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Discontinuous transitions can survive to quenched disorder in a two-dimensional
nonequilibrium system
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We explore the effects that quenched disorder has on discontinuous nonequilibrium phase transitions into
absorbing states. We focus our analysis on the naming game model, a nonequilibrium low-dimensional system
with different absorbing states. The results obtained by means of the finite-size scaling analysis and from the
study of the temporal dynamics of the density of active sites near the transition point evidence that the spatial
quenched disorder does not destroy the discontinuous transition.
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I. INTRODUCTION

The study of nonequilibrium models is currently an im-
portant topic of statistical physics [1,2]. The theory of phase
transitions in equilibrium systems is well established and
rests upon solid foundations, with numerous results rigorously
proved. Moreover, it has been thoroughly tested and validated
through a large number of empirical and numerical evidence.
In contrast, work on the development of a similar theory
for nonequilibrium systems is rather recent, and results are
often limited in scope and lack adequate validation [1,2].
For this reason, one is sometimes led to apply most of the
fundamental equilibrium results to nonequilibrium systems
following simple analogies or heuristic generalizations. The
question of whether some specific result of equilibrium statis-
tical mechanics can be effectively extended to nonequilibrium
systems is open for a number of different issues. In this paper
we focus on an important result of equilibrium statistical
physics which states that the introduction of quenched random
fields or interactions in low-dimensional (d � 2) systems
causes the disappearance of discontinuous phase transitions
[3]. Quenched randomness precludes the presence of such
types of transitions.

In a recent work Villa Martín et al. [4] addressed the
question of whether such a result can be translated to
the nonequilibrium realm. They studied a two-dimensional
reaction-diffusion contact-process-like model [1,2], a very
simple nonequilibrium model with one absorbing state which
exhibits a discontinuous transition. They showed that the
introduction of disorder annihilated the discontinuous phase
transition and induced a continuous one, just as what should
be expected in the equilibrium case. This result led to the
conjecture that the arguments used in equilibrium systems
could be extended to nonequilibrium ones, leading to the
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disappearance of the discontinuous phase transitions, due to
quenched disorder, in general low-dimensional nonequilib-
rium systems with absorbing states [4].

Intrigued by this fascinating idea, we test here this hy-
pothesis by means of a recently introduced nonequilibrium
model with absorbing states: the naming game model [5].
This model is related to the large family of models which
implement an ordering dynamics that may generate global
consensus as an emergent phenomenon among interacting
agents. Despite its simplicity, its collective dynamics present
new features not commonly found in other more traditional
models. In fact, these dynamics rest on a memory-based
negotiation, where trials shape and reshape the memories,
allowing for intermediate individual states, feedback phenom-
ena, and dynamic inventories. This model generated a vivid
interest because some of its variants were able to describe
different aspects of linguistic dynamics, like, for example,
the birth of neologisms [5], the effects of reputation on
fixing vocabulary [6], the self-organization of a hierarchi-
cal category structure [7], the emergence of universality in
color naming patterns [8], the duality of patterning in human
communication [9], and the rise of protosyntactic structures
[10].

Some versions of the model display a discontinuous phase
transition [11,12]. This behavior can be obtained by the in-
troduction of a specific control parameter which represents
the efficiency of the communication process, accounting for
external or internal influences or agents’ irresolute attitude
[11]. This ingredient generates a transition between an ab-
sorbing state of global consensus and a stationary state with
several coexisting conventions. The richness of the naming
game model, which moves a step further from the simplicity
of the contact process, does not preclude the possibility of de-
scribing it with methods borrowed from classical equilibrium
statistical mechanics. This fact could be appreciated in pre-
vious studies which clearly characterized its phase transition
[11,13].
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II. THE MODEL

We simulate the game on a regular two-dimensional (2D)
square lattice with periodic boundary conditions, where only
nearest-neighbor pairs of sites are considered in the rules of
the game. At each of the L × L sites an agent, or player, is
placed. It is characterized by an inventory which can store an
infinite number of conventions. This inventory is structured as
an array of potentially infinite cells, where each cell is set on
one of a countable infinite number of possible states. Every
player starts with an empty inventory. At each time step, a
pair of agents is randomly selected. The first agent selects
one of its conventions or creates a new one, if its inventory
is empty. After that, the convention selected is transmitted
to the second agent. If this last agent already possesses in
its own inventory the convention transmitted, the two agents
involved in the interaction update their inventories so as to
keep only the considered convention, with a probability β.
Conversely, no action is performed by the couple of agents,
with probability 1 − β. Otherwise, if the second agent does
not already possess the transmitted convention, the interac-
tion is a failure, and it adds the new convention to its own
inventory. If β = 1, the model coincides with the original
naming game [5] implemented on a low-dimensional lattice.
This model always converges to an absorbent ordered state
characterized by one single convention adopted by every agent
[14]. When the behavior of the model is studied as a function
of the parameter β, a transition between overall consensus and
several coexisting conventions appears, driven by the value
of the parameter. The critical value βc is close to 1/3 for the
mean-field model [11] and βc = 0.329 ± 0.001 on a regular
2D lattice [13]. Moreover, this last study shows, by means of a
rigorous finite-size scaling analysis, that the model effectively
displays a discontinuous nonequilibrium phase transition with
absorbing states [13].

This pure model can be modified to obtain a disordered
version. In this version, the parameter that controls the out-
come of each interaction is no longer the same for all agents.
Each agent i is now characterized by a random uncorrelated
probability βi where we take βi = β + r, where β is constant
and r is a random number on the interval [−η,+η] chosen
with a uniform probability. The values of βi are thus randomly
defined and fixed at the beginning of each simulation.

III. RESULTS AND DISCUSSION

As a first step, we analyze the differences generated in the
general form of the phase transition by the introduction of the
quenched noise. The phase transition corresponds to the shift
from an active stationary state, characterized by disordered
and fragmented clusters, to an absorbing state made of a single
cluster represented by the same convention. Because of this
phenomenology, the relative size of the largest cluster present
in the system is an excellent parameter that characterizes the
transition [15,16].

This parameter is defined as the size of the largest cluster,
made up by the agents sharing the same unique convention,
normalized by the system size: smax/L2. This parameter is
estimated once the steady state is reached and it is averaged
over different simulations: 〈smax/L2〉. As the system presents

FIG. 1. Characterization of the phase transition using the mean
of the normalized largest cluster size as a function of β. Results are
displayed for different levels of noise (η). Each point is averaged over
100 simulations, L = 40.

very slow relaxation time close to the transition, we have to
run very long simulations (4 × 1010 Monte Carlo steps) which
forced us to adopt L values only up to 100. In Fig. 1 we
can observe how the introduction of noise, controlled by the
parameter η, impacts the transition behavior. The critical value
of βc(L) is shifted towards higher β values, but, surprisingly,
the discontinuous phase transitions are not clearly rounded
by disorder, a fact that generates some doubts about the
potentiality of noise in generating a continuous transition.

For this reason we turn our attention to a rigorous charac-
terization of the phase transition based on a finite-size scaling
analysis. In fact, the scaling behavior of the system near the
transition can clearly discriminate between a continuous or
discontinuous transition.

We performed the analysis evaluating the fluctuations of
the size of the largest cluster,

χ = L2
(〈

s2
max

〉 − 〈smax〉2
)
,

and its moment ratio (reduced cumulant) [17],

U2 =
〈
s2

max

〉

〈smax〉2
,

for different L values.
As can be appreciated in Fig. 2, these quantities peak at

around βc(L). Actually, the use of the maxima of these quan-
tities has proven to be a very efficient method for performing
finite-size scaling analysis of discontinuous phase transitions
into absorbing states [18]. In this case, the asymptotic tran-
sition point can be obtained by looking at the convergence
of the finite-size transition points βc(L), as estimated by
the localization of the maxima of the fluctuations or the
maxima of the moment ratio. In both cases, the convergence
is expected to follow an algebraic behavior, βc(L) = βc +
aL−2, which is the usual equilibrium scaling for discontinuous
transitions [18–20]. Our data follow these scaling laws very
well: Figure 3 shows how the maxima positions for χ and
U2 effectively decrease as 1/L2. An extrapolation for L → ∞
yields βc = 0.342 ± 0.001 for χ and βc = 0.341 ± 0.001 for
U2, two very close values.

An alternative approach [21] for the estimation of the
asymptotic transition point uses the location of the observed
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FIG. 2. From top to bottom: (a) mean of the normalized largest
cluster size, (b) its variance χ , and (c) the moment ratio U2 as a
function of β for different system sizes and η = 0.2. Each point is
averaged over up to 200 simulations.

discontinuity in the normalized size of the largest cluster (the
first value of β for which 〈smax〉/L2 is smaller than 1). Using
this method the convergence is supposed to be exponential,
and the extrapolation for L → ∞ gives βc = 0.343 ± 0.002
(see Fig. 3). In the same figure we can observe how the dif-
ference βc − βc(L) clearly presents the expected exponential
behavior.

Additional consistency checks of the above results can be
performed verifying whether the measured quantities present
the typical scaling of a discontinuous transition near the
transition point, a standard procedure for equilibrium finite-
size scaling analysis [18,22]. The scaling plot of 〈smax〉/L2

should be obtained, introducing the rescaled control parameter
β∗ = (β − βc)Ld , where d is the system dimension. Similarly,
the scaling plot of the fluctuations should be drawn using the
rescaled fluctuations χ × L−d and the rescaled parameter β∗.
Figure 3 shows a reasonable collapse, which satisfies these
relations, strongly suggesting the validity of the finite-size
scaling ansatz expected for a discontinuous transition.

FIG. 3. Top: (a) Convergence to the asymptotic transition point
βc of the finite-size transition points βc(L) measured from the
variance and the U2 maxima. (b) Convergence to the asymptotic
transition point βc of the finite-size transition points βc(L) measured
from the jump location in the normalized size of the largest cluster.
The continuous line represents the best fitting function: βc(L) =
0.343 − 0.125 exp(−0.052L). In the inset, the semilogarithmic plot
shows in detail the expected exponential behavior of the difference
βc − βc(L). Bottom: (c) Rescaled plot for 〈smax〉/L2 and (d) its
fluctuations.

An alternative way for differentiating between continuous
and discontinuous transition is based on the distinct behavior
of the temporal dynamics of the density of active sites. In our
model such density corresponds to the fraction ρ of agents
presenting more than one convention in their inventories [23].
Near the transition point the density is expected to decay
smoothly to zero in the case of continuous phase transitions
and to develop an abrupt discontinuous jump in the case of
discontinuous transitions. In particular, in continuous phase
transitions the density of active sites typically presents a
power-law decay [2]. Even so, some models which present
continuous transitions between active and absorbing states are
characterized by slower decays (logarithmic) of active sites
(for example, in voter-like models [24] and in Potts model
with absorbing states [25]).

We collected some numerical data depicting the dynamics
of the density of active sites for our model with quenched
disorder. A clear representation of the density evolution can
be obtained averaging over many independent runs. Before
calculating these averages, since the convergence time in
this model is characterized by a very wide distribution, it
is useful to shift each time series i by the time t0

i , which
corresponds to the time when the density ρi goes to zero.
As can be seen in Fig. 4, the time evolution of the den-
sity of active sites clearly develops an abrupt discontin-
uous jump, corroborating the view that the transition is
discontinuous.

In summary, we have numerically studied the effects of
introducing a spatial quenched disorder in a naming game
model which, in its pure version, presents a well-known
discontinuous phase transition. The aim of the analysis is to
state whether the presence of the quenched randomness results
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FIG. 4. Time evolution of the density of multiconvention agents
for different values of β, η = 0.2, and L = 60. The rescaled time
T = (t − t0

i ) + 106, where t is the Monte Carlo step and t0
i corre-

sponds to the step when the density ρi goes to zero. Points represent
the ensemble average of ρi, obtained considering only the simula-
tions which converged to the consensus state. For β = 0.330, the
time is not rescaled and the average is over all the simulations.

in the disappearance of the discontinuous phase transition, as
is known to happen in equilibrium systems. In contrast to this
conjecture, our analysis suggests that the model maintains the
discontinuous phase transition. This conclusion is supported
by the evidence provided by the results of a finite-size scal-
ing analysis. We found that, as for the pure (without disor-
der) model, the behavior of the finite-size transition points
measured from the variance, the moment ratio, or the jump
locations show a scaling behavior which can be associated
with a discontinuous transition. Additional confirmations of
these results come from the collapse of the scaling plot of the
order parameter and its fluctuations, which have been obtained
using the scaling law expected for a discontinuous transition
[18]. Moreover, the temporal dynamics of the density of
the active sites near the transition point develops an abrupt
discontinuous jump, as expected in the case of discontinuous
transitions. These numerical results constitute evidence for
the survival of the discontinuous phase transition after the
introduction of quenched disorder.

Previous works have already shown that temporal disorder
does not destroy discontinuous transitions in a variety of
two-dimensional models [26]. In our study, the transition
surprisingly survives also in the case of a simple quenched
spatial disorder.

It is interesting to note that the model considered in [4],
for which the discontinuous transition disappeared, is char-
acterized by only one absorbing state. In contrast, our model
presents a large number of possible different absorbing states.

We conclude our work by proposing a heuristic argument
for explaining the phenomenology behind this single-multiple
absorbing states dichotomy in rounding (or not) the discon-
tinuous transition. An interesting inspiration comes from the
case of continuous phase transitions. In that scenario the result
that random fields destroy an equilibrium phase transition in
low dimensions [27] cannot be transposed to nonequilibrium
systems. This fact was shown by the analysis of Barghathi
and Vojta, where the phase transition of a generalized contact
process presenting two absorbing states persists in the pres-
ence of disorder [28]. In such an example the existence of two
absorbing states is essential. In fact, along its dynamics the
system organizes in distinct uniform domains corresponding
to the two absorbing states, and neither active sites nor new
domains can arise in the interior of a given domain, as its states
are inactive. After a process of coalescence of these domains,
in the long time limit, the system reaches a single-domain
state. In contrast, in the equilibrium case of a random-field
Ising model, the growth of a uniform domain is limited by
spin flips which can occur anywhere due to fluctuations. The
domain’s size reaches a typical value controlled by the Imry-
Ma argument [27], suppressing the continuous transition. The
case of the discontinuous transition can be explained follow-
ing the work of Kardar et al. [29], which suggests that disorder
precludes discontinuous transitions by generating islands of
arbitrary size of one of the phases within the other. This nested
structure of islands within islands leads to the formation of
hybrid states, and two distinct phases cannot coexist. This
phenomenon can happen in the contact-process-like model
considered in [4], where the unique absorbing state corre-
sponding to no-particle occupation can pop up everywhere
in the system, as particles disappear at random locations. In
contrast, in our model, once a domain with a specific inactive
state is defined, it is not possible to create smaller regions in
the opposite phase inside it, paralyzing this mechanism and
allowing the discontinuous transition to take place.
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