanish. To proceed to the integral FT,

however, we need careful treatment as explained in the next
section.

The origin of the absolute irreversibility in our setup is
transparent. In the limit of ε → +0, since the photon drain
is in the vacuum state, photons cannot come into the cavity
from the drain, whereas they can go out of the cavity to the
drain. We see this point in the disappearance of D[L̂+] =
D[L̄+] = εκD[ĉ†] in the QMEs (7) and (16) in the limit
of ε → +0. Therefore, if the backward (forward) trajectory
contains a jump by L̄− (L̂−), then it is impossible to generate
the corresponding forward (backward) trajectory within the
QME.

Note that if we do not take the zero-temperature limit
(ε → +0), then we can derive the ordinary integral FT from
Eq. (21):

〈exp[−�S − (N− − N+)Eex/Td ]〉 = 1. (25)

And, from this FT, we can also derive the ordinary second law:

〈�S〉 + 〈N− − N+〉Eex

Td
� 0. (26)

Here we used the assignment, ε = e−Eex/Td , introduced below
Eq. (8). However, nonzero but extremely low temperature
(Td 	 Eex) causes the following difficulties. One is the dif-
ficulty in demonstrating the ordinary FT (25) in experiments
and numerical simulations. To confirm the validity of the FT
(25) by averaging over observed trajectories, it is essential to
observe the events (jumps) where the system is excited by heat
from the drain since they have extremely large contributions
to the FT. In practice, however, it becomes difficult to ob-
serve such events if Eex/Td 
 1, because they are extremely
rare compared with the opposite events (probability ratio is
e−Eex/Td ) due to the LDB-like condition (8). Another difficulty
lies in that the ordinary second law (26) is obviously valid but
rather useless. That is, Eq. (26) imposes almost no restriction
on 〈�S〉, because the second term on the left-hand side is
an extremely large positive value if Eex/Td 
 1 [note that
〈N− − N+〉 > 0, because N− > N+ is almost always valid due
to the LDB-like condition (8) in this case]. In order to over-
come these difficulties arising from the diverging behavior of
the drain’s contribution, we have to exclude it and derive an
integral FT and a second-law-like inequality that include only
�S. We achieve this in the next section.

IV. INTEGRAL FLUCTUATION THEOREM

Here we derive a modified integral FT in our absolutely
irreversible setup. We use the prescription developed by
Murashita et al. [17,20]. It utilizes some basic ideas in mathe-
matical measure theory [45].

A. Decomposition of backward probability measure

Let X be the set of all QJTs during [0, τ ]. In Table I, we
summarize the subsets of X which we use in the following
argument. We define the forward probability measure Mε on
X and the backward one M̄ε, respectively, by

Mε(D�) = Pε(�)μ(D�), (27)

M̄ε(D�) = P̄ε(�̄)μ(D�), (28)
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TABLE I. Definitions of the subsets of X used in the derivation
of the modified integral FT.

Definition A set of QJTs that have...

X+ = {� ∈ X | N+(�) � 1} At least one jump by L̂+.
X0+ = {� ∈ X | N+(�) = 0} No jump by L̂+.
X− = {� ∈ X | N−(�) � 1} At least one jump by L̂−.
X0− = {� ∈ X | N−(�) = 0} No jump by L̂−.
Xn− = {� ∈ X | N−(�) = n} Just n jumps by L̂−.

where μ is the Lebesgue measure on X . Then the ratio in
Eq. (21) represents the Radon-Nikodym derivative of M̄ε

with respect to Mε.
In the limit of ε → +0, the absolute irreversibility makes

it difficult to define the Radon-Nikodym derivative as seen
in the diverging behavior of Eq. (21). In measure theory this
difficulty is manifested in the lack of absolute continuity. We
write the limits of the measures as M = limε→+0 Mε and
M̄ = limε→+0 M̄ε. Let X+ be the set of QJTs that have at
least one jump by L̂+ (see Table I). As discussed in Sec. III C,
for any � ∈ X+, limε→+0 Pε(�) = 0 and limε→+0 P̄ε(�̄) > 0.
Therefore, M(X+) = 0 and M̄(X+) > 0, which implies that
M̄ is not absolutely continuous with respect to M.

To define the Radon-Nikodym derivative in the absence of
absolute continuity, we must decompose the measure M̄ into
the absolutely continuous and singular components. We can
accomplish the decomposition, M̄ = M̄AC + M̄S, with the
following restricted measures:

M̄AC(D�) = χ0+(�)M̄(D�), (29)

M̄S(D�) = χ+(�)M̄(D�), (30)

where χ• (• = 0+,+) denotes the indicator function for a
subset X•:

χ•(�) =
{

1 � ∈ X•
0 � �∈ X•.

(31)

X+ is defined in the previous paragraph, and X0+ = {� ∈
X | N+(�) = 0} = X\X+. Note that χ0+ = 1 − χ+. We also
note that the Lebesgue decomposition theorem ensures the
uniqueness of the decomposition.

We can confirm the absolute continuity of M̄AC and the
singularity of M̄S as follows. First, from Eq. (29), it is clear
that M̄AC(X+) = 0 holds. This implies that M̄AC is abso-
lutely continuous with respect to M. That is, M̄AC(E ) = 0
whenever M(E ) = 0. Next, from Eq. (30), it is also clear
that M̄S(X0+) = 0 holds. This implies that M̄S is singular
with respect to M. That is, there exists a set E ⊂ X such that
M(E ) = 0 and M̄S(X\E ) = 0 hold.

B. Modified integral FT

For the absolutely continuous component M̄AC, we can
define the Radon-Nikodym derivative with respect to M.

Specifically, we have, for any E ⊂ X ,

M̄AC(E ) =
∫

E
lim

ε→+0
χ0+(�)M̄ε(D�)

=
∫

E
χ0+(�) lim

ε→+0

P̄ε(�̄)

Pε(�)
Mε(D�)

=
∫

E
χ0+(�) lim

ε→+0
e−�S(�)εN−(�)Mε(D�)

=
∫

E
χ0+(�)e−�S(�)χ0−(�)M(D�)

=
∫

E
e−�S(�)χ0−(�)M(D�), (32)

where χ• (• = 0+, 0−) is the indicator function defined in
Eq. (31). As defined before, X0+ is the set of QJTs that do not
include the jumps by L̂+. On the other hand, X0− is the set of
QJTs that do not include the jumps by L̂− (see Table I). In the
first line of Eq. (32), we used Eq. (29) and the definition of M̄.
In the second line, we used the Radon-Nikodym derivative of
M̄ε with respect to Mε. In the third line, we used the detailed
FT [Eq. (21)] and the fact that N+(�) = 0 for � ∈ X0+. In the
fourth line, we used limε→+0 εN−(�) = χ0−(�). And in the last
line, we used χ0+(�)M(D�) = M(D�), which results from
M(X+) = 0.

Setting E = X in Eq. (32), we obtain

M̄AC(X ) = 〈e−�S〉 − �, (33)

〈e−�S〉 =
∫

X
e−�S(�)M(D�), (34)

� =
∫

X
e−�S(�)χ−(�)M(D�), (35)

where χ− = 1 − χ0− is the indicator function for X− = {� ∈
X | N−(�) � 1} = X\X0− (the set of QJTs that have at least
one jump by L̂−).

On the other hand, from M̄AC = M̄ − M̄S and M̄(X ) =
1 (normalization of probability measure), we have

M̄AC(X ) = 1 − λ, (36)

λ =
∫

X
M̄S(D�). (37)

Combining Eqs. (33) and (36), we obtain the modified integral
FT (4), 〈e−�S〉 = 1 − λ + �, in our setup. Unlike the ordinary
integral FT, this includes the two additional terms, λ and �,
on the right-hand side. As clarified in the next two paragraphs,
each of the terms is related to each of the two types of absolute
irreversibility mentioned in the Introduction and Sec. III C.
The term of λ corresponds to that of the type in Eq. (2)
[the case of N−(�) = 0 and N+(�) > 0]. On the other hand,
� corresponds to that of the type in Eq. (3) [the case of
N−(�) > 0 and N+(�) = 0].

To see the meaning of λ, we rewrite Eq. (37) as

λ =
∫

X
χ+(�)M̄(D�), (38)

where we used the definition (30) of M̄S. This equation
implies that λ is the probability that the backward trajectory
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within the time-reversed QME (16) (in the ε → +0 limit)
contains at least one jump by L̄−. In other words, λ is the
probability that the time-reversed QME (16) generates the
absolutely irreversible backward QJTs of the type in Eq. (2)
(that have no corresponding forward trajectories).

To see the meaning of �, we rewrite Eq. (35) as

� =
∫

X
e−�S(�)χ−(�)χ0+(�) lim

ε→+0
Mε(D�)

=
∫

X
e−�S(�)χ−(�)χ0+(�) lim

ε→+0

Pε(�)

P̄ε(�̄)
M̄ε(D�)

= lim
ε→+0

∫
X

χ−(�)χ0+(�)ε−N−(�)M̄ε(D�). (39)

In the first line, we used χ0+(�)M(D�) = M(D�) [resulting
from M(X+) = 0] and the definition of M. In the second
line, we used the Radon-Nikodym derivative of Mε with
respect to M̄ε. In the last line, we used the reciprocal of
Eq. (21) with N+(�) = 0 for � ∈ X0+. We can further rewrite
this as

� = lim
ε→+0

∑
n�1

ε−n�ε,n, (40)

�ε,n =
∫

X
χn−(�)χ0+(�)M̄ε(D�), (41)

where χn− is the indicator function for the set Xn− of QJTs
satisfying N−(�) = n. Equation (41) implies that �ε,n is
the probability that the backward trajectory within the
time-reversed QME (16) (before taking the ε → +0 limit)
includes just n jumps by L̄+ and no jump by L̄−. And � is the
sum of these probabilities weighted by the reciprocals of their
order in ε. In other words, � is the weighted probability that
the time-reversed QME (16) generates the backward QJTs
that become absolutely irreversible of the type in Eq. (3) in
the ε → +0 limit.

We note that both λ and � significantly contribute to the
modified integral FT (4). This is contrasted to previous works
[17–25], where only λ contributes to their integral FT. The
difference arises from the origins of absolute irreversibility.
As mentioned in Sec. III C, the origin in our setup lies in
asymmetry in the dynamics: Cavity photons can go out to the
drain but cannot come back. In this case, the time-reversed
dynamics also induces the irreversibility, and therefore both λ

and � appear. By contrast, the origin in the previous works
lies in restrictions on the forward trajectory [26]. There, states
at some point in the forward trajectories are restricted within a
state subspace, and the subspace is smaller than and contained
in the space of sates that can be realized in the backward
process. In this case, only λ [the type in Eq. (2)] appears. In
free expansion [17], for example, the initial state is restricted
to be a localized state in one side of a box while the backward
process allows states in the other side.

C. Second-law-like inequality

By applying the Jensen inequality, 〈e−x〉 � e−〈x〉, to the
modified integral FT (4), we obtain the second-law-like in-
equality in our setup:

〈�S〉 � − log(1 − λ + �). (42)

The right-hand side may be negative, and as shown in the
next subsection this is the case in a certain situation. We note
that �S is the total entropy change without the drain’s con-
tribution. The drain entropy change 〈�Sd〉 is always positive
infinity because the drain is in the zero-temperature state and
because it only receives heat from the system (and does not
inject heat into the system). Therefore, the inequality (42)
is consistent with the ordinary second law, 〈�S + �Sd〉 � 0,
which is the zero-temperature limit (Td → +0) of Eq. (26).

In our setup, the ordinary second law is valid but rather
useless since the left-hand side is infinite. We may interpret
Eq. (42) as an extraction of a useful finite part from it. In other
words, the second-law-like inequality (42) gives a much better
lower bound for 〈�S〉 compared with the ordinary second law,
〈�S〉 � −∞.

D. Estimation of absolute irreversibility in a stationary case

Here we consider a stationary situation where the external
driving is time independent and the initial states in the forward
and backward processes are the respective steady states. That
is, we assume that L and L̄ are time independent and ρ̂ini =
ρ̂ss and ρ̄ini = ρ̄ss = �ρ̂ss�

†, where ρ̂ss is the solution of
Lρ̂ss = 0. In this situation, we estimate λ and � up to first
order in κτ to find

λ = κτTr[ĉ†ĉρ̂ss] + O[(κτ )2], (43)

� = κτTr[ĉĉ†ρ̂ss] + O[(κτ )2]. (44)

Thus, λ is nearly equal to the average number of photons
emitted from the cavity to the drain during [0, τ ]. We give
the detailed derivation in Appendix.

This result leads to −λ + � � κτ because of the canonical
commutation relation between ĉ and ĉ†. Therefore, the modi-
fied integral FT (4) yields

〈e−�S〉ss = 1 + κτ + O[(κτ )2], (45)

where the subscript “ss” represents the expectation value for
the QJTs in the steady-state situation. And the second-law-like
inequality (42) yields

〈�Sbath〉ss � −κτ + O[(κτ )2], (46)

where we used 〈�Ssys〉ss = 0 and − log(1 + κτ +
O[(κτ )2]) = −κτ + O[(κτ )2]. In this condition, κ is the
only setup parameter on which the modified FT (45) and the
inequality (46) are dependent.

Equation (46) gives a negative lower bound on the average
bath entropy change. But this does not contradict the ordinary
second law, as discussed in the previous subsection.

E. Another unravelling

Before closing this section, we discuss whether the way
of stochastic unravelling affects the present results. As gen-
erally known, the QME is invariant to appropriate redef-
initions of the jump operators and the Hamiltonian, and
therefore the stochastic unravelling of the QME in terms
of QJTs is not unique [43]. In fact, the QME (5) is in-
variant to the transformation of κD[ĉ] → κD[ĉ − α] [L̂− =√

κ ĉ → L̂′
− = √

κ (ĉ − α)] together with Ĥ → Ĥ ′ = Ĥ +
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Photon drain
(vacuum state)

Bath H Bath L

Single-mode
cavity

3-level atom

|g〉

|m〉

|e〉

FIG. 2. Schematic draw of the example model. The cavity QED
system is composed of a three-level atom and a single-mode cavity.

(iκ/2)(α∗ĉ − αĉ†). Our motivation to discuss this transforma-
tion is that we should use it with α = 〈ĉ〉ss to correctly count
the heat to the drain, as we showed previously [34].

To derive the fluctuation theorem for the transformed un-
ravelling, we replace the additional term εκD[ĉ†] in Eq. (7)
with εκD[ĉ† − α∗], which implies L̂+ = √

εκ ĉ† → L̂′
+ =√

εκ (ĉ† − α∗). Then we obtain a modified integral FT in a
similar manner to that in the previous and present sections. Its
form is the same as Eq. (4) but the transformed jump operators
and Hamiltonian are required in λ and �. As a result, the
values of λ and � differ from the original ones.

We can clearly see the difference in Eqs. (43) and (44).
For the transformed unravelling, we obtain the corresponding
results with the replacement of ĉ → ĉ − α and ĉ† → ĉ† − α∗
in these equations. Therefore, the values indeed differ from
the original ones at first order in κτ .

As easily shown, however, −λ + � � κτ remains valid up
to first order. That is, in this condition, the modified integral
FT (45) and second-law-like inequality (46) are invariant to
the transformation.

V. EXAMPLE

In this section, we numerically demonstrate our results
in a model of cQED system. Specifically, we investigate the
steady-state situation and show that the modified integral FT
and the second-law-like inequality in the small-κτ region,
Eqs. (45) and (46), are valid in the model.

A. Model

The model is a cavity QED version of a quantum heat
engine proposed by Scovil and Shultz-DuBois [27]. We show
a schematic setup of the model in Fig. 2.

In this model, the cQED system is composed of a three-
level atom and a single-mode cavity. The lowest, middle, and
highest levels of the atom are denoted by |g〉, |m〉, and |e〉,
respectively. The cavity mode interacts with the atom through
the transition between |g〉 and |m〉, and the cavity frequency
is resonant to this transition frequency ωm. The Hamiltonian
of the cQED system is a variant of the Jaynes-Cummings

Hamiltonian:

Ĥ =
∑

q=m,e

ωq|q〉〈q| + ωmĉ†ĉ + gc(|m〉〈g|ĉ + |g〉〈m|ĉ†),

(47)

where ωe is the transition frequency between |g〉 and |e〉 and
gc is the coupling constant. We can exactly determine the
eigenstates of this Hamiltonian:

|Ek〉 =
⎧⎨
⎩

|0, g〉 k = (0, g)(|n − 1, m〉 ± |n, g〉)/√2 k = (n,±), n � 1
|n, e〉 k = (n, e), n � 0

.

Here |n, q〉 = |n〉|q〉 represents that the cavity is in the n-
photon number state |n〉 and the atom is in the state |q〉
(q = g, m, e). The corresponding energy eigenvalues are

Ek =
⎧⎨
⎩

0 k = (0, g)
nωm ± gc

√
n k = (n,±), n � 1

nωm + ωe k = (n, e), n � 0
.

The environment is composed of two heat baths and a pho-
ton drain. The higher-temperature bath (denoted by H) is ther-
mally coupled to the atom through the |g〉 ↔ |e〉 transition,
and the lower-temperature bath (denoted by L) is thermally
coupled to the atom through the |m〉 ↔ |e〉 transition. The
photon drain is as described in the general setup (Sec. II).

Using the Born-Markov approximation and the rotating-
wave approximation and neglecting the Lamb shift term [41],
we can derive the QME for the cQED system subject to this
environment. The Liouvillian L of the QME is in the form of
Eq. (5) with Ĥ given by Eq. (47) and the bath-induced jump
operators given by

L̂H,k,l =

⎧⎪⎨
⎪⎩

√
ν−

H (ωkl )|El〉〈El |g〉〈e|Ek〉〈Ek| ωkl > 0√
ν+

H (ωkl )|El〉〈El |e〉〈g|Ek〉〈Ek| ωkl < 0
,

L̂L,k,l =

⎧⎪⎨
⎪⎩

√
ν−

L (ωkl )|El〉〈El |m〉〈e|Ek〉〈Ek| ωkl > 0√
ν+

L (ωkl )|El〉〈El |e〉〈m|Ek〉〈Ek| ωkl < 0
.

Here ν−
r (ω) = γr |ω|3[Nr (ω) + 1] and ν+

r (ω) =
γr |ω|3Nr (−ω). Nr (ω) = 1/[exp(βrω) − 1] is the Bose
distribution with the inverse temperature βr , and γr |ωkl |3
represents the spontaneous transition rate between |Ek〉 and
|El〉 due to the coupling to Bath r (r = H, L). As easily
shown, these jump operators satisfy the LDB condition (6).

B. Numerical result

We first investigate basic properties of the model in the
steady state. To this end, we numerically solve the steady-
state equation Lρ̂ss = 0 and calculate the expectation values,
nph = Tr[ρ̂ssĉ†ĉ] and nq = Tr[ρ̂ss|q〉〈q|] (q = g, m, e). In the
inset of Fig. 3, we plot these expectation values as functions
of the temperature TL = 1/βL of Bath L (with the temperature
TH = 1/βH of Bath H fixed). As lowering TL, we observe
that nph becomes larger than one together with ng and nm

approaching to each other. This behavior indicates that the
system crosses over from a nearly thermal state (at TL � TH )
to a lasing state (at TL 	 TH ).
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FIG. 3. Final-time (τ ) dependence of the average e−�S over QJTs
for TL/TH = 0.8 (circles), 0.5 (triangles), and 0.2 (squares). The error
bars show ±SE. The dashed line represents 1 + κτ [the right-hand
side of Eq. (45)]. In the units of ωm = 1, the parameters are set to
be ωe = 2.4, gc = 0.001, κ = 0.0004, γH = γL = 0.01, and TH = 1.
The cutoff number of cavity photons is set to be 10. The sample
number of QJTs is 1.5 × 106 for each TL/TH . The inset shows the
steady-state expectation values of the photon number nph and the
level populations nq (q = g, m, e), plotted against TL/TH .

Next, we test the validity of the modified integral FT (45)
and the second-law-like inequality (46) in the steady-state
situation and in the region of small κτ . For this purpose,
we perform the Monte Carlo simulation with the stochastic
wave-function method of generating many QJTs from the
distribution Pε(�) given in Eq. (15) with ε = 0 [41–43]. By
using this method, we sample 1.5 × 106 QJTs in the numerical
calculation of each data point in Figs. 3 and 4. We calculate
the entropy change �S in Eq. (22) for each QJT and take the
averages, e−�S and �S, over the QJTs. In the simulation, we
make two assumptions to describe the steady-state situation
in Sec. IV D. One is that the ensemble-level initial state is the
steady state ρ̂ss = ∑

ψ pss(ψ )|ψ〉〈ψ |, so that we choose one
of {|ψ〉}ψ as the initial wave function according to the proba-
bility pss. The other is that the basis set of the measurement at
the final time τ is also {|ψ〉}ψ .

In the main panel of Fig. 3, we show the numerical results
of e−�S against κτ for three cases of TL chosen from the nearly
thermal regime (TL/TH = 0.8, circles), the crossover regime
(TL/TH = 0.5, triangles), and the lasing regime (TL/TH = 0.2,
squares). We also plot 1 + κτ [the right-hand side of Eq. (45)]
as the dashed line. In all the cases, 1 + κτ is within the stan-
dard error (SE) of e−�S in the small κτ region (κτ � 0.04).
Therefore, we numerically confirm the validity of the integral
FT (45) to first order in κτ .

In Fig. 4, we show the results of �S against κτ for the
three cases of TL. We also plot −κτ [the right-hand side of
Eq. (46)] as the dashed line. In all the cases, �S is larger than
−κτ . For TL/TH = 0.8, in particular, though �S is negative, it
exceeds −κτ (see the magnified plot in the inset of Fig. 4). For
larger TL/TH (even for TL/TH � 1), we also observe that the
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FIG. 4. Final-time (τ ) dependence of the average �S over QJTs
for TL/TH = 0.8 (circles), 0.5 (triangles), and 0.2 (squares). The
error bars show ±SE (most of which are smaller than the symbols).
The dashed line represents −κτ [the right-hand side of Eq. (46)].
The inset is a magnified plot for κτ < 0.05. The parameter values
are the same as those in Fig. 3.

numerical results satisfy �S � −κτ (not shown in the figure).
Therefore, we numerically confirm the validity of the second-
law-like inequality (46) to first order in κτ .

VI. CONCLUSION

In the present paper, we have analyzed a general setup of
open cQED systems to investigate the FT for a case where
a heat bath (called photon drain) is in a zero-temperature
state. We have found that the diverging behavior in en-
tropy change—caused by the zero-temperature property of
the drain—is a manifestation of absolute irreversibility. Using
the method for the absolutely irreversible situations, we have
derived the modified integral FT (4) and the second-law-
like inequality (42). Two modification terms appear in these
results—one (denoted by λ) is known in previous works
[17–25], whereas the other (denoted by �) is discovered in
the present work for the first time [26]. λ is the probability
of the backward trajectories in the time-reversed dynamics
whose corresponding forward trajectories cannot be generated
within the forward dynamics. � is related to the probability of
the forward trajectories in the forward dynamics whose cor-
responding backward trajectories cannot be generated within
the reversed dynamics.

The absolute irreversibility in the present setup originates
from the asymmetry of the dynamics, where the photons can
escape from the cavity to the drain but cannot enter the cavity
from the drain. For systems with this origin of the absolute
irreversibility, both λ and � are essential in the modification
to the integral FT, because both the forward and reversed
dynamics induces the absolute irreversibility.

We have also shown that, in a stationary and small cavity-
loss condition, the modification terms are directly connected
to the average number of photons emitted to the drain. Using
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this result and the canonical commutation relation of the
cavity mode operators (ĉ and ĉ†), we have estimated the
modified integral FT and the second-law-like inequality to
linear order in κτ . Their approximate forms include only κτ

and are thus independent of the setup details. Moreover, we
have shown that these forms in this condition are invariant to
the change of stochastic unravelling, though it remains open
whether this is the case in other conditions.

We have illustrated the results in a model of quantum heat
engine. Using the stochastic wave-function method, we have
numerically confirmed the validity of the modified FT (45)
and the inequality (46).

The present results give several suggestions on quantum
thermodynamics in open cQED systems. We should remove
the drain’s contribution from the entropy change in order to
avoid difficulty of diverging behavior and to obtain meaning-
ful results of the FT and second-law-like inequality. At the
expense of the removal, we should take the modification terms
into consideration. The second-law-like inequality, in particu-
lar, indicates that the average of the entropy change (without
the drain’s contribution) may be negative. The numerical re-
sult in the example suggests that the negative entropy change
is more likely in nearly thermal situations.

We finally note that many of the results in the present paper
are applicable to systems other than the cQED systems. As
seen in the derivation, the peculiarity of the cQED systems
is used only in the canonical commutation relation between

ĉ and ĉ† above Eq. (45). Therefore, Eqs. (4) and (42) are valid
in general systems that are in contact with a zero-temperature
environment through a single mode (and the extension to
multimode cases is straightforward). Also, the steady-state
estimations, Eqs. (43) and (44), are generally valid with
replacement of ĉ and ĉ† with appropriate jump operators that
are induced by the zero-temperature environment.
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APPENDIX : DERIVATION OF EQS. (43) AND (44)

In this Appendix, we mainly give the detailed derivation
for the estimation (43) of λ in a stationary case. We can derive
the estimation (44) of � in a similar manner.

As explained below Eq. (38), λ is the probability that the
jump by L̄− occurs at least once in the backward trajectory
within the time-reversed QME (16) (in the ε → +0 limit).
Therefore, we can decompose λ as λ = ∑

n�1 λn, where λn

is the probability that the jump by L̄− occurs n times. We note
that λn = O[(κτ )n] because each single jump by L̄− induces
κ in the probability. Therefore, in order to estimate λ to first
order in κτ , it is sufficient to investigate λ1.

From Eq. (20), we can write λ1 as

λ1 = Tr
∞∑

N=0

∑′

j1,..., jN

∞∑
N ′=0

∑′

j′1,..., j′
N ′

∫ τ

0

∫ tN

0
· · ·

∫ t2

0

∫ t1

0

∫ t−

0

∫ t ′
N ′

0
· · ·

∫ t ′
2

0

N∏
n=1

[
Ūeff(tn+1, tn)J̄ jn (t ′

n)
]
Ūeff(t1, t0)J̄−

×
N ′∏

n′=1

[
Ūeff(t

′
n′+1, t ′

n′ )J̄ jn′ (t
′
n′ )

]
Ūeff(t

′
1, t ′

0)ρ̄ini. (A1)

Here we abbreviate the overlines on j’s and t’s for nota-
tional simplicity. The primed summation symbols stand for
sums over bath-induced quantum jumps [i.e., j (′)

n is one of
(r, k, l )’s]. And tN+1 = τ , t0 = t ′

N ′+1 = t− (time at which the
jump by L̄− occurs), and t ′

0 = 0. Note that we take the ε → +0
limit for Ūeff in Eq. (A1) [though we defined it in Eq. (17) for
the case of ε > 0].

We now consider the stationary situation, where the Liou-
villians are time independent and the initial states in forward
and backward trajectories are the steady states. Then we
can set ρ̄ini = ρ̄ss = �ρ̂ss�

†. Moreover, we note that J̄− in
Eq. (A1) contains κ . Hence, it is sufficient to estimate the
remaining part of the equation to zeroth order in κ . That is,
in Eq. (A1) we can approximately replace Ūeff and ρ̄ini = ρ̄ss

with the zeroth-order ones, which are denoted by Ū0
eff and ρ̄0

ss,
respectively. Then, by using an expression similar to Eq. (9),
we can rewrite the equation as

λ1 =
∫ τ

0
Tr

[
eL̄

0(τ−t− )J̄−eL̄
0t− ρ̄0

ss

] + O[(κτ )2], (A2)

where L̄0 is the Liouvillian of the time-reversed QME for
the case of κ = 0 [i.e., Eq. (16) with κ = 0]. Furthermore,

by noting L̄0ρ̄0
ss = 0 and the trace-preserving property of the

QME, we obtain

λ1 =
∫ τ

0
Tr

[
J̄−ρ̄0

ss

] + O[(κτ )2]

= κ

∫ τ

0
Tr

[
ĉρ̄0

ssĉ
†
]
dt− + O[(κτ )2]

= κτTr
[
ĉ†ĉρ̂0

ss

] + O[(κτ )2], (A3)

where we used ρ̄0
ss = �ρ̂0

ss�
† and the cyclic property of the

trace. In this equation we can replace ρ̂0
ss with ρ̂ss to first order

in κτ , so that we finally obtain Eq. (43).
The derivation of Eq. (44) is similar to that of Eq. (43).

In order to estimate � to first order in κτ , it is sufficient to
calculate limε→+0 ε−1�ε,1 in Eq. (40). We can estimate �ε,1

in a parallel way to that of λ1 by simply replacing J̄− with
J̄+, so that we obtain

�1,ε = εκτTr
[
ĉĉ†ρ̂0

ss

] + O[(κτ )2]. (A4)

We thus derive Eq. (44).
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